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On the occasion of the International Conference on Nonlinear Hyperbolic Problems
held in St. Etienne, France, .1986 it was decided to start a two years cycle of
conferences on this very rapidly expanding branch of mathematics and it's

applications in Continuum Mechanics and Aerodynamics. The second conference

took place in Aachen, FRG, March 14-18, 1988. The number of more than 200
participants from more than 20 countries all over the world and about 100

invited and contributed papers, well balanced between theory, numerical analysis

and applications, do not leave any doubt that it was the right decision to start

this cycle of conferences, of which the third will be organized in Sweden in 1990.

This volume contains sixty eight original papers presented at the conference,

twenty two of them dealing with the mathematical theory, e.g. existence,

uniqueness, stability, behaviour of solutions, physical modelling by evolution

equations. Twenty two articles in numerical analysis are concerned with stability
and convergence to the physically relevant solutions such as schemes especially

deviced for treating shocks, contact discontinuities and artificial boundaries.

Twenty four papers contain multidimensional computational applications to

nonlinear waves in solids, flow through porous media and compressible fluid
flow including shocks, real gas effects, multiphase phenomena, chemical

reactions etc. ,

The editors and organizers of the Second International Conference on Hyperbolic
Problems would like to thank the Scientific Committee for the generous support

of recommending invited lectures and selecting the contributed papers of the

conference.

The meeting was made possible by the efforts of many people to whom the

organizers are most grateful. It is a particular pleasure to acknowledge the
help of Riikka Tuominen for preparing the abstract book and Bert Pohl for his

dedicated help organizing the conference. It is also a pleasure to thank Sylvie
Wiertz, Angela Schneider, Gabriele Goblet and Thomas Hoerkens for preparing

these proceedings. Finally the.organizers are indebted to the host organizations

Rheinisch Westfllische Technische Hochschule Aachen and the city of Aachen

and to those organizations which provided the needed financial support for the
conference: Control Data GmbH, Cray Research GmbH, Deutsche Forschungs-
gemeinschaft, Diehl GmbH & Co., Digital Equipment GmbH, FAHO Gesellschaft

von Freunden der Aachener Hochschule, IBM Deutschland GmbH, Mathematisch -

Naturwissenschaftliche Fakultit der RWTH, Ministerium fur Wissenschaft und
Forschung des Landes Nordrhein-Westfalen, Office of Naval Research Branch
of London, Rheinmetall GmbH, US Air Force EOARD, US Army European Research

Office of London, Wegmann GmbH & Co.

Aachen, September 1988
Josef Ballmann

Rolf Jeltsch
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NON-OSCILLATORY SCHEMES FOR
MULTIDIMENSIONAL EULER CALCULATIONS

WITH UNSTRUCTURED GRIDS

PAUL ARMINJON

Universiti de Montrial, Dipt de Mathimatiques et Statistiques, C.P. 6128 Succ. A,
Montrial, Quibec (CANADA), H3C3J7

ALAIN DERVIEUX, LOULA FEZOUI, HERVE STEVE

INRIA, 2004 Route des Lucioles, Sophia-Antipolis 1 et 2, 06565 VALBONNE
(FRANCE)

BRUNO STOUFFLET

AMD-BA, DGT-DEA B.P. 300, 78 Quai M. Dassault, 92214 SAINT-CLOUD
(FRANCE)

The purpose of this paper is to present a synthesis of our recent studies related to
the design of multi-dimensional non-oscillatory schemes, applying to non-structured
finite-element simplicial meshes (triangles, tetrahedra). While the direct utilization of
1-D concepts may produce robust and accurate schemes when applied to non-distorted
structured meshes, it cannot when non-structured triangulations are to be used. The
subject of the paper is to study the adaptation of the so-called TVD methods to that
context. TVD methods have been derived for the design of hybrid first-order/second-
order accurate schemes which present in simplified cases monotonicity properties (see,
for example, the review [2]). A various collection of first-order accurate schemes can
be used, they are derived from an artificial viscosity model or from an approximate
Riemann solver. However, the main feature in the design is the choice of the second-
order accurate scheme ; this choice can rely either on central differencing or on upwind
differencing.

1 GALERKIN AND UPWIND FINITE-ELEMENT SCHEMES FOR
TRIANGLES.

Let us consider the following scalar model problem

ut+f7.V2 =Oin VJ(2
U(z,0) = U0(X), I

and a finite-element triangulation of JR2 ; the generic element is denoted by T,
and the P,-Galerkin basis function related to a vertex i is written 0,: Oi is con-
tinuous, affine by element, O = 1 at vertex i, 0 at all other vertices. Then the
P,-Galerkin augroximation scheme for (1) reads :

\L,, T4%)=0 (2)

T



with
(uV)IT = some average of uV on T

(V )IT = (fh1 , ii d,) / area(T) (4)

where 1,, 12 are mid-sides and G the centroid of T as sketched in Fig. 1 ; the sum is
taken over triangles T having i as a vertex.

The conservation properties of scheme (2) may not be clear at first glance ; it is
then interesting to introduce a second scheme, that is a variant of (2) : Let celli be
the polygon around vertex i that is limited by medians as sketched in Fig 2. Then we
shall call "Finite-Volume Galerkin" the following scheme:

area(cell,)- + 1 (uV) i d1 ii (5)
. j neighbour of i fcG2

where I is the middle of the side ij and GI, G2 the centroids of the two triangles
having ij as common side ; the sum is taken over the vertices j that are extremities
of sides having i as other extremity.

Lemma 1 :Schemes (2) and (5) are identical if (i) Mass matrix lumping by line-
summing is applied to (2) and (ii) The following numerical quadratures are applied:

-for (2) : (uV)I T = -(ujV, + ujV + ukVk) where ij, k are the vertices of triangle T
. for (5) : (uV)jj 2 ()

The schemes of the above family (2), (5) do not satisfy the Maximum Principle (case
V = const.) ; however, BABA and TABATA [4] proposed an upwind version of (5),
that, in the case where V is constant, can be written :

area(cell)-- + E 'u'+ ui) V do,
j neighbour of i (6)

1~ ~ ~ E
1

u 0 1 1G 2 ij 6
2 j neighbour of i ,) IG2

where the left-hand side is the Finite-Volume Galerkin term, and the right-hand
side a numerical viscosity. This scheme satisfies the Maximum Principle for V = const.
and preserves positiveness in the general case ; however, it is only first-order accurate
and we shall discuss several ways to recover second-order accuracy locally.

2 TVD-LIKE SCHEMES FOR SYSTEMS.

The extension to second-order schemes can be performed starting from Lax-Wendroff
schemes (with triangles : one-step, two-step Taylor-Galerkin schemes, [1] [8]) ; this
extension can rely on an FCT approach [11] [10] [13] or a symmetric TVD one [3] [13]
; a description of all these schemes is out of the scope of this paper and we restrict
ourselves to a family of MUSCL methods [15], extended to unstructured triangulations
following [9].

2.1 Extension of the first-order scheme
Vijaysundaram proposed in [16] the extension of the BABA-TABATA scheme to
hyperbolic systems by introducing an (approximate) Riemann solver or a flux splitting
as follows : the Euler system

W, + F(W). + G(W), = 0 (7)

2



is discretized by

area(cel4) -W- + o t(W,, W,, j) = 0 (8)
& maeghbow of i

with

= I~l.f , 2d(9)
' : flux splitting or Riemann Solver,

for example :

4(W,, W, 17) = H(W,) + H(W) _ _Wi+ W(
2 2 2 - WO (10)

with
H(W) = irF(W) + 7rG(W) (11)
P(W) = *v(W) = iA(W) +ifvB(W)

and
P = T A T -1, IPI = TI A IT-', A diagonal . (12)

2.2 Extension to a second-order accurate scheme.
One way to construct a MUSCL second-order extension is to introduce nodal anproxi-
mate nts [9]:

gradW(i) I (J/ u gradWdz) if f 0.dz (13)

in order to extrapolate mid-side values

Wij = Wi + gadW(i) .ji (14)

Wjj = Wj - 1gradW(j) .i

and then introduce them in the flux function:

area(cel!)- + L 4(Wi, W,,, i4j) = 0. (15)
j neighbov of i

This construction results in a scheme which is (spatially) second order accurate
but may present over/undershoots in solutions.

We now study several approaches to recover (more or less surely) monotonicity.

- Limiters with nodal gradients. In order to construct a hybrid between the second-
order scheme and the first-order one, the TVD approach necessitates the knowledge
in the direction of the flux of four successive values of the dependent variables, let us
call them

Wi-1, Wi, Wj, W+1. (16)

While these can be nodal values in the context of a structured grid, the values
Wi- and Wj+i have to be fictitious in the unstructured triangulation one. To derive
these fictitious values, we can use the nodal gradients :

W,_j = W, - 2VW(i) .' + (Wi - W,)93 (17)w, = wj - 2vwoj). jf + (w, -wj)

3



We then compute, following [15], the "average" values of variations of W:

dWi - ve (W, - W, w -w ) (18)
dw = ,ave (Wi -Wi, Wi -Wi+q)

with (C > 0):

_ a~b2 + f2) + 
b(a'+ E2) if .b>0

ave (a,b) +b+2e else (19)

and finally extrapolate limited values

.. wj + I dW,wi - j + l4;jl(20)

that are introduced in the flux function 4 instead of (W,Wjj). With this ap-

proach, the solutions are oscillation-free in most transonic cases, but high Mach cal-

culations produce negatives pressures. We want then to go further in the prevention

of oscillations.

- Element-by-element sloe limitation. One explanation for the lack of monotonic-

ity of the above scheme is that the nodal gradient is a mean value of element-wise

gradients, that may not allow for an accurate detection of oscillations. A first way

to circumvent this phenomenon is to consider, from a pesimisti point of view, each

element-wise gradient for the construction of the nodal gradient ; we propose the

following limited nodal gradients :
rwin (21)

an= mod (W

184i~~~ neighbour (O 1  (1

and same for q, with

min mod(al ... a,,) -
sign (ai) x [(sign (a,) + sign (ak))jx h(l,.,n) Ia&I (22)

ks2

and with:

either (4,,7) = (z,y)
or (,?) = (direction of the local gradient, its orthogonal). (23)

This approach is very robust but rather dissipative and non-smooth.

- Upwind element formulation. We lastly propose a formulation which is inspired
from the 1-D case. We return to the (16-20) context and propose a different way
to define the fictitious values Wi-I and Wj+ : instead of using the nodal gradients
VW(i), we use the usual triangle-wise Galerkin gradient VWT that we compute on
the so-called upwind elements Ti, Tj w.r.t. the considered segment ij; they are
defined as follows: for any small enough positive number A,

i +.Ati e ,(24)

(24



Then we put
W,_t = wi - VWITi, /j (25)
W+1 = Wi - VWITj,. (2)

the rest of the calculation is as in (18)-(20). Since this construction is done after
the side ij is considered, the limitation can be applied either to the primitive variables
W (p, u,p) or to characteristic variables, which are defined as follows :

1k = T-' (W ) (p,p,pu, E) (26)

where T is defined in (12).

- Central-difference MUSCL variant. Lastly we describe a variant of the MUSCL
scheme that on second order central differencing : this scheme is obtained by replacing
the usual non limited MUSCL interpolations Wi,, Wi by the following ones

-7~s W, '+W _ _

is - + W2 (27)

where kii is defined from four consecutive (partly fictitious) values of W:
,.j = kij(*_, 4i, W,, ', +i) (28)

following the method of symmetric TVD design 15,17) ; in the experiment pre-
sented in the sequel, the following limiter is applied :

= € ' ~ - € - ¢ € - W ,
=-.---. 2j *". . = -4..-.,.

mi r+ w,- wjO es-ri, "T -_ if sign (r) = sign (r-) (29)

.1 else r, j (9

ki = 1- 2r,-
.+ri'

Furthermore, the limitation is applied separately on each primitive variable (p, u,
v, p).

3 NUMERICAL EXPERIMENTS

3.1 Blunt body comparisons.
We present a sample of experiments performed with the simple test case of a flow past
a halfly-circular blunt body with Mach at infinity equal to 8 and zero angle of attack.
Although the grid used here is structured, (2000 nodes, Fig.3) both the alternation
of 4-neighbours / 8-neighbours molecules ("Union Jack grid") and the bad alignment
with the shock to be captured make this problem rather typical of the difficulties
arising with unstructured arbitrary grids.

The upwinding of the solution is obtained by using Osher's approximate Riemann
solver (121, The solutions are computed with an implicit unfactored scheme with
a first-order accurate linear operator (using the Steger-Warming splitting). For the
central-difference scheme, this solver is not adequate at high CFL numbers, as shown
in [7.

5



Application of scheme (16)-(20) : we did not get convergence of this scheme (neg-
ative pressures appear and do not disappear) for any initial state. This is explained
by the non efficient detection of over-shoots/under-shoots by the averaged nodal gra-
dients.

The second scheme, referred to as Hermitian limited or element-limited, yields the
entropy contours in Fig.3a. We think that the shock is captured in a stable enough
manner but much numerical viscosity is involved, in particular near the stagnation
point, as one can see when considering the entropy level along the body.

The third scheme experimented is the "upwind-element" formulation, with lim-
iters applied to the primitive variables, while in the fourth the limiters are applied to
the characteristic values ; we emphasize that, due to a less viscous limitation than in

the second scheme both results are more satisfactory from the standpoint of internal
viscosity. Nevertheless, the characteristic limitation seems to improve both stability
and accuracy. There remains a low frequency error in the entropy generation through
the shock which slighly pollutes the contours.

Lastly the "central difference-MUSCL" scheme is applied ; because of the more
severe limiter used here, the numerical entropy generation is larger than when the
upwind schemes are applied but still rather acceptable (Fig. 3.d).

3.2 3-D applications.
For the illustration- of the 3-D extensions, we refer to 16] for scheme (20), to [14] for
scheme (23), and we present here a result obtained with scheme (21) : the interaction
of two supersonic jets in a combustion chamber is computed with 3000 and 20,000
node-half geometries ; the maximum Mach number is close to 5 ; the second-order
accurate results are in good agreement with each other(Fig. 4) while the first-order
scheme applied to the 20,000 nodes grid produces a rather poor result.

4 CONCLUSION.

Several methods are described and compared for the construction of TVD-like schemes
applying to arbitrary simplicial finite-element triangulations. Several schemes are ro-
bust enough for the capturing of strong shocks arising in high Mach flows ; they
extend to 3-D, allowing for a large set of applications involving reentry simulations
and stiff internal flows.
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FINITE-DIFFERENCE SCHEMES WITH DISSIPATION CONTROL
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SUMMARY

A class of flux splitting explicit second-order finite-difference schemes
SFS is set up. It depends on a single parameter. The adaptation of the value of this
parameter enables us to control the dissipative error included in these schemes. A
generalization of Van LEER flux splitting makes possible an improvement in the
numerical solution in the regions where the Mach number is relatively weak. ID
and 2D transonic flows are presented.

INTRODUCTION

The recent appearance of the flux-splitting method [1,2] used in solving
the hyperbolic system of conservation laws Uj+F(U)=0 has permitted the
setting up of a class of flux-splitting SFS schemes that depends on the single
parameter a. These schemes are stable up to CFL=2. The ejuivalent third-order
system (ETOS) of this family has been obtained and the 'optimal" value of a
(a = 2.5), that minimizes the amplitude of the peaks of the numerical solution near
the shock, has been determined by usin the numerical tests of shock-tube flow
and moving shock in ID space [3]. The SEGER-WARMING splitting allows one
to study the ETOS such as the ETOS associated with upwind scheme Su and
downwind schemes SD defined in [4]. This study shows that the scheme SFS with
a = 2.5 (noted SFs0 1") is in fact more dissipative than with a = 1 in the case of a
compression wave or a shock. The scheme SFS with this last value corresponds to
the STEGER-WARMIING scheme used in [1]. When Van LEER flux splitting is
used, the study of the ETOS appears more difficult because the jacobian matrices
associated with the total flux and the partial fluxes have not the same eigenvalues
and in this case, the method taken into account above cannot be applied.
Nevertheless, the ETOS has been studied for the one-dimensional isothermal flow
and some interesting results concerning the dispersive and dissipative properties
of SFS schemes were brought to light.

In this paper, the SFS schemes are associated with a generalization of
Van LEER splitting. This generalization, which keeps the whole properties of Van
LEER splitting, has been possible because in a great number of applications, the
Mach number does not reach the values -1 and I in a same flow. In this case, some
conditions that are linked to Van LEER splitting for one of these two values can be
chncelled, and the subconditioned system is correctly solved at that time by the
insertion of a parameter e in the partial fluxes. This parametric splitting (called -
bplitting) makes possible an improvement in the numerical solution, especially in

e zones where the Mach number is less than 0.6.

Some results obtained for ID shock-tube problems, a 2D steady flow in a
nozzle are presented. They show that SFS schemes associated with c-splitting are
well-adapted to compute such flows.
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STUDY OF THE ETOS OF THE SCHEMES SFS

Let the initial-value problem for hyperbolic ID system in conservation
form be:

U1+F+(U)+F-(U)=0, U(x,O)=U'(x), -<x<+-. (1)

Here U(x,t) and the fluxes F+ and F" E R". Let Ui n be the numerical
solution of (1) at the mesh point xi =iAx and at time t= nAt. F+ and F" represent
the partial fluxes associated with the forward and the backward moving waves
respectively. Any non-linear system (1) is discretized with a second-order accuracy
in time and space by the following predictor-corrector schemes SFS [3):

Uiui a0F+ - F + F I-F i ') (2)

R+= 4 -tQ F 2 F+ )n+(1 -4a)( F_ 1 F )n +(3a-1I)(1-F' F)n

whereFik=F1 (U) and o=At/Ax.

A way to study the properties of SFs schemes is to make an analysis of
the ETOS; i.e., of the system (1) approximated by the SFS [5]. In this paper, we
study the ETOS in the case of the ID isothermal flow:

U = = F=F++F" = (3)
M2 p(M2+1 )]

(the unities have been chosen such that p/p = 1). p, p and M represent the density,
the static pressure and the Mach number respectively. We analyse the different
error terms that appar in the ETOS when we choose to use either STEGER-
WARMING splitting (SW) or the Van LEER splitting (VL). In both cases, we
suppose 05M<2. The ETOS can be written:

W)+ (F+ )+ (F =,N2> I.J(OM)(U.+ EJ(oMa)M (U) + e1(o MaXU )et Cx~~x (I' jx=+ jz f j
J= I (4)

+0WAX 3); C= 1,2

We can make a study of the nature of the partial differential equation
(4) by considering the effect of the odd and even higher derivatives.

The terms e J(o,M)(Uj).,, are of a dispersive nature and lead to
dispersive oscillations in the numerical solution. Fig. L.a shows the evolution of
Eli against M for two values of the Courant number. For both CFL values, the

dispersive errors remain weak and the choice of the flux splitting does not have a
great effect on their evolutions. The curves are continuous with VL splitting,
whereas, with SW splitting, it appears to be a discontinuity ofZl1 due to the non-
continuity of dF/dUatM I with this splitting.
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The terms Te= EeJ(o,M,a)Mx(Uj), can be defined as dissipative terms
if EeJ(o,M,a)Mx>O and antidissipative if Eej(o,M,a)Mx<O. Therefore, according to
the sign of E? JM, these terms Te can have a good behaviour by damping the
contingent oscillations created by the dispersion errors or a bad effect by setting up
new oscillations. Eej are drawn on fig. 1b, 1c and 1d. Whatever the splitting (VL or
SW), they are discontinuous at M = 1, because higher order derivatives arise in
these terms, and in this case even VL splitting is not capable of having the
continuity of Et, at M = 1. This particularity explains the difficulties that can
appear at the sonic point with these splittings. But, generally, the strength of the
discontinuity is weaker with VL splitting.

ElJ do not depend on a. It is interesting to note that the use of VL or SW
splitting for the first equation of (1) (3) gives opposite dissipative properties for a
given acoustic phenomena. For example, in the case of a compression or shock
wave (Mx<O) the scheme is, in the agregate, dissipative with VL splitting and
antidissipative with SW splitting. In the case of a rarefaction (MX>0), it is the
contrary.

The terms E2 1 depend on a. Whatever the splitting (VL or SW), the
scheme is always more dissipative when the value of a increases (for example
a=2.5) in the case of a compression or shock wave. Contrary to this result, the
scheme is more dissipative when a tends to zero for a rarefaction.

The third terms ee(o,M,a)(Uj),3 are differentials of an order lower than
the previous terms and their effects are generally negligible.

To conclude this chapter, we can state that the choice of the flux
splitting and the selection of the value of a have a great weight on the dissipative
qualities of the schemes.

GENERALIZATION OF VAN LEER FLUX SPLIITING

This generalization has been possible thanks to the following remark. It
is relatively rare to have a Mach number that reaches the values -1 andI in a flow.
Generally, we have a main flow where OsM<w with or without some secondary
flows where the Mach number is limited in the lower values by Minf such as
-1 <Minf (in a great number of flows, [Mif I is small compared to 1). In these
conditions, it is possible to define the following parametric c-splitting when the
one-dimensional Euler equations are considered:

Minf <M< 1

F-= - -(1 +Ie)M-1), F
+

=F -F, - =pcM-F -

F-_ - [F1 2 - (Y- I)M I F+ = F'_ F'- 
= 
Pc2(M2+ 2

7,2 F 2-2 PC 3M M2
F;" = F =-F 3F - - - 2 +(Y)- I)Z-F .2('Y 2

_ 1) FI-  - 2(Y- 1) 3

When Mal F+=FandF=O.
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In these expressions, c and Y represent the sound speed and the specific
heat ratio. The retained decomposition verifies the following conditions:

for Minf ! M < w
(a) F=F+ +F"
(b) All eigenvaluesofdF+/dUare --0

All eigenvalues of dF'/dU are 0
(c) F+ and F' continuous

with F + =F for Ma 1
(d) dFlIdU are continuous everywhere
(e) dF'/dU has one eigenvalue that vanishes for M < 1
(f) F+ must be a polynomial in M with the lowest possible degree.

It is difficult to show that the condition (b) is respected for the Euler
equations because of the complexity of the calculations. Nevertheless, in the case
of the isothermal flow ( /=1), it is possible to demonstrate that this condition is
respected for 0se 5/3 (when 17c =0). It is thought that this result can be
extended to the case Y = 1.4. When = 0, the parametric flux splitting degenerates
to Van LEER splitting. The evolution of the eigenvalues of SW, VL and E-
splittings is drawn in fig. 2 for I=1. Figure 3 shows the evolution of the
components of F, Fland F" with STEGER-WARMING, Van LEER and the
parametric splittings (c=0.2) when 7=1.4.

Att

X; =0

MinnfM --. -°o _
i t t rit 1 hf 0 o M

X1 0 X2'=0 A 2

TA; ;

-2 SW -2 VL

-1-2 
e0.2

FIG. 2. Evolution of the eigenvalues of the partial fluxes against
Mach number ( T= 1).

With this generalization, the merit of the continuity of dPt/dU for M= 1 is
kept. But more particularly, it becomes possible to define the decomposition that
gives better numerical results in the zones where the Mach number is weaker
( 0.6). The c-splitting keeps the symmetry with respect to M. This property is
verified easily if we take the following splitting when-1 <M5 -Minf:

FI+= PC(0 + CXM+ I)?1' 2

I F C;I

F1 =2s 2 - F and F = F;
2F, -c F~ +1 -01- e.
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In the special flows where the Mach number can be less than -1 and
greater than 1, it is possible nevertheless to define a parametric splitting that
egenerates to VL splitting as well when € = 0 (this splitting is not presented here).

F2 /pc
2  F3 I/pc

3

2 4

F1
2 /pc

3

1 1. F2  2.

v.1, F3

M L FLF, V ,

Minf 0 1 0 1f Minf 01

VSW SW
VL -1e

FIG. 3. Evolution of the partial fluxes. Euler equations
VL = Van LEER, SW = STEGER-WARMING, c= 0.2.

APPLICATIONS TO 1D AND 2D FLOWS

The new decomposition (5) associated with the SFSOPT scheme (a = 2.5)
has been compared with other methods:

a= 1, c-0 (STEGER-WARMING scheme with Van LEER splitting)
a = 2.5, c = 0 (SFSOPT scheme with Van LEER splitting)
a = 2.5, e=£ 0.22 (SFSOP scheme with parametric c-splitting).

We have studied the shock-tube problem with a pressure ratio equal to
2.8 [6]. This case enables us to have a Mach number that remains relatively weak
(0--M0.4). The numerical solution is presented in fig. 4 with CFL= 1. On one
hand, the solution is improved near the shock when a=2.5 (figs. 4.a and 4.b),
because the scheme SFS is more dissipative with this value. But, on the other
hand, the solution of the expansion wave is lightly damaged for the opposite
reason: when we adapt the value of a to have a more dissipative scheme for u1 < 0
(u represents the velocity), automatically the scheme becomes more
antidissipative when u, > 0. In the present case, we solve this problem by using the
two parameters (a,c). The value of the first parameter a is adjusted to have a good
solution when u,'<O (shock or compression wave) and the second parameter c
enables us to have a correct representation of the rarefaction (Fig. 4.c).

The conjoining of SFs OPT scheme with parametric flux-splitting has
been applied to 2D steady flow inside j, nozzle (fig. 5.a). Two parameters e and E2
appear. They are linked to the fluxes V and 6 ± respectively which are defined in
the computational domain (see [7] for example). As in [8], some problems appear
near the wall with El and F2 = 0, in particular strong oscillations of the numerical
solution arise on the wall where the slope is strongest. The computation diverges
rapidly (12th time step) (fig. 5.b). This is probably due to the strong gradient of the
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partial fluxes near the wall that are in this instance, sensitive to the different
numerical treatments applied to the boundary mesh point and the following mesh
points close to the wall. If the values of el and C2 are adjusted (mainly the
parameter C2 included in the transverse fluxes), so that the gradients become
weaker, these problems are eliminated and the numerical solution becomes correct
(fig, 5.c). This computation has been realized for CFL = 0.8 (when the parameters
are well-adapted, the CFL can reach 1.3 in this case).

To conclude this chapter, we can say that the generalization of Van
LEER flux splitting makes possible a sensible improvement of ID, 2D and
probably 3D numerical solutions.

I Pressure 1, 7] .. ,- 1 64

2.86,' a)' ' )

(theoretical
0.91 value)

Mach
0.40

-0.07

Pressure 1.70

2.88, b) 2.5

0.97.

0 Mach

-0.03

Pressure 1

2.81, 0)~~ .9~wm

0.980

0.40. Mach

- 0.02'

FIG. 4. Shock tube problem.
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COMPUTATION OF INVISCID VORTICAL FLOWS IN PISTON ENGINES
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SUMMARY

Two and three-dimensional vortical flow in a cylinder of a piston engine is investigated by means of
finite-difference solutions of the Euler equations. Since both, the physical understanding of piston
flows is far from complete and adequate computational methods for such complex processes are
missing, the restriction to inviscid flow is considered as a first step to achieve basic insight into the
large-scale vortical motion of the flow.The discretization of the conservation equations is carried
out in a time-dependent, node-centred grid. Central differences are used to approximate the spatial
derivations. For the integration in time two methods are applied, an implicit factorization scheme
for plane and axisymmetric flows and an explicit Runge-Kutta time-stepping scheme for the three-
dimensional flow.The numerical results for plane flow are compared with experiments using Mach-
Zehnder-interferometry. The comparison confirms that the results obtained with the Euler
equations reflect essential features of the flow in the cylinder of piston engines. For three-
dimensional flow two examples are chosen to discuss the influence of off-centred valves and of the
shape of the piston crown on the onset of the swirling flow during the intake stroke and its
subsequent development during the compression stroke.

INTRODUCTION

The flow in piston engines is governed by a variety of complex physical processes like turbulent
interactions, inhomogeneity and mixture, as well as chemical reactions. Even though the
investigation of this paper is restricted to the cold flow of homogeneous gases, various time and
length scales are involved in this problem.Large time scales are prescribed by the speed of the
engine. The smallest can be expressed in terms of the speed of sound. In general, numerical
integration techniques cover this range of time scales, however, the problem becomes more
challenging in space dimensions. Large vortex structures are limited by the size of the cylinder, the
shape of the inlet or the valve and the piston. These structures are intermingled with turbulent
fluid motion especially near shear layers, for example the jet like flow into the cylinder, or close to
walls. Up to now it is not feasible to resolve the computational domain down to scales given by the
Kolmogoroff-length. Especially in three-dimensional flow problems direct modeling is hindered by
missing computer power. Instead turbulence modeling using the time averaged equations of motion
with additional closure assumptions of algebraic or differential type is widely employed. A survey of
such investigation is recently given by Heywood Ill. The applicability of such models is
questionable, since they are derived for stationary boundary layers or jets. Therefore the present
work intentionally focuses on the formation and development of large-scale vortices during the
into'- - and compression stroke. Hence friction can be neglected and a description of the flow should
be given by the Euler equations for time-dependent compressible flow.

GOVERNING EQUATIONS

The Euler equations are used to compute the time-dependent compressible flow in a piston engine.
The domain of integration is defined by the fixed cylinder walls and the moving piston of which the
crown may have special shapes. A suitable curvilinear time-dependent grid is described by the
coordinates
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x = x(t.) , Y = Y (t.n . z = z( .rj.-t') , t =T , ()
where 4 maps the axial direction, , and q the cross-section of the cylinder onto the computational

domain. The conservative form of the Euler equations then reads

U, +F +G +Hg = 0 (2.1)

The vector T =J( g. gu.gv. gw.e )T 
(2.2)

is the vector of the conservative variables, J = Zt (xtyq - X 1Y ) the Jacobian of the transfor-
mation, and F, G, 1 are the corresponding fluxes with the contravariant velocities a, v, W.

- + Yuiyt zp -- YtzjP 96i + (ytzj-y zt) pqvvSW;xi;+,,y -x,,,=,,,
(e~p)l ] (e +p)9 / (e~p);-+ (xgy n, -xny,)z~p

with qwi1 (2.3
F Vi = + -xvz)  y(

(y z-ynz)u - (xtz'-xNzC)v + (-;Z.w)(xy,-xqyt).

The system of equations is closed with the equation of state for ideal gas.

p = (K-1I(e-. g(u2+v2.w2)). (2.4)

For plane flow the term F vanishes, whereas for axisymmetric flow , and q are chosen as the
circumferential and the radial direction respectively, so that F( contributes together with some
separated parts of n to a source term Q containing the curvature terms (31

with 2. J (gv. gv 2 - gw 2 . 29vw. 9uV. (e.p)v) (3)

METHOD OF SOLUTION

For the discretization of the conservation equation a node-centred mesh is used with the variables
and the geometry defined in one node point. Central differencing is used for the spatial derivatives,
what is well suited for the considered low Mach number flow in piston engines. To avoid odd-even
decoupling, fourth order damping terms are added. Thus for one direction the flux-balance reads
e.g. I - F.

.LFIj Flt D~ (4)4

with ,= Er -ii/ (5)

applied to the physical variable j 1 U. I,'or the resolution in time two methods are used, originally an
implicit factorization method for the plane and axisymmetric flow and an explicit Runge-Kutta
time-stepping scheme for three-dimensional calculations.
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Implicit Factorization Method

The implicit factorization method used for the plane and axisymmetric calculations is based on the
work of Beam and Warming [21 and was extended to axisymmetric flow in 131 by introducing source
terms. For such flows the basic system of equations is given by

U(+AT.eL+ DiqI) (I.+AT :!+& nDj A -an at +(6)

= AT ( It +- - D~q- 0

with A, 13, C the corresponding Jacobians of the fluxes 6 and H, as well as the source term Q which
is treated implicitly. Additional damping terms D1( and Djq are included at the left hand side to
compensate the stability restriction arising from the explicit damping terms. The tridiagonal
structure of the scheme is retained by choosing the implicit damping as e.g.

= JAi-.=(J-10) (7)

Stability is ensured, if

CE I 1 1 +EI)2. (8)

Commonly cl = 2 CE was chosen with CE = O(A-). A decoupling of that 5x5 block-tridiagonal system
into 5 scalar equation is achieved by diagonalization of the matrices X and B using a similarity
transformation [4].

A= Tq A, T;' B 2 Ti A t Ti=' (9)

where A and Ai are diagonal matrices containing the eigenvalues of the Jacobian A and B.
Assuming the matrices Tq and T( as locally constant the decoupled scheme reads

T(I +.ATr -- (A n) + OI )(T 'Tt)n(T+, -- (An) oi)(T)n n=

(10)laG a + ," _ -1 .

Now the source term is included only in the explicit part of the equation, because its eigenvalues
differ from those of the Jacobian ' [31 , so that an implicit treatment will hinder the decoupling of
the system. The accuracy of first order in time is not affected as a comparison with the scheme (4.1)
has shown.

Runge-Kutta Time-Stepping Scheme

In order to compute more realistic configurations of piston engines three-dimensional flows have to
be considered. An extension of the proceeding factorization method, successfully used for the stiff
axisymmetric equations, leads to stability restrictions in three dimensions due to the factorization
error. Hence an explicit time-stepping scheme was chosen for three-dimensional computations.
Since the restricted time steps of this method are of the same order as those required for the
temporal accuracy of the computations, the efficiency is not impaired by using explicit instead of
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implicit schemes.Furthermore the simplicity and the suitability with regard to the architecture of
vector computers gave preference to explicit methods.

Recently Runge-Kutta time-stepping schemes are brought up [51. The method used in this paper
belongs to a class of Runge-Kutta like schemes given by the following sequential algorithm.

0
t01 = 0 n

UN)= U (°- mvA (F ( °l)1  G(60°1 + ( 11+A +0 DE ( 11.11

= 0 (N) tt=min(v.M) .M-A5 •

In contrast to the classical four step Runge-Kutta Scheme this sequence requires less computer
storage, but on the other hand the time accuracy for non-linear fluxes F, G and H is limited to the
second order. In this case the coefficients GN and aN.1 are prescribed as

~1
CLN 

= 
1 N-1 = 2" (1 1.2)

A stepping sequence with N = 5 has three free parameters Q3, G2, GI left which serve to improve the
stability properties of the scheme. Vichnevetsky 161 has shown that the maximum CFL-number for
a stable algorithm of a scalar test problem is given by CFL = N- 1, if a3, a2 and al are suitably
chosen.

%L3 = 3/8 0[2 = 1/ 6  t 1 14 (1 .3)

The stability property of a five step scheme are reflected by a von Neumann stability analysis for
the scalar test equation ut + au x . tx'uxx= 0 ,afconst . (12)

Fig. I shows the amount of the amplification factor G as a function of the wave angle 0 = kAx in the
case of vanishing damping term c = 0 for several CFL-numbers. Thereafter stability is gained up to
CFL = 4.

The behaviour of the amplification factor with additional damping is plotted in Fig. 2 and Fig. 3.[f
the damping terms are evaluated at each step of sequence (I1), p = v - 1, Fig. 2 reveals that
complete damping of the highest frequences is not available. The function ,(e) however is smoothed
and even reaches zero for the highest frequency, Fig. 3, if

p = min(v,1 ). (13)

By freezing the damping term a considerable amount of computing time is saved, too.

BOUNDARY CONDITIONS

The boundary conditions are formulated explicitly. At rigid walls ,, q or = const vanishing
normal velocities, 0, 9 or % Eq. (2.3.) respectively are required, whereas tangential velocities are
linearly extrapolated. Likewise density and pressure are found by linear extrapolation except at I
moving walls where the value of the pressure is gained by evaluating the momentum equation in
normal direction with respect to the wall.

The boundary conditions at open borders arc put in order with the one-dimensional theory of I
characteristics. For incoming flow during the intake stroke density and velocity are prescribed,

whereas the pressure is extrapolated from the inner region. The velocity normal to the cylinder
head is chosen in a manner, so that the global density does not change during the intake stroke, the
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direction of the velocity is given by the angle of the valve seat. During the exhaust stroke only the
mass flux is prescribed, all other flow quantities are extrapolated from the inner region.

RESULTS

Plane and Axisymmetric Flow

These preliminary investigations are used to study the influence of the piston shape and the effects
arising from the inclination of the incoming jet and of the compression ratio on the onset and
development of the vortical flow in the cylinder (31, [71. The plane flow was computed to compare
with the optical experiments done by Mach-Zehnder interferometry. The numerical simulation of
the plane flow revealed that vortex patterns generated during the intake stroke are conserved until
the end of the compression stroke, whereas in axisymmetric flows the flow patterns change during
the compression stroke basicly due to vortex merging. Representative for the preceding
investigations two examples for numerical and experimental results are discussed in the following
section. The experimental set-up consists of a cylinder and a piston with rectangular cross-section
for the plane flow simulation.

In the first case, the flow field in a cylinder with a step piston is investigated. The valve in the shape
of a slit is located near the lower piston wall and aligned parallel to the axis of the piston which
moves sinusoidally with an engine speed of 510 rpm. The stroke and the height of the piston is
chosen to be equal, the compression ratio is c = 4.3. The sequence of photographs in Fig.6 compares
measured and computed flow flields during the intake stroke. In each case lines of constant density
are presented. The experimental investigation shows that the incoming jet forms a fungoid
structure at an early stage of the intake stroke (26* crank angle). Then the jet is deflected at the
piston crown and rolls up to a counter-clockwise rotating vortex in the lower part of he flow field. At
the same time a secondary vortex is generated at the corner of the piston step due to its accelerated
movement. This secondary vortex is fed by the jet-like flow which is directed from the convex corner
of the piston to the cylinder head. Finally the coarse structure of the flow field consists of two
vortices with opposite rotation.The numerical prediction of the flow is in qualitative agreement
with the experiments, although the numerical boundary conditions only roughly agree with the
experimental conditions, as can be seen from the underestimation of the strength of the incoming
jet. At the end of the intake stroke the lower vortex settles underneath the step of the piston with its
strength increasing during the compression stroke. Several disLurbing influences may have
prevented to observe this vortex in the experiments up to now.

In the second example, Fig. 7, the investigation dealt with a flat piston in connection with an
incoming jet inclined at 45* . The compression ratio now is c = 3.7, the engine speed is 526 rpm. A
large vortex is generated during the intake stroke which survives and even enlarges during the
compression stroke. The numerical calculation predicts this vortex and its enlargement in close
agreement with the experiment.

In the preceding computations a mesh with 83x53 grid points similar to those in Fig. 4 was used. To
solve the Euler equations the diagonalized version of the factorized method Eq. (10) was employed.
Its time accuracy was confirmed by comparison with the results obtained from the second order
accurate Runge-Kutta scheme.

Three-dimensional Flow

Up to now several configurations have been investigated, e. g. flat and shaped pistons, and centred
and off-centred valves. But the work is at an early stage, and the investigations have to be
intensified in future. In all cases considered, symmetry about a plane containing the axis of the
cylinder and the valve was assumed for saving computer time and storage. As indicated by Eq. (1)
the computational grid is divided into a stationary part discretizing the cross-section of the cylinder
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and a time-dependent part mapping the axial direction onto the computational domain. The
discretization of the cross-section is based on conformal mapping as given in [8) with additional
smoothing and orthogonalization, Fig. 5. In axial direction the meshes are similar to those used for
the two-dimensional flow, Fig.4. The number of points are 56x23x53.

The presented results concern with the onset of circumferential or swirl flow due to the off-centred
intake valve. The case of a disc piston on the one side and a shaped piston on the other side shall be
discussed. During the intake stroke (720 crank angle) the incoming flow forms an asymmetric
primary toroidal vortex, Fig. 8 and 12, and a smaller secondary vortex in the corners at the cylinder
head. The excentric location of the valve generates a significant swirl flow as can be seen in Fig. 9
and 10 in the case of a disc piston. This swirl flow strongly distorts the toroidal vortices which
finally at a crank angle of 1800 does not dominate the flow field any longer. The swirl flow is fully
established during the compression stroke, Fig. I1.At the beginning the flow field with the shaped
piston is similar to the one described above, Fig.12.The swirling flow, however, is now
nonuniformly distributed over the cross-section of the clyinder and different at various axial
locations, Fig. 13. Instead of a unique swirl flow which is formed during the intake stroke in the
case of the disc piston, a complex system of vortices with their axis in circumferential direction
occurs, Fig. 14. During the compression this system of toroidal vortices govern the flow, Fig. 15.

CONCLUSION

The time-dependent compressible inviscid flow in a cylinder of a piston engine is computed by finite
difference schemes of the Euler equation. For plane flow the computed structure of large-scale
vortices is compared with experimental results. The comparison confirms that some essential
aspects of the flow can be described by the inviscid flow. First computations of three-dimensional
flows representing more realistic configuration show the influence of off-centred valves and of the
shape of the piston crown on the flow. Further questions related to stretching and tilting of vortex
structures have not been answered yet. The symmetry condition assumed for the considered
configurations have to be called in question. Calculations with a centred intake valve showed that
the initial axisymmetric flow could not be maintained during the compression stroke. A possible
influence on the solution may arise from the computational grid and has to be examined. Although
special questions of practical interest can be answered through this investigation, efforts have to be
initiated to include friction and turbulence in future investigations.
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Fig. 1. Stability properties of the Runge-Kutta
scheme Eq. (11.1) for linear equation (12)
without damping.
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Fig. 6. Comparison with experimental results. Lines of constant density (Intake stroke, step piston).
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Fig. 7. Comparison with experimental results. Lines of constant density (Intake and compression
stroke, flat piston).
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CONVEXITY IN HYPEMLIC PROBLENS. APPLICATION TO A DISCONTIMOJS
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SUMMARY

For the physical hyperbolic problems one can exhibit a fundamental
function of the entropic variables and of a space-time vector. In the
case of Euler equations, this function can be expressed in a simple form
and splitted into a convex function and a concave one, and it is possible
to find a polydimensional scheme which generalizes the Courant scheme.
Then we present some mono and bidimensional numerical results.

INTRODUCTION

When a hyperbolic system has a supplementary conservation law (on
entropy) it is possible to define a function E* of a space-time vector
and the entropic variables. This function sounds having a very important
place in those systems. Many of their properties can be interpreted by
means of the convexity domain of E* las : Cauchy Kowalevska's characteris-
tics. Rankine Hugoniot relations, inequation on the boundary, arrows of
time, phenomenological relations. Courant scheme). We began the study of
this function with a variational formulation where the convexity is
essential (see Nazet [21). We shall explain its properties in the first
part. For the Euler equations, E can be written by using some ideas of
the statistical mechanics (second Part). So it was possible to define a
Galerkin discontinuous scheme, which is consistent with the weak
equations and the entropy inequation, and to exhibit a global
overestimation (Part III). This scheme looks like a polydimensional
splitting method, but it is possible to imagine a space-time mesh
refinement. In part IV numerical results will be presented.

I : DEFINITION AND PROPERTIES OF THE FUNDAMENTAL FUNCTION E'

Notations : we shall use two manifolds :
- the space-time indexed with a latin index i=0,n - 0 means time

(dimension nil)
- the state-space indexed with a greek index u=1,N (dimension N).

It is the space of the thermodynamical quantities which play a role
in the considered physical problem (as : mass, momentum, energy in fluid
mechanics). The system of partial differential equations (SPDE) obtained
is written

8f L'a(w) = gQ(w) in D' (1)

isOn azl,N

(1) is a system of balance equations, the left-hand side is a space-time
divergence.
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We call phenomenological closure the relations

fiLa = fI,*(w) or something equivalent.

In general we have f° 1(w) 2 w
a

the SPDE is called hyperbolic if V n, space vector (V(ni)i=1,3) the

eigenvalues of are real.

a w

* Entropy. entropic variables, new ohenomenological closure

(see Harten [8]) for the physical system the SPDE has a supplementary

balance law :

i Si(w) = a fi'm3 *a(w).* S~w a.s() qa
a (w) a

0
i:O.n U:1,N . S convex in w Si

If such a law exists, the phenomenological closure verifies a S 'a '

W. are called entropic variables.

If we use the polar transform of S(w) . S0 (4) =Sp {w # - SO(w)}

S
0 
(w) is convex in w so it is possible to define w(4p) by w.a S (9)

and the functions Si*(0) = fi'a(w o 9)9 a - S i(w o fp).

So the phenomenological closure can be defined with only n+1 functions

S
1 

(40) S
° 

convex in , fU as

Let Z*(*,n) be :E * (,n) = n i Si*(1)

All the SPDE defined by E* are hyperbolic because the eigenvalues of
a fi~

n. I i=1,3

b2 *

are the same as those of the matrix 9 ,w) , where n=(1,ni), which

are real because this matrix is symmetric.

* Properties of the fundamental function E (ufn)

The arrows of time : if one studies the variance of the balance
equations, i.e. how they change in another space-time frame, one finds
another system of balance equations (cf. Delorme (4)), so : is the time
only a geometric index 7 In fact, not, because we have So*(1) = 1t*9,n),
where S

0 * 
is the polar of the entropy in the new frame, and n the new

time direction expressed in the old frame. So we can define a convex cone

of the admissible "times" :
C(OP) c (nJ*(*,n) convex in i})

the boundary of this cone is given by
.a2 E(m'n)] ,b uei £*

dot 0. because if E is convex in 9 the eigenvslues

of the Hessian of E* are positive.
n is the normal vector to a characteristic surface in the sense of Cauchy

- Kowalevska (see (33)

C(9) is the polar cone of the "future characteristic cone".
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* Rankine-Hunoniot relations

If g(x
i )  

0 i = O,n is the equation of a discontinuity surface the

R. & H. relations can be written. The gradient with respect to q of

t * ,aig) is constant through the jump (the gradient of g is a normal

vector to the space-time discontinuity)

a[* 
as 

i *

* Boundary ineauation

In order to describe the very difficult problem of the boundary

conditions of the hyperbolic SPOE, AUOOUNET & HAZEr and OUOtS & LE FLOCH

introduce the following boundary inequation t

If n is the outwards unit normal to a domain, 9in the inside value, 
9
out

the outside one, we must have (cf. II] E ll)
n I . out (f i

in a out in

This inequation can be written

* * Ir C 1
Ein ~out - in ( Vin - out

(31 is the dual form of (2).

If the R. & H. relations are true : n. f (out) n. f 1 , (in) , the

boundary inequation gives the entropy inequation
n i _ ni S

i

i out in

For the linear SPOE it is very easy to see that the 'good' boundary

conditions are given by a convex-concave splitting of E* (see below).

II STUDY OF THE FUNDANENTAL FUNCTION r* FOR THE EULER SPDE

* the Z function

For the Euler equations in the I dimensional case we have nz3 and H5.

The w* are mass(g), momentum (ql) and energyle).

If v
i 

is the velocity of the gas, the fluxes are

fi =(g yVV ] +p6j) i,j = 1,3

V 1E # P)

2

p is the pressure ; for polytropic gases, p (1-1) [e-g 2

(v is a constant which depends only from the gas).

rhe additional conservation law is given by

i , i 0
S 0 V 6(Pi ) 1 C 0,3 , V

°  
I.
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S
0 

convex in w implies some conditions on the function 6 (see Harten (8]).
If we introduce the entropic variables :

i i i

• , .
9 

e we find the relations : q i e + 0 = 0 (5)

V2  V2  0
Q9p +e .Q. -- If e [e - g T- I =

The general form of S is equivalent to

S° solution of the SPOE (5) ( I and S0 convex in W.
awu C

In order to find the most general expression for U , we should calculate
the entropic variables and eliminate w. aso*

But it is easier to interpret (5) as a SPDE on S (W = - 3, so

S is a solution of (5) and is convex in p.

By integrating (5) we find the general form of
21 i

S° * (9) l/'-1 x H(P - E o
(1Pe) 1 9 2ee

with some conditions on H, which are necessary for the convexity of
0
*

S

E (on) is given by 2

* - p no 1 3 tip.)

E (.n) : n. S = _ - - H (o -

0 1e ( _e j=l 2 e

and o -e (i = 0,3).

The phenomenological closure is

O *  i H[ i V 
2  

1 H
dS W d=i -di dip * - dip] -1 dip

H p e 2 e 1Y- e
eV 1

I 2 1 H (internal energy)
so a E 0- V (internal e(ergy)

9H ' 2 T-1 9Y*

and V 
i  i ee

9e

i* H H dp
dS H -(() (dip -- 2 dipdo -'dip)----

-e H ) d e 2 e (Y-1) we de

H i e
[dip - e dipe

so we find p H =(Y-1) - V2]

* Statistical representation
For the Euler equations, mass, momentum and energy can be defined through
a statistical interpretation. Let us define the velocity distribution
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function
e (x u i j 0,3

i space time coordinates

of ui velocity of the particles (u 1)

n vibration (or rotation) velocity

as the density of number of particles whose velocities are u and r

so W= n du J, dq K (u,)) B
R R

0
u
i

where K is 1 (collision vector).
3 ui 

2

i 1 2 + g(+ )

We call H Rn X R+

The statistical definition of the entropy
Let us consider the variational problem

Sup Inf f L(8) - a Ka (u'q)8 + ta W a S0 (W)

where

if L is a convex function, this problem is well-posed

B and ip are given by the stationarity equations

L K  0 (6)

Wa 
' Ka  

8 0 (7)

K 0 LH

L is convex so (6) gives 0 = L (4p Ka )
*a

(L is the polar function of L)
and 4p is given by the implicit equations
Wa  K' L*'Op Kp

The Jacobian matrix
dW

0  a K *
dV j K' L* (V .KY) is a positive matrix, as

d H

X X a Z I (K X )2 L 0

and the equations (6) have a unique solution.

0The gradient of S (W) with respect to W is the vector 'p

dS C (19) - Ck Ik] dO + [U0 -W kae] + 9a dW0

H H

(6) & (7) give us the result : the entropic variables are 0.

For physical systems we use the function L -b[BLogO-e] where b is the
Boltzmann constant. The Maxwell distribution is given by
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r

9 = exp(-e a ka/b).

The polar function of S
0 
(W) is

S (p) z OPW I L(8) f(pa k'). 8 L(O)

L (P kU )  (8 L (pA kS))

of course we have L L k = W

Theorem for the Euler equations for polytropic gases the fundamental
function E is given by :

* Uln

(E n) I (u n) . L (pa k a(uq)) du dri (8)

w t o I i = ,n m = ,n+2

K 1
with u

°  
1 1~u

3 (u 
i  

, q6

i-=1 2 2

1 n I
and 6 is a constant + 2

=

H R n X R+.

L is a convex function such that Va, lim x . W x) 0

X 4 +.

and this set of functions is not empty (e
- x

, quickly decreasing functions).

Proof 2

oa  ei 2 2
.1.

we put u, = u 4P
ee

i

(- is the mean velocity)
4e

2 i2 6
so p k ' = E "-- # E 

( u2 ) + * 2

* i
21 e e 1 un

The right hand term is equal to zero by parity

Now we set u u
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ri -

i 29n. *W 9. - q6)

T *Ion) z I X L u q I

6~ 2

E* is a solution of the SPDE (5)
SO* is convex in * :

Xa X a 2 S 0 L (9 k ) (ko X 12 0

because L is positive (R convex).

IZ : NUMERICAL APPROXIMATION

We shall begin by using the E* function in a very simple case, the linear
equation :

a. [c 8] 0 i O.n C° = I

12we can choose S(6) = S , s0 9 e
2• I 2

and S (9) 4F ,

I 1i 2
E (,n) =- c ni 1P

E is convex in ; if c n. 0.
i I

When c n. - 0. (n.) is a characteristic normal vector. We are able to

split I into a convex function and a concave one
2 2

* (1,n) Hin(c n.,0) -op + Max(c~nio) L
1 2 i' 2

E is the concave part and C the convex one.
Let us consider the classical Courant scheme in the monodimensional case

t e c a x = 0

t j
n# 1
8k

At 0 n I I n

I n-1 I
I kI

Ax x

~n- At H (c , 5n "I nj*, (3 en -k (9)
Yk Min (c, o) k + 1 Ok  Max (c,o) Ek _I]
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If we call w the cell (nk), bw its space-time boundary, we can write (9)

as :

faw min Ec
i 

ni(s), 0] e out(S) - 6 in ds 0

where s is a point of Bw, 8. the interior value on the cell (0 n

in k
8 out(s) the exterior value at the point s, n (s) the outwards unit vector

to 3w at the point s.

For the south branch

n =(-1.0) - [ - 6 ]Ax Min(-1,0)

north :

n (-1,0) + [ - n1 Ax Nin(,0)
k k

west :

n = (0,+1) -At Min(-c,O) [e -n _1
k k-1]

east

n = (0.-1) + At Min(c.0) (a - S _
]

So the classical Courant scheme can be written as
a£- a[-

I E -(P n - -r *_ ( n) =0aw (Iin'n) 84P out'

One can notice that for the linear S.P.D.E. the "good" boundary condition

is : E (in. n) imposed, and the Courant scheme imposes the continuity of

the convex part of E through 8w.

We can also write a Galerkin discontinuous approximation (ref [S])

Let Wh be a space time element. G_ piecewise continuous (with disconti-
nuities across the interelement boundaries onlyJ

Yip a test function with its support included in (wh

0 IPh Ta8 [Min(c ni).O] Re - 8 in1 (10)

where outi s e ex h a out i
where 6. is the exterior trace of h on 8w

where eBn is the interior trace of Bh on 8w h

in h h
(10) can be written as :

-a s * i  4) I T aE- BE OP H (i)
( h h w h ('out) - (Fin

if we choose for Y the characteristic function of w h we find back the

Courant-scheme.

How to generalize those schemes from the linear to the non linear case 7

First it is necessary to have a natural splitting of E (p,n). For the
• ii * k

Euler equations we have E =H u nL ( k).

This natural splitting could be

IH(u inl L= i + i

u n. 0 u n.> 0
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which is a concave/convex decomposition because

5i (X a)2 L (1 
k
') 

) 
0.

(u n ) 0.un.>O U

* e-kp
If we choose L (ko) e

I and " can be very easily computed numerically thanks to the
2

function x e-U du.

We are now able to present the scheme for the Euler equations with the

simplest approximation 
9
h piecewise constant on each wh space-time

element on a domain Q.

As we did for (11) we choose for Y the characteristic function of wh'

Yh 18 , (inn) - (P (out.n) = 0 (12)

Remark :

If Wh = [At x A0l we obtain the Kinetic flux vector splitting (KFVS)

presented by DESHPANDE ([53 et [63).

Some results about the consistency
U

If we multiply (12) by 4ip we have

(13) a 'Pea ,* n a If , n) v n) = 0
1 h in a in in ct out' 0

by definition of the polar function we have

1P i v t. r . (in the left term of 13).@in 9'[ i n in

and we add qout VEout - E0U, - Eout 
=

0 to (13);

we obtain :

(14) C lP. *n) - CIOp n) + E. - E * I V (to 14[' - Vp I
( h in '  

out' in out ' out out in
t ! I

a-k
but I is concave so we have : k 4 0

The left hand side of (14) is the scheme (12? applied to I

So we have an inequality on each w h and k measures the dissipation.

Some algebraic relations close to consistency properties (both for

conservative equations and entropy inequality), can also be derived from

112) :

Let Q be an arbitrary reunion of adjacent elements wh , BQ its boundary

and V the reunion of element boundaries belonging to the interior Q of

Q.
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by adding (12) over any wh in Q we get

IV 9 (*,n)] +I, (E f 6out'n) V EOin
'n l

(V 9 tiin' n) - 1 (9out'n) i

but we have for any s

E P.n) = ( ,n) - E (i.-n).
so we obtain

(15) < a.f'a0) 1 Q > + EV .)

Thanks to (141 we get a similar result for the entropy inequality

(16) ( iS (9), 1 Q + 1 69 [E-(9,n)j 4 0

Remark We say that (15) (and (16)) are consistency properties because
it is easy to see that if. by subdividing the elements h Of 9 in such a
way that when h 4 0. * o Y (so that for any piecewise regular bounded n-
manifold V transversal to the discontinuities of T we have

EV V 0 t(9,n) f V V E (Y,n) and

V E(9.n) -# I V CIY,n)) we have both

(if 8Q is a V-type manifold)

(a< .Q 1), I ; > = 0 and ( 8i S' ', 1 ) > 0

Moreover, if we choose Q [0,T) X Qx and if we assume that on 8ox, 9 is
constant (or, for Euler equations that the velocity is equal to zero),

(16) leads to the overestimation

X S(T,.) 1(fQxS(O,.).

IV : FIRST NUMERICAL RESULTS

Numerically, we have implemented scheme 112) - Part III - where

K ..UP2It ,t A ft] X w
h n n *h

and % is : a segment in the 1-D case
a triangle in the 2-0 case

This scheme has been explicited by putting
9 equal to its value on the previous time step, on [tn tn + at X awh

rhis can be interpreted as the first step of a fixed point method used to
solve the equations (12).
We can prove that there exists some At small enough to make this fixed
point method convergent (in the linear case, it gives the C.F.L. condi-

tion).

Figures 1 and 2 show the results obtained in the monodimensional case of
the Sod Shock tube.
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Pictures 3 and 4. present a bidimensional case an asymptotic stationary
supersonic flow on a 20'-angled slope (the initial condition being a
uniform flow at No 2). The mesh has been auto-adaptatively refined.

Figure 3 : Refined mesh Figure 4 :Isopressure lines

Number of elements 2529 from 1.4 to 1.9
nodes 1346 with Ap =0.1

,ertices 3874
{boundary :6
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CONCLUSION

We have shown in the first part how the fundamental function 0' plays a
main role in the physical hyperbolic SPOE. In the second part, by using
statistical mechanics ideas, it was possible to set the Euler equations
(and other physical equations as these of reactive gases) in a very
simple form (averapc of a linear equation). The function E* can be
splitted into a convex and a concave part, resulting from outcoming and
incoming fluxes. This splitting gives birth to schemes of any order. We
have tested only the first order scheme, which gives satisfying results.

Of course we are not able to demonstrate convergence results. In
polydimensional cases we lack the knowledge of convenient functional

spaces, but we hope that the use of the E -splitting may contribute to
some progress in this way.
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ADMISSIBILITY CONDITIONS FOR WEAK SOLUTIONS OF
NONSTRICTLY HYPERBOLIC SYSTEMS.

M. Brio
Dept. of Mathematics, University of Arizona, Tucson, Az. 85721

SUMMARY

We discuss questions related to the choice of a proper class of waves and
initial conditions for the well-posedness of the Riemann problem for nonstrictly
hyperbolic systems of conservation laws. Since multiple eigenvalues represent
strong or resonant wave interaction we propose to derive a relatively simple and
universal set of model equations which describe qualitatively the underlying
processes, like Burgers' equation does in a strictly hyperbolic case. Finally, we
discuss numerical schemes utilizing various Riemann solvers to the above class
of problems.

INTRODUCTION

Consider the following hyperbolic system of conservation laws

Ut + (F(U)). = 0,

where U represents vector of dependent variables and F(U) denotes the appro-
priate flux function. Riemanr problem is an initial value problem with a piece-
wise constant initial data. It serves as an intermediate step in understanding of
the general initial value problem and as an important model problem in various
applications, such as piston and shock-tube problems in gas dynamics, Riemann
solvers in numerical schemes, simpliest model of the field line reconnection, etc.

Solution is understood in a weak sense and consists of combinations of var-
ious waves propagating out from the initial discontinuity. There are two major
problems:

a) to prove well-posedness (for example, existence, uniqueness, and stabil-
ity) of the problem in some class of waves,

b) to choose the class of waves by studying physical equations on the next
smaller length scale (for example, to introduce back into equations dif-
fusive, dispersive, forcing or any other terms, which were dropped in the
fist place).

If the eigenvalues of the Jacobian matrix may coincide, then the appropri-
ate system of conservation laws is called nonstrictly hyperbolic. Application of
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standard admissibility conditions worked out for a strictly hyperbolic case often
leads to contradictions and various difficulties arising from the fact that those
systems are fundamentally different. Physically, coinciding eigenvalues represent
strong or resonant wave interaction compared to weak interactions represented
by strictly hyperbolic systems. Mathematically, this manifests itself in the exis-
tence of free parameters for the solutions with discontinuous initial data, because
interaction parameters are "hidden" in the discontinuity and are not introduced
explicitly into the problem. Numerically, the discontinuous initial data produces
different results depending on the numerical schemes used since the interaction
parameters are introduced by truncation errors of the appropriate schemes (see
article of B. Wendroff in this volume for additional illustration of this problem
arising in applications of irregular grids).

For many systems nonstrict hyperbolicity implies nonconvexity, for example,
the steepening rate of smooth waves may be zero at some points. For an example
of such systems see a paper of H. Freistiler in this volume.

EXAMPLES OF THE EQUATIONS

One-dimensional equations of ideal magnetohydrodynamics (MHD) charac-
terize the flow of conducting fluid in the presence of magnetic field and represent
coupling of the fluid dynamical equations with Maxwell's equations of electrody-
namics. Neglecting displacement current, electrostatic forces, effects of viscosity,
resistivity, and heat conduction, one obtains the following ideal MHD equations
[1]:

pt + (pu)z = 0,
(pu)t + (pu2 + P*). = 0,
(pv)t + (puv - BoB). 0,
(pw)t + (puw - BoH). = 0,

Bt + (Bu - Boy),, = 0,
Ht + (Hu - Bow). =0,
E, + ((E + P*)u - Bo(Bou + Bv + Hw)), = 0.

In the above equations, the following notations are used: p for density,
= (u,v,w) for velocity, B = (Bo, B,H) for magnetic field, P for static pres-

sure, P* for full pressure, P = P + [Bf , E for energy, E = 1piC12 +

P(- 1) + I1 2, -y for ratio of specific heats, and Bo = const.

The eigenvalues of the Jacobian matrix can be written in nondecreasing order
as

U - Cf, U - Ca, U- c c, U, U + co, U + Ca, U + Cf,
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where c,, c., c. are called fast, Alfv~n, and slow characteristic speeds, respec-
tively. They can be expressed as follows:

c =b , f., = 1((.) 2  ( - 4a2b),

with the plus sign for c! and minus sign for c.. The following notations were
used:

M = B2/p, b = (B + B2 + H 2 )/p, (a') 2  +b 2 ,

where a is the sound speed.

There are two points where the eigenvalues may coincide:

(1) If B0 = 0, then c. = c, = 0 and u is an eigenvalue of multiplicity 5.

(2) If B2 + H2 = 0, then cm = a(a 2 , V), and c. = mn(2 , P).

Therefore, either cf= c2. or != c!, or both.

The usually used eigenvectors [1] are not well-defined near the above points
and the matrix with these eigenvectors as its columns becomes singular. How-
ever, by proper renormalization a complete set can be obtained [2]. Using these
eigenvectors we have shown that either slow or fast wave becomes linearly de-
generate when the transverse component of the magnetic field passes through
zero [2]. Therefore, ideal MHD equations form nonconvex nonstrictly hyperbolic
system of conservation laws.

Recently, we have shown that isentropic (for example, dropping the energy
equation) MHD equations in Lagrangean coordinates are equivalent to the equa-
tions describing isotropic hyperelastic materials. This can be shown as follows:
denote the velocity variables as before and identify , _ and H with the strain
components P1, P2, and p3, respectively. Consider stress-strain relations for the
isotropic hyperelastic materials:

83 = f (p,p + pD,
,2 = gP,.,P1i + Ph,
83 = P3XP,,pA + 1?),

where f and g are arbitrary functions. If we choose f and g as

f = P(PI) + A +- A Bo
27j, _'- p

the resulting equations become identical to the elastic equations [3]:
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i8pi lul i 9Ui 0is
= 0, +=-=-0 i=1,2,3.

Therefore, the above classification holds also in this case. This is contrary to
the usual belief that the slow and the fast waves (in elasticity they are called
longitudinal waves) are genuinely nonlinear [3], and that due to linear degeneracy
of Alfvin waves (shear waves in elasticity), it is sufBcient to consider a coplanar
case of the Riemann problem [3], [4]. We would like to mention that both
systems are a particular case of systems of conservation laws with rotationally
symmetric flux function and nonstrict hyperbolicity and nonconvexity follow
from this property (see an article of H. Freistiler in this proceedings).

As a result of a construction and numerical experiments with the second or-
der upwind schemes [2], we have found that solutions to the Riemann problem
may contain waves which are usually rejected by stan iard admissibility condi-
tions (for example composite waves, consisting of a shock wave followed by a
rarefaction wave of the same family). We also have observed the fact that various
schemes produce different solutions from a one-parameter family or solutions.

In another work [5], we have shown by asymptotic analysis that some of the
above solutions, like composite waves, exist for physically meaningful asymptotic
limits of the original equations.

ADMISSIBILITY CONDITIONS

Hyperbolic systems of conservations laws can usually be obtained by as-
suming that the phenomena under consideration evolves on the advection time
scale and that other effects, like viscosity, dispersion, capillarity, etc., can be
neglected. This leads to discontinuities, non-uniqueness and "unphysical" so-
lutions. To keep the discontinuities but to avoid the other two possibilities,
solutions are considered in a weak sense together with some admissibility con-
ditions. Following are the most common admissibility criteria for shock waves
in case of strictly hyperbolic systems:

1) linearized stability analysis (also called Lax or evolutionary condition),

2) existence of a stable viscous profile (for example, Liu's condition),

3) physical entropy condition derived from the second law of thermodynam-
ics,

4) requirement for hyperbolic equations to be a limit of the same equations
perturbed by linear viscosity terms with the multiple of identity viscosity
matrix (so-called entropy inequalities),
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5) solutions should be admissible for the equations derived as a weakly
nonlinear asymptotic limit of the full physical system of equations.

For example, in case of polytropic gas dynamics and other similar systems all of
the above criteria reject the expansion shock waves.

Since the wave structure for nonstrictly hyperbolic systems is much more
complicated then in strictly hyperbolic case, the above criteria admit different
classes of solutions. The first approach, linearization around a constant state,
is not applicable near the degenerate points since the wave interaction there
is governed by the quadratic terms. The second condition is sufficient, but is
not necessary, since for nonconvex systems a shock wave can expand near the
degenerate points with the rate vt_ and still be considered as a discontinuity on
the advection time scale (see related discussion on the undercompressive shock
waves in an article of D. Marchesin in this volume). The third condition is a
necessary condition if one believes in the second law of thermodynamics. It is
often not sufficient for the uniqueness. However, non-uniqueness in this case
may reflect the fact that some relevant physical parameters are missing in the
hyperbolic model. The forth condition is a necessary condition if the relevant
physical equations contained only terms which could be approximated by lin-
ear viscosity with the multiple of the identity viscosity matrix. This is rarely
a realistic assumption because very often viscosity coefficients are of various
order of magnitude. The last criterion is a necessary condition and it deals
with the equations describing the phenomena on the next time scale. The only
assumption is that the wave under consideration is weakly nonlinear. For con-
vex strictly hyperbolic systems this approach leads to Burgers' equation. Using
similar technique, we have recently derived modified Burgers' equation [51:

Ut +U B2 U = 4UZX ,

which governs the propagation of wealdy nonlinear magnetoacoustic waves near
degenerate points. It admits new class of solutions we have observed numerically
in [21 for MHD equations. Recently, these solutions were observed in the data
received from the space experiments [6].

We would like to note that usually used viscosity admissibility conditions
for MHD shock waves, introduced by Germain [7] and followed by Conley and
Smoller [8], require the existence of viscous profiles for all possible ratios of
viscosity coefficients. In addition, they allow only coplanar shock structures by
setting two variables to zero, and therefore, eliminating the possibility of three
dimensional structures.

Finally, note that the above criteria were designed for a single wave. For
the equations under consideration the waves corresponding to the coinciding
eigenvalues may not exist separately in general. For example, Alfv&n wave may
be coupled to the fast or slow wave. Therefore, it seems natural to consider a
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two-dimensional manifold of solutions generated by these waves. This approach
would explain observed one-parameter family of solutions for the coplanar MHD
Riemann problem [2]. In contrast, only one-parameter per wave is required in
case of strictly hyperbolic systems of conservation laws [9]. Physically, this
distinction represents the difference between weak and strong or resonant wave
interaction. Mathematically, it manifests itself as follows. The solution of a
convex strictly hyperbolic system is not effected on the advection time scale by
the small-scale processes. For a example, the width of the shock wave may vary,
but it still represents the same discontinuity on the advection time scale.

In contrast, for nonstrictly hyperbolic systems small-scale processes, like
various balances between dissipative terms, would have a global effect on the
solution. This indicates that discontinuous initial data for such problems has to
be supplemented by these small-scale interaction parameters in order to have a
well-posed problem.

As a first step in investigating the above conjectures, we propose to derive
and study a relatively simple and universal set of model equations.

MODEL PROBLEMS

Consider the following set of equations which admits only two waves corre-
sponding to fast and slow waves discussed previously:

Ut + 0.5(u 2 + V2 )X = i U6gU,

Vt + ((U - )) = e2V

Initial data is assumed to be smooth. This system represents nonconvex strictly
hyperbolic model of elastic or hydromagnetic coplanar case. It is in gradient
form, the slow wave is nonconvex and the fast wave is genuinely nonlinear [9].
An interesting feature of this system is that the existence of travelling waves
exhibits a global bifurcation [10]. Let e = E1/C 2. In particular, there exists eo,
such that for e > eo there are no travelling wave solutions corresponding to the
slow shock waves violating Lax but satisfying Liu's condition. On the other
hand, for e < eo there is a unique stable profile for such waves. Moreover, in
this case the superfast-subelow shock waves have infinitely many viscous profiles,
stability of which has to be investigated further. We would like to note, that
the case considered by Germain, and by Conley and Smoller (see references)
corresponds to e -i oo for our model problem. The behavior of the system
when e > eo is described by the above time dependent problem.

As a next step, we would like to introduce an intermediate wave into the
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system by generalizing the above model problem as follows:

ut + 0.5(u 2 + v2 + W2 ). = clu.,,

vt + (v(u - )= t,

wt + (w(u - 1)). = EC2 w.

This time dependent problem for smooth initial data allows to study the res-
onant wave interaction between slow and intermediate waves. For analytical
description it seems promising to use the results for a bifurcation from a double
eigenvalue and existence of secondary bifurcations [11].

Since some of the proposed studies are done using numerical experiments
with various conservative numerical schemes, we would like to make the following
remark.

At the moment, we are interested in resolving small-scales, so that the re-
suiting solution is smooth. Also, the initial data is assumed to be smooth (in
fact, the width of the initial discontinuity represents a natural length scale for
the Riemann problem). The standard upwind schemes have several advantages
in strictly hyperbolic case, like non-oscillatory behavior, high resolution of dis-
continuities, robustness (nonlinear stability?). But, they are not suitable for our
purpose because they are not designed to model dicontinuities represented by
smooth transitions with a particular ratio of viscosity coefficients. Eventually,
one would like to avoid small-scales resolution (for an example of such technique
for a single equation see a paper by E. Harabetian in this volume).

CONCLUSION

In this article we have discussed questions related to the choice of a proper
class of waves and initial conditions for the well-posedness of the Riemann prob-
lem for nonstrictly hyperbolic systems of conservation laws. We briefly summa-
rize them here.

1) Using weakly nonlinear asymptotics derive a universal set of equations de-
scribing propagation of two or more strongly or resonantly interacting waves
for general nonstrictly hyperbolic systems of conservation laws. The equa-
tions may depead on special structure of the Jacobian matrix, like existence
of invariant subspaces and dependencies between the blocks, see [2] for an
example.

2) Describe the effect of small-scales parameters by studying smooth solutions
of the model problems corresponding to shock waves satisfying physical en-
tropy condition. Link the solutions of the model problems to the full systems
and to the known properties of the solutions to the physical problems, like
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mode coupling in elasticity, dependence of the solution to the reconnection
problem on the initial and boundary conditions, existence of the free param-
eters for the shock waves in combustion and magnetohydrodynamics.

3) Using appropriate physical models work out principles for modifying up-
stream numerical schemes in order to avoid small-scales resolution in regions
of strong or resonant wave interaction.
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SUMMARY

We present a systematic procedure to correct 5-point linear schemes so that convergence
towards the weak entropy solution of hyperbolic scalar conservation laws can be established
while high order accuracy is achieved including at critical points. Our method can be
described as a modification of TVD schemes which preserves the BeW-L stability ; entropy
convergence is achieved by addition of an extra limiting mechanism which preserves
accuracy.

INTRODUCTION

A very successful class of schemes for solving conservation laws problems is the class of
TVD (Total Variation Diminishing) schemes. An important disadvantage of TVD schemes is
that the TVD property makes the scheme necessarily degenerate to first order accuracy at local
extrema, leading the overall accuracy to be at most first order in the L*-norm. We are lead to
seek a weaker control over possible growth of the Total Variation of the numerical solution,
to enable the design of full high order accurate schemes, still required to achieved BVr-L '

stability. The BVi-L- stability is an important guide principle for scheme designing since it
ensures the existence of a convergent subsequence in L11o, to a weak solution of the
conservation laws problem, as the mesh size goes to 0. For this purpose, Harten and al
[8],[9], have introduced the ENO schemes of uniformly high order accuracy. These schemes
perform quite well, although it is not still proven that they achieved the required BVr- L°

stability. Quite recently, Shu [101 has proposed a Total Variation Bounded modification of
some existing schemes involving the minmod function as a limiter, in order to combine BV
stability and high order accuracy including at critical points (i.e.: sonic points or local
extrema). Following Shu's approach, we present a simple systematic procedure to correct
second order 5-point linear schemes to obtain BVtiL- stable schemes of uniformly second
order accuracy in smooth regions.

The format of this paper is as follows : In the first section, we present notations and recall
basic features on numerical schemes. In section H, we develop a suited procedure to check
TVD correction for 5-point linear schemes. It will allow us to show that, besides the usual
TVD corrections of the Lax-Wendroff scheme, many other TVD schemes can be derived
thanks to this procedure. As an example, we consider an original difference scheme,
Modified-Exquisite, derived by Leonard in 1981 (see [5],[6)), based upon a monotonizing
method of interpolations, and we prove that Modified-Exquisite is TVD. The third section is
devoted to the description of the TVB modification procedure, applied to the TVD schemes
derived in section II, making them uniformly second order accurate in smooth regions. Let us
underline that the TVB modification we perform can be straightforward applied to well
known TVD schemes, such as Roe's Superbee, Van Leer's scheme (see [4)). In section IV,
we slightly modified the TVB (TVD) schemes previously designed, in order to enforce the
convergence towards the entropy solution, as Vila pointed out (3]. In the last section, several
numerical experiments are included to illustrate the efficiency of these schemes.
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L GENERALITIES

In this first part, we deal with numerical approximations of weak solutions to the initial
value problem ( I.V.P.) for one-dimensional scalar conservation laws:

u + f(u)x = 0 xeR, te[O,1J

u(x,O) = uOx) .
We consider finite difference approximations of (1.1) in conservation form : Ax is the space
step, it the time step and A =At/Ax the mesh ratio. Let uh(x, t) be an approximate solution:

Uh(x,t) = un for (x,t) e 16-112) Ax, (j+112) Ax[ x [n At, (n+]) At[
n+J

Uj _ L(hn .h .) (1.2)
J+112 j-112~ (12

is a numerical (2p+l)-point scheme written in conservation form, where hnj+t2 stands for the
Lipschitz continuous, consistent numerical flux

h. = h n )....
i+112 u-p+1,. +p ) (1.3)

h(u,u ... ,u) =f(u).
We assume that scheme (1.2) can be written in incremental form:

n+1 n3 C" An U

+ j J-112 j-1/ j +112 j+I/2 (1.4)
n n n

with the standard notation A u,+, = uj+, - u.

The main interest of the incremental form for schemes (1.2) (1.3) is that sufficient conditions
can be derived in order to achieve convergence of the family of approximate solutions (at least
a subsequence) to a weak solution of the I.V.P. (1.1), as Ax vanishes. These conditions can
be stated as follows, using the standard definition for the numerical BV-norm:

TV(u) , -/ ,
I

Lemma I (Harten [1] , Vila [2],[3]) : Let a scheme (1.2) (1.3) be given in its
incremental form (1.4). We assume that C and D coefficients are positive. We denote by (i)
and (ii) the following conditions on these coefficients:

(i) +e. 1 , VjZ.( J)114 2 j+ 1/2

(ai D'~ +d , I ,VjGZ.

J+112 j-112

If condition (i) is satisfied, we have TV( us+1) _TV( u ),

If condition (ii) is satisfied, we have /U/n+ 1 f 1/ un u"/I.

Our aim is to design a systematic procedure to correct a set of 5-point linear schemes to
obtain BVrL- stable schemes with respect to lemma 1. Our approach belongs to the flux
limiters category previously analyzed by Sweby [4]. In the next section, we seek an attractive
incremental decomposition well suited to our purpose. This investigation will lead us to a set
of useful conditions allowing, for instance, the proof that the Modified-Exquisite scheme [5]
is in fact TVD.

52 4

4



I-

U. TVD CORRECTION OF S-POINT LINEAR SCHEMES

We mean by 5-point linear schemes, schemes whose numerical flux are in a linear relation-
ship with the physical flux values at grid points, described below, using the standard notation

for local Courant numbers: 0 _
j1212

112  0 , + = af( U; ) +  pf( un ) + yf( u. ),
j+112 , j+12 

+  
+2

It can be seen that these linear schemes are second order spatial accurate iff a--=1/2. Let us
recall that such schemes cannot be TVD and therefore need to be corrected. We observe that,
before correction, this numerical flux can be broken up into an E-flux (at most first order
accurate) [7], denoted gE, and an added flux, considered as an antidiffusive flux:

n nE
nE h'+1/2 -gj+1 2  u (2.1)J+112 gj + nJ+112

Uj+)12
which must be limited in order to achieve the TVD-property. If we restrict ourselves to E-
schemes which behave like the first order upwind scheme away from sonic points, this
antidiffusive flux admits a more attractive expression owing to the introduction of suitable
notations. For clarity, we assume that we are away from a sonic point. For instance, for
vnj+1,2>0, we introduce the following ratio of consecutive gradients:

j+t/2 
= Afl(2.2)

it can be easily seen that, owing to our restrictions, the so-called reduced numerical flux (2.3)
only depends linearly on the ratio (2.2):

h n - nE

if +12 > 0 (+12 ) =  
+12 112  with gj+2 = flu ) . (2.3)
Af

n

j+112
Let notice an obvious one to one correspondence between reduced flux and numerical flux
associated to 5-point linear schemes. These notations allow the antidiffusive flux to be
reformulated as follows:

n I 2 P( r,+,r ) , (2.4)
a+12 = ' +1/2 AUj+j/22.4

J+112

This expression clearly indicates a way to limit the antidiffusive flux associated to a second
order 5-point linear scheme by seeking a suited function 9, whose restriction to monotonic
smooth regions is nothing else but the reduced flux associated to the second order 5-point
linear scheme. In order to extend equality (2.4) to negative vnj+1/2, we define:

2 A . (hjl2n _f

tf if 0 ,,<0 rn and 9'(r. = j 1+ 1 (2.5)
j+/++12 A'n312I12 4+312
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in such a way that p is the same function as in (2.3), leading us to write the antidiffusive flux
as

a412 = (Vl2 ) . Auj+),2 (2.6)
I r.J+112

Owing to (2.4) and (2.6), we have actually derived the following useful equality for 5-point
linear schemes :

= , E 1 n qn(rn1 2 ) A (2.7)j+)12 gjj,2  + -I1i+1121 f A
J+112

Thanks to this reformulation, TVD correction can be easily performed, seeking a suited
function v as previously pointed out. A way to design q will be deduced from the following
statement:

Theorem 2.1 : Assume that q(r) satisfies:

(3(M, )eR:x[-1,O])/( VreR, pi _p(r).SM and -m 5(i+L)
r

nC isE t

then the corrected flux hn x + a
J+112 gj+2 +12[1 'a (P+A, 2)

where + = V. +J AuJ' 112  awayfrom a sonic point

"tj C1 0 otherwise

defines a TVD scheme, which preserves the L*-norm.
Proof : see 1151.

We deduce from Theorem 2.1 that the graph of q(r) must lie in the shaded area depicted on
figure 1 for the corrected scheme to be TVD.

r

A" e" ,-Mr

~1 Admissible region for 9(r)

figure 1

Notice that the upper boundary M (and its associated one -Mr) is related to a C.F.L. like

condition max / V. J+1/2 I S 1/(2M+1) < 1, that the resulting TVD scheme must satisfy. We

now introduce a technical lemma of some importance in the following sections:
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Lemma 2.2:Let be given an antidiffusive flux aj+1/2 satisfying Theorem 2.1

assumptions, then 0 " aJ' with e.n e [0,11 , Van) 6 Z xN , stillj+41/2 J+112 Y+112 J1/2provides a TVD scheme under the same C.F.L. restriction.

Proof: Notice that q( +112 ) = ' qP(rn" ) can be associated to n M so that
J+ J+1/2 J+1 jr+l/2

q^r) fulfills Theorem 2.1 hypothesis. I
In order to achieve second order accuracy, we firstly require the function p to fulfill the

sufficient conditions stated below :
Lemma 2.3 :Assume that q(1) = 1/2 and q admits a derivative at r =1, then second

order accuracy is achieved with respect to space discretization (except at critical points).Proof :See Theorem 2.4.
In order to improve time accuracy for transient computations ( limited to first order since

we have used the first order Euler backward scheme to approximate the time derivative ), we
slightly modify the function q in respect with:

Theorem 2.4 : Assume that q7 satisfies the conditions of Theorem 2.1 and Lemma 2.3,
then the following function V = (1 -/ vl) io provides a TVD scheme second order accurate in
both time and space (except at critical points), under the same C.F.L. restriction as the 9p -
scheme.

Proof: Since I0r 0.' [0,11 ; ,y( +]11 ) = 0 n  ) w [J+12/ 1" ; W(J+12 9+112 V ( +112 )  1it +112 € [,

and Lemma 2.2 ensures that the resulting scheme is still TVD under the same CFL condition.
The Lax-Wendroff scheme can be defined thanks to Vi'(r )= 1/2 (1 -[ v[) r, thus it can be

n

nM n LW 1 n Jp 1 A nseen+that h1+,2 1- +,,2 = 7/ +h,2]('/ J+ /'l)( n 2 ) n2 j+1I2J+112

Therefore for non critical points, since r 1 + (f= /f,) Ax + O( Ax2 ), we have:
nUM e LW n_
+112 " L = / / ( +1 / v ' )(1)- -L + B(q,(I) -q(1)) Ax) u AxA 21"+ (2 j+121'''P'') 2

nM -n LW 2)
with B =f f,~ such that -h 2 =' O( Ax under Lemma 2.3 assumptions I

According to this result and choosing a reduced flux 4p = 1/2 r ( obviously not TVD)
which, after time improvement, leads to the Lax-Wendroff scheme, we see that the major part
of the classical TVD corrections based upon the Lax-Wendroff scheme fall into the
framework considered here. Besides these well-known corrections, a lot of TVD schemes
can actually be derived from a TVD correction of any other 5-point linear scheme. We are
able, for instance, to deduce Modified-Exquisite from a TVD correction of a five point linear
scheme, nicknamed Quick [5], by choosing the appropriate pair (M = 5/4. p = 0) (see fig.2)

Schemes, derived under the latter guidelines, are second order accurate everywhere except
at critical points where the TVD requirement makes them degenerate to first order accuracy.
This systematic damping of local extrema leads the error to be at most O( Ax ) and o( Ax2 ) in
the L- and L1-norm, respectively. To overcome this drawback, Harten and al [8], [91, have
introduced the ENO schemes of high order accuracy in smooth regions. At this time,
convergence results are unavailable but all numerical experiments enlighten their extreme
stability. Quite recently, Shu [10] has proposed a Total Variation Bounded modification of
some existing TVD schemes, involving the minmod function as a limiting process, in such a
way that high order accuracy is achieved, including at critical points. Following Shu's
approach, we present here a systematic procedure to convert TVD schemes into uniformly
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second order accurate schemes (in smooth regions), which provide bounded approximate
solutions in BV r-. These schemes are less sophisticated than ENO schemes, and therefore
less expensive; on the other hand, they may produce more spurious oscillations at points of
discontinuity. Anyhow, such oscillations are proved to be at most O(a) in the L--norm,
numerical evidences ensures, in fact, O(Ax2).

M = 5/4 Quick.. ... ... ... ................... .. .. .. .. . ....... ... ...... .......... .................. ............. ...: i. ........... ................ . ".. . ..

112"

......... ................ " i .... 1/3 1 r
3 1

Quick .. r +y

figure 2

m. TVB UNIFORMLY SECOND ORDER SCHEMES

A general requirement for the existence of a convergent subsequence in L'10 c to a weak
solution of (1.1), as A& goes to 0, is that tue family of approximate solutions satisfies to:

For all n and At such that nAt ST

TV( Un ) - ABV (3.1)

/un // A
for some fixed positive numbers ABV (resp. A.) depending only on TV(u0), (resp. /u oil/.)
and T. Let a numerical scheme be defined by :

n n nE nEn
U. = - ( g- 2 ) - Al(> - a,. 2 ) (3.2)

ft I 9_r_+__2
where a." . -Ij+1l n j+ . (3.3)J+112 J+112 V.'/+/2 n+1122

Assume that qp fulfills Theorem 2.1 hypothesis then the scheme (3.2) (3.3) obviously
satisfies inequalities ( 3.1 ) with ABv = TV(uO) and A. = //uo//_ since it preserves the BV and
L-norm. Let denote by 9 L the unlimited version of 4, in correspondence with the underlying
5-point linear scheme (see section 11) and anj+Lt12 the associated (non corrected) antidiffusive
flux. In order to provide the TVB modification procedure, we first modify the antidiffusive
flux (3.3) thanks to:
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paL

-J'l2 minmod(a,+/ , a,+,! ) , (3.4)
whee smin(/xy) if s = sgn(x) = sgn(y)
w 0 otherwise

in such a way that we can state the :
Lemma 3.1 : Modification (3.4) preserves the BV-L- stability of the original scheme

(3.2) (3.3) under the same C.F.L. like restriction.
Proof: Notice that: 3 +r if a0,11 /dT  d = c- Z ,

J12j+ 2 Vjn e Z xN
conclusion follows from Lemma 2.2.1

Since TVD schemes usually require anj+ln2 to vanish near a critical point, the minmod
function will pick-up the second argument in (3.4), equals to 0 near such a point; which is
the source of local degeneracy of accuracy. In order to enforce the minmod function to pick-
up the first argument in smooth regions, we introduce, following Shu's approach [101

-n . nL " 2 nL

aj+!1/2 = minmod( a,+, a+2  + Mxsgn(a, 12 )) (3.5)

where M is a fixed positive constant. Therefore the resulting antidiffusive flux can be broken
up into

a. + dn+D2 with / dl/f MAx2  (3.6)
J+112 j+1/2 J+)1211

The expected estimates on BV ri LO°-norm can be performed thanks to (3.6) and give:
Theorem 3.2 : Assume that uo is compactly supported, then for any M > 0, the

scheme (3.2) (3.5) is BVc-L stable in 0 -t ST with a fixed T > 0, under the same C.F.L.
like restriction shared by the underlying TVD scheme (3.2) (3.3).

Proof: Let us consider h n n n +.' + dn

J2 2 =  j+ 2 J+112 ' and notice that

+112 = gj+l2 + $+112 , leads to a scheme ( 3.2) ( 3.4) satisfying both conditions (i) and
(ii) of Lemma 1.1 . Therefore starting with

. n + ;u _( d" -d n  (3uj j J -1 J-1 J11 j 11J 11 12

we easily see that:
n -- < +e .),Unt

/u"~ / +(.C ,-i )j. .-1 )"1 + eLi'1 / un + 2.AM Ax2j.+I j-112 j11 j -IJ-1_1 -

from which we deduce: H U 1/ f II Hu A//- + 2M AtAr, and indeed the expected

estimate :

// un+l //_ lluo/ + (2MT) Ax since nAt _9 T.

Moreover, in order to perform the BV estimate, let observe that thanks to (3.7):

TV( u,+1 ) g TV( un ) + 2d d 1
J+12 dj-11212 J

5 TV(u n ) + 4X MLAx,

where L = TAx is the length of the x-support of u at time T ( compact if u0 is compactly

supported ) and therefore TV( un+ 1) S TV( uo ) + 4MLT . I
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It seems to turn out from that proof that TVB modification is unable to cope with steady-
state computations since T may become very large. In fact, inequality (3.6) is a bit too crude
since, as Shu has pointed out [10], its upper bound is effective only near critical points or
points of discontinuity, whose number does not depend on the mesh refinement. Numerical
evidences lead us to think that the last estimates can be improved, in most cases, to:

TV(u") g TV(u o ) + 0(Ax)

//u"//, < //U o//_ + O(A 2 ),
and actually allow steady-state computations. These estimates are also of some importance
since they show that our TVB schemes do not suffer from a 0(1) Gibbs-like spurious
oscillations at points of discontinuity. The price, we pay, in order to achieve second order
accuracy at critical points, namely the loss of monotonicity, is not so expensive since
spurious oscillations seem to be at most O( A 2 ) in the Lw-norm.

The following statement enlightens the role played by the constant M in the accuracy
improvement of the TVB modification :

Theorem 3.3 : For any given A > 0, there exists a constant M > 0 such that the
scheme (3.2) (3.5) is second order accurate in any region where the u-derivatives are
bounded by A.

L n
Proof: Let us consider a+/2 - P1 ( - +12 p(r.+ 2 ) ,Au

J+112

Notice that, near a critical point ( sonic point or extremum ) :

I n AV. / AU" 1 sgn( v1 sn( ,1 Ax
z~u" 2j+11 AX 3 2

we have also /j+12 n f 2 + O(,X 2
J+112

L n

and therefore /.+11 / -r , 9 (r B Ax2

J+112

where B =Max( (1-/v/)f.I2)

Thanks to our assumptions on the u-derivatives, B is a bounded constant, depending on A. It

can easily be seen that Min (/ (poL(r) / , /""--- /. ) , is also bounded by a fixed constant C
r

for any r 6 R, ( since q r (r) ar + b ) and thus, if one chooses M greater than the product

n L
B C, the minmod function will pick-up the first argument aj+112 and leads to second order

accuracy at critical points.I
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Our TVB modification procedure is also available for TVD schemes involving a more

sophisticated limiter function such as Van Leer's limiter [11], for instance. Since the
underlying linear scheme is, in this case, the Lax-Wendroff scheme whose reduced flux is

2 ( 1 - / v 1) r, we are lead to propose:

nVL nE . ,* nLW aVL 2 nLWhn+12 = a,+,+ n oa, +12 ,+ 112 + MAx sgn(a+, 2 )a),

We underline the major advantage of the TVB schemes designed under the latter guidelines:
They are second order accurate in smooth regions, including at critical points, while the
approximate solutions they provide, remain bounded with respect to the BVvl*-norm, they
thus allow the existence of a convergent subsequence in L1l,, to a weak solution of (1.1), as
Ax vanishes. If an additional entropy condition is satisfied, which implies, in the scalar case,
that the limit solution is the unique physically relevant solution of (1.1), then the scheme is
convergent. The next section is devoted to this additional requirement. The lack of
consistency with an entropy inequality from which the TVD (or TVB) schemes suffer, is
overcome by addition of a limiting mechanism to the antidiffusive flux which enforces the
selection of the physical solution.( see Vila [3] and also Leroux and Quesseveur [12]).

IV. ENTROPY CORRECTION

For the theorical materials, the reader is referred to Lax [13]. Tadmor [14] has shown that
E-schemes were converging towards the unique physically relevant solution, but such a result
does not yield for a general TVD (or TVB) scheme. These schemes do not automatically
select the physically relevant solution. In order to achieve convergence towards the entropy
satisfying solution, we need to slightly modify the TVD (TVB) schemes so far considered,
according to Vila's procedure [3]. In this paper, an extra-limiting correction is added to the
antidiffusive flux an.+1/2 in such a way that ani+1/2 is enforced to vanish with the mesh size.
We are unable to sow any consistency with an entropy condition but thanks to such a
correction, Vila has proved the following theorem:

Theorem 4.1 : Let be a finite difference scheme (1.2) defined by its numerical flux

(4.1) h 2 j+ ah 2 such that the first order underlying E- scheme is entropy
stable ([14]). Assume that the antidiffusive coefficients anj+l/2 satisfy:

nI 2 / e(Ax) Vj Z with lim e(Ax) = 0i ~Ax-1, 0

then if the approximate solution Uh(x, 0 computed by (1.2) (4.1) is bounded in BV and L 0',
uh(x, t) converges towards the unique physically relevant solution of the initial value
problem (1.1).

Following Vila's approach, we correct the antidiffusive flux related to our previous TVD
(or TVB) schemes by:

n Na> Min( CAxa n V e Z where fie 10,1[ , (4.2)j+12 = sgn(aJ+12 ) MiJ +1121/)

in such a way that we can state:
Lemma 4.2 : The scheme (3.2) (4.2) is still BV r) L- stable under the same C.F.L.

like restriction.
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,nM n
Proof: . [0,)] / a = 112 a Vj,n e Z xN2 j+1/ j+1/22 1+112 ZN
therefore anM = 0,, d" + 0 d ; notice that 12 d" still defines a

j+12 J+112 Y+112 j+112 Ys11 +112 +1 J+112

TVD schemes (Lemma 2.2) and that 0 d / <M Ax
J+112 j+112

nM

Since I a+12 _< CArx and lir CAr # = 0 , thanks to lemma 4.2 and theorem 4.1,

we claim that convergence is achieved towards the unique physically relevant solution. Notice
that in any region where the u-derivatives are bounded by a fixed number A, there exists a

constant C depending on A such that / ajn+1 2 / s C Ax P and therefore entropy correction is

not active This allows the accuracy to be preserved in smooth regions.

V. NUMERICAL EXPERIMENTS

In this section, we present several numerical results performed with the schemes designed in
sections II and III. We use M = 50 for all computations and a fixed mesh ratio A = 0.1. All
tables are collected at the end.

Example 1: The Modified-Exquisite (denoted M.E.) TVD scheme and its TVB modification
are used to solve a Riemann problem of Burger's equation :

u2 UL-- 2 x< 0
u + (-). = 0 uO(x) = uR =-1 x > 0

The exact solution is a moving shock at speed 1/2. We use Ax = 1/80, T = 1.0 and print out
the numerical shock transition below (the starred postions are the positions of the shock) :

M.E. TVD scheme : 2.0000 1.9999 1.9998 1.9058 * -0.7627 -1.0000 -1.0000,
M.E. TVB scheme : 2.0005 1.9999 2.0041 1.9090 * -0.7642 -1.0000 -1.0000,
Unlimited M.E. (Quick): 2.0536 1.8727 2.1744 1.9461 * -0.8866 -1.0000 -1.0000,

For Ax = 1/40, T = 1.0 the M.E. TVB scheme has computed:

2.0024 1.9930 2.0158 1.9139 * -0.7759 -1.0000 -1.0000.

We observe that the oscillations produced by the TVB scheme are small (_!0.5 Max2) while
they grow larger (order 0(1)) for the linear scheme Quick as expected.

Example 2 : TVD and TVB Modified-Exquisite schemes are used to solve two linear
problems with smooth initial condition :

2
uI + u'X = 0 uo(x) = sin(Ozx) (5.1) then uo(X) = exp( -x/ 0.04 ) (5..2)

For I.V.P. (5.1), the solution is computed in -1 Sx < I up to t = 2 (after one period in time);
and for I.V.P (5.2), up to t = 0.5. The errors and numerical orders are listed in Table 1. Let
observe that the TVD scheme is first order accurate in L-norrn and second order in LI-norm
while the TVB scheme has full order of accuracy both in the L- and LI-norm, as expected by
the theory.
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Example 3 : Same schemes are used to solve the nonlinear Burger's equation with periodic
initial condition :

2

+ (-.) = 0 -1 _e Uo(x) = sin(zx+ ic).

The exact solution is smooth up to t = lIr, when a stationnary shock develops at x = 0,
which actually interacts with the expansion waves. The "exact" solution is computed by
Newton-Raphson iterations (For details, see [9]). The errors of the approximate solutions are

computed, at r = 0.15, in such a way that the exact solution is still smooth; then for t =I/X, at
which time the shock appears, in smooth region away from the shock (I x-shock / 0.05 ).
Errors and numerical orders are listed in Table 2. From this table, we see that the TVB
scheme is globally second order accurate, in smooth regions, while the TVD one is only first
order in the L't-norm.

Table 1

l.V.P (5.1) T.V.P (52)

E Ax TVD r TVB r TVD r TVB r

1/10 9.26(-2) 3.96(-2) 2.18(-1) 1.43(-1)

1/20 3.26(-2) 1.51 8.89(-3) 2.16 9.07(-2) 1.27 3.87(-2) 1.89

L- 1/40 1.16(-2) 1.50 2.12(-3) 2.11 3.37(-2) 1.35 8.73(-3) 2.02
1/80 4.18(-3) 1.49 5.49(-4) 2.06 1.21(-2) 1.39 2.06(-3) 2.04

1/10 5.69(-2) 3.28(-2) 6.24(-2) 6.70(-2)
1/20 1.55(-2) 1.88 6.65(-3) 2.30 2.15(-2) 1.54 1.50(-2) 2.16

1/40 3.82(-3) 1.95 1.48(-3) 2.23 5.21(-3) 1.79 3.34(-3) 2.16

L1  1/80 9.25(-4) 1.98 3.58(4) 2.17 1.37(-3) 1.84 7.94(4) 2.13

Table 2

t = 0.15s t = ls Ix-shock/ k 0.05

E Ax TVD r TVB r TVD r TVB r

1/1 1.72(.2) 1.49(-2)

1/20 9.16(-3) 0.91 3.71(-3) 2.01

L 1/40 3.43(-3) 1.16 8.78(-4) 2.04 5.76(-3) 6.02(-4)

1/80 1.26(-3) 1.26 2.14(4) 2.04 1.85(-3) 1.64 1.44(-4) 2.06

1/10 1.23(-2) 8.12(-3)

1/20 3.40(-3) 1.85 1.84(-3) 2.14

1/40 9.69(-4) 1.83 4.30(4) 2.12 1.48(-3) 4.56(-4)

L I  1/80 2.34(-4) 1.90 1.04(-4) 2.10 3.36(4) 2.14 1.04(4) 2.13
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SUMMARY

The underlying theory is reviewed for the construction of total variation
diminishing (TVD) finite-difference schemes. Using these methods and
artificial compression techniques, a high resolution version of the
well-known MacCormack scheme is constructed. Applications of the method
to high speed external aerodynamic flows are reported which use a finite
volume formulation and operator-splitting. Existing production code
implementations of MacCormack's method can be updated easily, as
described, to reflect recent advances in one-dimensional schemes.

INTRODUCTION

Over the last fifteen years, substantial advances have been made in the
numerical analysis of hyperbolic partial differential equations,
particularly in those arising in computational aerodynamics. A popular
approach is to solve the Euler equations numerically by marching forward
through time using an appropriate finite-difference or finite-volkne
scheme, capturing any shock waves or contact discontinuities which may
occur. A notable advance in the 1970's was the introduction of the method
of operator-splitting by which a three-dimensional problem may be solved
by applying a sequence of one-dimensional difference operators; each
operator relating to a specific oo-ordinate direction. This led to a
focus on one-dimensional schemes. The early schemes of the 1970's were
analysed using linear stability theory and those that were intended to
capture shock waves were designed to be dissipative. However, the ability
of these schemes accurately to resolve shock waves and contact
discontinuities was impaired by the appearance of oscillations around the
profile of the discontinuity. Whilst linear stability is useful for
checking "local" stability of schemes applied to non-linear equations, it
is often insufficient, particularly when strong discontinuities are
present. The classical approach for damping oscillations and removing
non-linear instabilities was to introduce extra artificial viscosity
explicitly, in order to increase that which is present in the scheme
implicitly. Unfortunately, this approach tended to cause a spurious
entropy layer to form, emanating particularly from regions of high spatial
gradient like shock waves and stagnation points. In cases of strong shock
interactions this palliative often failed completely. The problem was
that the added dissipative term invariably had a global and
problem-dependent coefficient. In some parts of the flow field too much
damping was being applied, and in others too little. What was needed was
to apply the term more selectively.

In the 1980's various workers [1-9] began to put the procedures on a more
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systematic footing. There was renewed interest in Gw' methods and in
Riefem solvers generally. Out of this work emerged the total variation
diminishing (TVD) schemes, so-naued by Harten [1], who gave a set of
theorems, leading to conditions, which when satisfied by any three-point,
conservative, second-order accurate finite-differenoe sctieme are necessary
and sufficient for the scheme to be TVD. As a sequel to this work Davis
(2] showed that it is possible to formulate a classical Lax-Wendroff
scheme in TVO form. This is acoomplished by appending to the scheme a
non-linear term which applies precisely the correct amount of artificial
viscosity needed at each mesh point to limit overshoots and undershoots.
This work opened the way to updating many existing production computer
codes which employ the well-known MacCormack scheme, a variant of
Lax-Wendroff and the subject of this paper. The theory of TVD schemes is
developed for application to scalar conservation laws. The resulting
schemes are then extended to non-linear equations and systems of
conservation laws.

TVD FINITE DIFFERENCE SCEES

Consider the scalar conservation law

au + a u-t = 0 (1)
t a

with

u(x,0] = u0 (x), x c R,

where a is a real constant. Let Un, be the numerical solution of (1) at
x = jAx, t = n~t with Ax the spatial mesh size and At the time step.
Formally, if the total variation in the numerical solution is given by

w ~ J+] 1j~~- (2)
J

then a scheme which is TVD satisfies the condition

A general, three-point, conservative finite difference scheme for solving
(I) can be written in the form

Un+ULP- C &U7  +0D AU'Y (4)
3 j j-49 J4 -MJ 4

where

Ap Un Un, A ~ -U

Harten [1] showed that this scheme will be TVD iff the following
conditions on coefficients C,D are satisfied
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-0 o j. OwCj_.+Dj+ 1 (5)

Seoond-order accurate schemes which do not satisfy conditions (5) are not
TVD and will exhibit oscillations around shock waves.

Sweby [3] used the concept of the "flux limiter" to construct a
second-order accurate TVD scheme. His starting point was the well-known
Lax-Wendoff (LW) scheme

U3t :  n &0 (u)ua n
(6)

U u - Uau_ uj+M 8

tt

where x : a " (7)

and which can be written as the first-order scheme

UI n 0Aj_ (8)

with the additional anti-diffusive flux term

- (1-U) Vuf+. ] . (9)

Since (8) is known to be non-oscillatory (because it is first-order) he
proceeded by adding only a limited amount of the anti-diffusive flux (9)
to give

U34 : un Vu.7 - Lal( 1xllAU~+1 (10)
U. U.-U 4i I +)

where 0 is a flux limiter, to be defined.

More specifically, Sweby chose a particular form for scheme (10), given by

U -i n 1+ h (l-u) [ 4[r;] / + - 0[r+ _J]]} A In

where

ALUn
+ =- 

(12)rj an

and which, so constructed, reproduces the LW scheme if 0(r) = I and the
explicit, second-order, upwind scheme (WB) of Warming and Beam [10] if
0(r) = r. i

By corparing (11) with the general form (4) it is found that

CM= U{ 14H (1-U) [ -.ij' - . ]1j (13)
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Dj.h = 0 (14)

and if we impose the constraints (5) on C,D we find that for schame (11)
to be TVD the flux limiter function O(r) must satisfy

0 < [ (r), 0(r)] 2. (15)

under the CFL condition lul 4 1. That is to say, the flux limiter must
lie within the shaded region of Fig la. One can further show that the
donain illustrated in Fig lb corresponds to the second-order TVD region.
Neither of the schemes LW or WB lies uniformly within the shaded region
which explains why they are not TVD.

Following the work of Harten and Sweby, Davis [2] showed that it is
possible to modify the LW scheme to be TVD. Since it is known that LW
coefficients C,D do not satisfy constraints (5), his approach was to
append to the scheme a term which changes the coefficients such that they
do satisfy (5). A suitable tem is

whereupon we can recover Sweby's TVD scheme (11) if we choose

e +..] = 1U [1,- *[l(17)
subject to 0(r) satisfying (15) and lul ( 1. Term (16) is effectively
u ind weighted therefore the functional form (17) of G+(r) changes as
the sign of a in (1) changes. This unwanted complication can be removed
to produce a five-point, symmetric, TVD scheme by replacing (16) by

[G(rt] + G-{r+I]AU.,
(18)

- [G+[r _) + d-[r-]Mj.

where

S=Q 
(19)

J-H

G =r) .A(rii;- ]]. (20)

Theee results can be extended easily to scalar non-linear problems by
defining a local Courant number to replace the global definition (7).

In order to extend the scheme to hyperbolic systems we first consider the
constant coefficient system

Au au
-Z+ A -==0 (21)
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where U is a vector of m components and A is an m x m constant matrix. If
P denotes the matrix whose coluoms are the right eigenvectors of A, then

P-AP = A = diag (),) (22)

when X.9 are the eigenvalues of A.

We proceed by defining a new set of dependent variables

V = P-U (23)

then, multiplying (21) by P-1 we have

(P-1U)t + P-'A(U)x = 0 (24)

or Vt + AV = 0 (25)

which is an uncouple set of scalar equations. We may solve (25) by
applying the TVD LW sarm to each scalar equation in turn, that is

j!( - I+ - 2V+ Vn

Sj 2 j+- J-1 2 ,i 3 J-l

+ [G(rjl + G-r + ]AV

- [G+[rji1] + G-(r]&V.. (26)

To obtain a scheme in terms of the original dependent variables we
multiply by P-1. The result is

ni -n Z - [_.. -U + A2 [At '. -2Ua U. -- A _t

+[ r + +- P [G[rt) + GFrJ]P-'AUAf,. (27)

However, scheme (27) requires that we oute matrices P and P-1. This
restriction can be removed by approximating the diagonal matrices (# by
scalar matrices, ie

GQ(r*) = lG(r*)I (28)

where I is the m x m unit matrix and r* are chosen to be scalar functions
of U,

r -j-4, -+M1 (29)

ZY-49 -3 - (30)r AU n  AL

where (..) denotes the irnner product on RM and m is the number of
oawx tam of the solution vector U'. If P does not vary significantly
over adjacent mesh points, definiffons (29),(30) can be interpreted as
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averages of the earlier scalar definitions. Other definitions of r* can
be constructed but thoee indicated have been found to work well in
numerical experiments.

With these approximations, the method takes the form:

un+ n At [U Un j +AZ At [Un - 2U n
u - 2Ax j1 -J-j} 2Kx2  3+1 3 J

+ [-{+ + dfrU[

- [ +{r 1J + -r+ 1  J]AJ _ (31)

The resulting scheme (31) does not depend explicitly on the transformation
(22), so it can be used without modification for non-linear problems. In
our applications we replace the first three terms of (31) by the finite
volume MacCormnck scheme. This scheme is equivalent to the LW scheme for
linear problems.

TVD MACaRMACK FINITE-VOLUME SCHEME (TVDM)

Since we anticipate the use of a body-fitted mesh, we cast the equations
of motion in generalised co-ordinates. The Euler equations, in strong
conservation form, are

au + a (-'- 9 F) = 0 , 9 = 1(1)3 (32)

Pu9

+ p ax
9

ax9

where U = ,-g Epw1,pw2 ,pw3 ,e]T , -g2(u) = pw2 u + p

ax9
PWU?+ PaZ3

(e+p)u 9

ig is the Jacobian and the flow velocity g = U = w _, where _a, are the
Cartesian unit base vectors.

Equation (32) can also be cast in integral form, which is the basis of the
finite volume method

a JJfvolYVl + JJ51 FdB + JJ52  dS + Jf 03.(+t _ j .e = 0(33)

The appeal of the finite volume formulation becomes apparent by noting
that axg/azm = ag.m and q.j u9 whereuon
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UPWg.D9 + P92.- 1  PWID + p-a,

/gF(U) =2 pw+g. P .2 = w29 + P-02  49 ' = H(U).s 9  (34)

pwg.gR + p9g.a. Pw3a + p-%

(e+p)g.9 9  (e+p)g

and we see that the computations can be performed with respect to the
Cartesian flux tensor H(U), rather than the curvilinear r-O F(U). Thus one
need not become involved with the intricacies of tA co-ordinate
transformation.

We solve (33) using a factored sequence of one-dimensional finite volume
operators where each component operator relates to its respective
curvilinear oo-ordinate direction. Further details may be found in (11].

The MacCormack finite volume operator L1 (At) is

=~ Hn  n,n~i U~ik -Wt [ ij _S +h + HH~j i (35b)
0i - +jk - A + . 1 3a

ijk + Uik- L~ jk~i+ + H ' Si]] (35b)

where Uik 1 volijk 'Pw1 Pw2 Pw3 'e Tk and S are the area vectors on

opposite faces of the cell, normal to the surface xi = constant.

Scheme (35) can be updated easily to TVD form by appending to the
right-hand side of the "corrector" step (35b) the term:

[Gt + + - [Gt + G7] w (36)

where

Gi r } = 0.5 C(U) [1 - (r *] (37)

and we have chosen

C(U) = f u(1-u) , 4 ( 0.5 (38)0.25 ,u > 0.5

which is an upper bound to the Courant number dependent coefficient in
(20). Also

At

U =U max IXl 1 (39)
9

where max I)NRI = lu'l + C, with ul and C the local flow speed and sound

speed respectively.

The flux limiter which we use is
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{ min (2r,l) r >0 (40)O r < 0(

which corresponds to the bold line illustrated in Fig Ib, and rj are as
defined in (29),(30).

The M and TVD4 schemes have been used to solve the one-dimensional Riemsann
problem. At time t 0, the left and right states are:

U 0 "5 0311 '0R 0

3 8.928 1.4275

With increasing time, a mixing process takes place such that a rarefaction
wave moves to the left and a contact discontinuity and a shock wave move
to the right. The results showm in Fig 2a,b were obtained after 100 time
steps with 140 cells. Other computer solutions are given in [1]. It can
be seen that scheme TVDI4 exhibits none of the oscillations of the M
scheme. However, the contact discontinuity is smeared over approximately
thirteen points. The resolution of the contact discontinuity can be
improved by applying artificial compression techniques.

TVD ?'O&O4ACK SCHEME WITH ARTIFICIAL COMPRESSION (TVD4AC)

In order selectively to add artificial ca,vression in cases where a
contact discontinuity is anticipated, we construct a split operator CA
which compresses a "TVD4" solution at any given time level. Here, C is
defined as

CAVi =_Vi - 2 [esiM- i+h - ei-41 Gi ]  (41)

where

Vi = L, (At)Ui

is the solution obtained by applying the TVDM scheme to the solution at
the previous time level, and we have suppressed subscripts j,k. Also,

aei+: max i i+ (42)

= AV4+ V'.
0 , II'Vi V I + I AV~I CI ,iVl+Nl+l 1 (43)

: 0.01 max IV+- VVi
1 +
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i-c i+ = gi + " ?,I sgn [vm,-  - vj

0( ma f , min min -M 1 v'TJ [Vmi, - r.gn[Vm'+, -

when m = I(I)M, M being the number of components of the solution vector V.

Fig 2c shows the solution obtained by scheme TVD4A for the Riemann
problem. It can be seen that the resolution of the contact discontinuity
is improved dramatically with artificial compression. Clearly, the
operator CA can be applied more than once, if desired, in order further to
"compress" the data. In practice, we have rarely found this to be
necessary. Further discussion of artificial compression techniques can be
found in Harten [123.

APPLICATIONS

Fig 3a illustrates an aircraft forebody geometry typical of a combat
aircraft. We wish to predict the disturbance field around the forebody at
proposed intake locations, as well as the usual forces and moments, at
Mach numbers ranging from high subsonic to supersonic and at various
angles of attack. The forebody shown in Fig 3a has an elliptical nose
dipped at 5", sharp corners and flat sides to accommdate engine intakes.
An analytical description of the body surface was formulated by fitting
curves through the ordinates of particular cross sections. This provided
a basis for the construction of a body-fitted H-O type grid in which the
radial lines, emanating from the effective centre-line of the body, were
segimented such that the radial spacing at the body surface was
approximately the same as the streamwise spacing. The latter spacing was
wsentially uniform and corresponded to the stations at which the
individual cross sections were defined. So constructed, the mesh had
57(x) x 16(e) x 10(r) cells distributed around a "half-body" and a
converged solution was obtained after 800 time steps, cmwencing the
calculation with an impulsive start at Mach 1.40 and -5' angle of attack
(Fig 3b). An operator-splitting three-dimensional implementation of the
finite-volume TVD MacCornack scheme described earlier was used. Unlike
similar calculations using the Maccornmck method, there were no parameters
to be adjusted to control the amount of added dissipation for shock
capturing. Fig 4 shows a similar calculation for another forebody,
typical of a civil aircraft. An analytical description of the geometry is
given in the reference cited.

CONCLUSION

The theory underlying the construction of total variation diminishing

(TVD) finite difference schemes has been reviewed. Using these methods, a
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high resolution version of the well-known MacCormack scheme has been
constructed and some applications of the method reported. The required
modifications to the standard MacCormack method are minor and will allow
existing production code implementations of this scheme to be updated to
reflect recent advances in one-dimensional schemes.
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A STABILITY ANALYSIS OF A EULERIAN METHOD

FOR SOME SURFACE GRAVITY WAVE PROBLEMS
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DK-2800 Lyngby, Denmark

SUMMARY

For the solution of some surface gravity water wave problems a Eulerian
method is given as a system of 2N ordinarv- differential equations where the
moving boundary is described by means of N "Eulerian" points. Part of a sta-
bility analysis of the system has been carried out with respect to equilib-
rium solutions, periodic solutions, and numerical solutions. Numerical ex-
periments with the system have not disclosed unprovoked saw-tooth instabil-
ities, which have plagued some other methods.

1. INTRODUCTION

Surface water waves under gravity [55] constitute a moving boundary
problem. (In special cases this problem can be formulated in terms of non-
linear hyperbolic-type equations [55; Part E].) For the solution of the
general problem various methods are at disposal [57]. Some of them can be
characterized as "two-step methods" where (i) Laplace's equation (see § 2)
is solved separately, and then (ii) the solution of Laplace's equation is
used in a time-stepping procedure. Depending upon how Laplace's equation is
solved the "two-step methods" are divided into two groups: (1) Solution
using differential equation methods L3] [5] [18] [24] [41] [42] [57].
(2) Solution using integral equation methods [8] [18] [30] [31] [32] [34]
[37] [38] [39] [43] [46] [54] [57]. In several cases it has been reported
that in the course of the computation, when the equations are integrated
forward in time, then a smooth surface curve may develop into a curve with
a superimposed saw-tooth component. This instability has plagued several
methods of computation [1] [3] [15] [16] [34] [39] [41] [45] [50]. Appar-
ently, the first unmistakable example of this instability was presented by
Longuet-Higgins & Cokelet [34, Fig. 4]. Traditionally, the instability has
been overcome by an artificial smoothing. Also a method of Roberts [43] can
be unstable, but a slight change of the algorithm eliminates the instabil-
ity and results in a stable method [43]. In contrast to these difficulties
a method of Vinje & Brevik [54] turns out to be remarkably stable without
any instabilities. The integral equations used in [34] and [54] are of the
first kind and of the second kind respectively. The analysis of [43] is very
important when investigating the instabilities of [34], while the stability
of [54] is still not fully understood [43; p. 25], apparently. Several methods,
e.g. [34] [43] [54], employ on the surface curve N "Lagrangian" points for
which the movement is described by a system of 3N ordinary differential
equations (ODE's). Those methods are capable of treating difficult problems,
e.g. overturning waves.

Initiated by the above methods we shall here consider a simpler method
which employs on the surface curve N "Eulerian" points for which the move-
ment is described by a system of 2N ODE's. (This method is not capable of
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treating overturning waves.) We derive the method (S 2) and analyse the sys-
tem of ODE's (§ 3) with respect to stability of equilibrium solutions (S 3.1),
stability of periodic solutions (S 3.2), and stability of numerical solutions
(S 4). Finally, we discuss the applicability of some methods from nonlinear
dynamics and give a summary of the results obtained (S 5).

2. A EULERIAN METHOD

We consider a two-dimensional non-linear water problem, 2 -periodic in
the (horizontal) x-direction, with horizontal bottom y = 0 with the y-axis
pointing upwards (gravity g = 1) and with a moving surface curve described
by y = n(x,t), where t is time. Inside the region a 2v-periodic potential

= O(x,y,t) satisfies Laplace's equation At = 0, while t = 0 on y = 0.
On y = ri the potential (D satisfies well-known boundary condAions [51; p. 163,
which make the problem nonlinear. By introducing O(x,t) = 5(x,q(x,t),t),
i.e., the potential ' evaluated on the moving boundary, the conditions on
the moving surface can also be written as the following partial differen-
tial equations (PDE's)

nt = 4y(x,n,t) - fx(X,t) ' (x,ri,t) (2-1a)

t = H - q(x,t) - x(X,rl,t)
2

+ 2'(x'D 't)2 - qx(xt) 0x (x q t) 4y(x,,t) , (2-1b)

where H is a suitably chosen constant.
The Eulerian method is derived as follows: For x := xi  i 21r/N;

i = 1,2,---,N (with N even) the N functions qi(t) := n(xi,t) and the N
functions Oi(t) := O(x,,t) are to be found. These functions are combined
into one 2N-vector 7P =.. ' ]'1= 2N [ " '

ON which depends on t. The potential 4 is expressed as (cf., e.g.
[9]) nil(A

t = A0 + An cos nx cosh ny + cos jx + B. sin jx) cosh jy , (2-2)

j=l

with n = N/2, each term 2-periodic, satisfying Laplace's equation and the
condition on y = 0; the coefficients {Aj}3, and {B 1}-1 are time-dependent.
By means of (2-2) and * a system of linear algebraic equations is set up
and solved [22], giving the value of the coefficients and thereby, through
(2-2), various derivatives of 4. The derivative nx is approximated in terms

N
of {ri~l' e.g. by means of periodic splines [21]. Hereby all the quantities
on the right-hand side of (2-1), evaluated at x := xi, are expressed in
terms of *. We have therefore expressed ip' in terms of * as a system of 2N
ODE's

*' = F(*) . (2-3)

When * is prescribed for t = 0 there is given an initial value problem
where-the evolution of 0(t) is found from (2-3).

3. ANALYSIS OF THE SYSTEM OF ODE's

The system (2-3) is to be analysed, in particular with respect to the
stability of equilibrium solutions and of periodic solutions.
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Only for very small values of N is it possible to write down the sys-
tem in a tractable closed form. For general (even) values of N the system
is given as a computer subroutine. Therefore part of the analysis of the
system has to be carried out by investigating the subroutine by numerical
methods. The computations referred to in this section are carried out using
an IBM 3081, VM/CMS, FORTVS, double precision (i.e. using around 16 decimal
digits).

The Jacobi matrix 1, with elements Jij = aFi/8j, cannot, in general,
be determined analytically, but it has tobe computed numerically. The de-
rivative is replaced by a two-sided difference approximation, viz.
(Fi(iP-+h) - Fi(4j-h))/2h, where h is chosen to be 10-, in accordance with
a macine-epsilon around 10-16, cf. [14; p. 286].

The description of the water waves, leading to (2-1), does not take
any losses into account. Therefore the system (2-3) should be conservative
[48; Ch. 6], which is the case when div F = 0. Apparently, div F = 0: This
equality can simply be verified analytically in certain cases whereas nu-
merical calculations corroborate the equality in several other cases.

3.1. Stability of equilibrium solutions.

The equilibrium points of the system (2-3), i.e. the points I where
( ) = 9, are not isolated [7; p. 122]. In fact t determined by i =  =

. qN =: 7 and 0, = 02 =... = N =: 
', with T arbitrary, is an equilib-

rium point. For these equilibrium points the eigenelements of the Jacobi
matrix J can be found analytically and given in closed form. The matrix
has the following N+1 (imaginary) eigenvalues, with 12 = - 1, [6; Eq. 4]

X(0) = 0 (3-1a)

(k)± = ± (k) ; k = 1,2,''', , (3-1b)

with
o( k ) =- -tanh ) .(-1c)
a(k)

Except for k = N/2 the eigenvalues have algebraic multiplicity two.
The eigenvectors can similarly be given, and it turns out that tnere are
only 2N-1 ordinary eigenvectors indicating that the matrix J is defective
[40; S 11.3]; the Jordan canonical form [10; Ch. 5] of the Jacobi matrix
has one element outside the dia onal. The generalized eigenvector [40; S 11.6]
pertains to the eigenvalue X(0? = 0 and has the form [i,i,-..,i,0,0,--', 0 ]

T .

It can lead to a solution of the form [0,0,'--,0,1,i,. .-,]T growing pro-
portional to t. This growth, however, does not influence the shape of the
boundary curve described by [nIn 2,..,N]. But strictly speaking the equi-
librium solution is not stable [2; S 4.2, Th' 1].

3.2. Stability of periodic solutions.

Standing waves or progressive waves on the surface of the water can be
considered as time-periodic solutions in a 2N-dimensional phase space. The
stability of a 2N-dimensional periodic solution P(t), satisfying (2-3), with
period To , is investigated by adding to P(t) a small 2N-dimensional compo-
nent w(t), which may represent the saw-tooth ripples superimposed on the
wave characterized by P(t), so that t = P + w is also a solution satisfying
(2-3). Here w(t) satisfies the linear variatioal equation of (2-3) rela-
tive to the solution P, [7; pp. 176 ff]
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= , (3-2)

where J(P) is the Jacobi matrix evaluated around the solution P, having the
period To , whereby the matrix has time-periodic coefficients, which leads to
Floquet theory for the equation (3-2), [7; pp. 95 ff.] [23; § 8.3]. As men-
tioned above the matrix J(P) has to be found by numerical differentiation
around the solution P, which satisfies (2-3).

As initial values for w(t), i.e. w(O), are chosen 2N different unit
vectors, which are combined to a 2N x 2N unit matrix I. By integrating I
through the period To there results from (3-2) the so-called monodromy ma-
trix Z [13; p. 119]. The simultaneous integration of (2-3) and (3-2) re-
quires the solution of 2N + 4N2 coupled ODE's. The eigenvalues of C are the
so-called Floquet multipliers [7; p. 100], which give information about
the stability of P(t). The initial value for P(t) depends upon the periodic
solution in question.

Example: A periodic solution, viz. a standing wave, is obtained by
the initial conditions [52]

q(x,0) = 1 - 0.0000425450 cos 2x (3-3a)

O(x,0) = 0.011459234 cosx + 0.000000024 cos 3x (3-3b)

with the time period To = 7.19973938. By means of a sampling af (3-3) for
x := xi H i 27/N; i = 1,2,-'',N (with N even) the initial vector P(0) is
obtained. For N = 8 a system with 272 ODE's is integrated numerically over
the period To, using [19] with TOL = 10-9 , in order to obtain the 16 x 16
monodromy matrix C, from which the (complex) eigenvalues, the Floquet mul-
tipliers, are determined numerically [20]. All the computed multipliers
turn out to have absolute value very near one; in fact they are confined
to the interval [0.999967, 1.000033]. With the multiplicity written in { }
the multipliers are approximately: 1.00 {6}, 0.99 ± I 0.13 {2}, - 0.84 ± I 0.54
{2}, - 0.25 ± 1 0.97 {1}.

The above Example, and other examples, indicate that all Floquet mul-
tipliers have absolute value equal to one, and that some of them appear
with multiplicity larger than unity. This case is the most difficult one
when it comes to the investigation of whether w(t) has components growing
with time t [7; p. 103, Th. 13]. It is here necessary to determine the Jordan
canonical form of the monodromy matrix [12; § 2.7]; for example the eigen-
value one may have generalized eigenvectors which can give rise to compo-
nents of the solution which grow proportional with t. Howeve, the numeri-
cal determination of the Jordan canonical form of a given matrix is a very
difficult numerical process [11] [25] [26]. For example the block struc-
ture of the Jordan form may be sensitive to perturbations of the matrix el-
ements. In the present case the matrix elements, of the monodromy matrix,
are found by means of a numerical integration which necessarily crea t - some
computational errors.

Because of the numerical difficulties here mentioned it seems necess-
ary to abandon the method here described for analysing the stability of pe-
riodic solutions. However, other methods are available (§ 5).

4. STABILITY OF NUMERICAL SOLUTIONS

Because the question about stability of the periodic solutions does
not se,, to be answered using Floquet theory, some numerical experiments
have been carried out.

The system (2-3) has been integrated numerically [19]. A straightfor-
ward method to investigate whether saw-tooth instabilities are evolving is
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to carry out a harmonic analysis [58; § 6.13] of the equally spaced ordi-
nates i}N at various instances of time. A saw tooth can be obtained by
sampling the function cos(N/2)x for x := xi E i 21/N; i = 1,2,.,.,N, and
therefore the Fourier coefficient corresponding to cos(N/2)x, derived from

{ni}N gives information about the magnitude of the saw-tooth component.
With N = 8 and with various vectors T(0) corresponding to periodic

solutions (viz. standing waves derived from [52] and sampled as in § 3.2,
Example) some integrations over 20 complete periods of time have been carried
out. From these computations there has not been observed any systematic
growth of the Fourier component responsible for the saw-tooth component.
From this negative result one cannot, of course, infer that the periodic
solutions of the system (2-3) are always stable.

It is, however, possible to conduct the numerical solution in such a
manner that a saw-tooth surface curve will develop [6]: The system (2-3)
can be integrated numerically using various numerical methods [28] [58];
each method is characterized by a region of absolute stability [47]. Let X
be an eigenvalue of the Jacobi matrix J, evaluated at a certain solution ,
and let h be the time step, then if Xh is outside the region, the so].ition

will contain a growing component of the eigenvector of J corresponding
to X.

In the case leading to (3-1), with a horizontal boundary curve, the
two eigenvalues X = X(N7 2 )± have, correspondingly, the two linearly inde-
pendent eigenvectors

[+ , ,--l..... X' '+l,''.,+l] T  , (4-1)

which can be combined to a saw-tooth surface curve, where n, = q3 .... =

'N-I 1 n2 = n4 ... = nN. With A being purely imaginary, cf. (3-1), the in-
tegration methods do not create saw-tooth instability, provided that the
step length h satisfies 0 5 lAih S or

0 S S (4-2)hmax :=o(N/2) !Ntn(N 42

2 2

where S depends on the integration method used [6]. For a related problem
[9] it is found that At (Ax) 2 in analogy with (4-2), which, however,
gives a more specific bound for h = At.

Actual numerical integrations have been carried out using various
methods, in particular the method by Adams-Bashforth-Moulton, 4th order in
PECE mode [58; p. 458] (which was used in [34]). For this method it is cus-
tomary to put S = 0.92620161, cf. [47; Fig. 24] [53; Fig. 4.2], although
it is not completely correct [6]. With N = 36 and )= 1 then hmc = 0.218308
according to (4-2).

The initial functions

q(x,0) = 1 + E sinx (4-3a)

O(x,0) = (E/vY i) cos x (4-3b)

correspond to a wave of permanent form travelling to the right with phase
speed c = tanh i, provided that IjI is infinitesimal [27; Ch. IX]. From
(4-3) an initial vector (0) can be derived by a sampling for x xi as in
§ 3.2, Example.

The value e = 0.01 is small enough so that the results of the numerical
integration follow what could be expected from the linear theory around an
equilibrium point corresponding to a horizontal surface curve: If h= 0.24 >
hmaa saw-tooth component will become visible with an amplitude which is
independent of x, in accordance with (4-1). In principle, the Fourier com-
ponent No. 18, which represents the saw-tooth component, will grow with the
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number of timesteps. If h = 0 18 < hmax such a saw-tooth component appar-
ently does not develop.

The value c = 0.1 is so large that the above results are no longer ap-
plicable, because they are derived for an equilibrium point. If h = 0.24
the saw-tooth component again becomes visible, but now with a large ampli-
tude near the crest and a small amplitude near the trough.

If the problem is to be investigated further, e.g. with respect to the
development of the uneven saw-tooth component, it may be advantageous, at
various stages of the evolution of t(t), to compute the Jacobi matrix i(t)
by numerical differentiation (as indicated in S 3) and subsequently deter-
mine numerically [203 the eigenvalues (and perhaps, some of, the eigenvec-
tors) for 2(t). (For a somewhat related problem [43] a similar computation
of the eigenvalues and eigenvectors has been carried out.) Actual numerical
calculations have been carried out, and they can reproduce, with high accu-
racy, the eigenvalues (3-1), including the double eigenvalues. Because J()
in this case is defective (see S 3.1) the eigenvectors computed using [20]
are not all reliable, and generalized eigenvectors ought to be determined
[253 [263. For other boundary elevations v) and/or boundary potentials i than
those leading to (3-1) it is observed in some cases that two opposite, double,
purely imaginary eigenvalues can split into a quadruple of simple eigen-
values, X = ± a ± iP, i.e. two with positive and two with negative real part.
(A splitting of four eigenvalues zero into two pairs of real eigenvalues is
reported in [43; Table 1].) If the corresponding eigenvectors/generalized
eigenvectors of J(t) were available it would then be possible to compute,
from the characteristic polynomials of the actual integration method, how
the various components will develop. However, such a calculation will give
only a quasi-steady description of the evolution, while a full unsteady cal-
culation may show that the eigenelements change as a function of time, so
that growing components of t(t) at a later stage may turn into decaying com-
ponents of t(t), and vice versa.

Example: A periodic solution, viz. a standing wave, is obtained by
the initial conditions [52], cf. § 3.2, Example

n(x,0) = 1 - 0.00425449584 cos 2x (4-4a)

O(x,0) = 0.115047192 cos x + 0.000023741 cos 3x (4-4b)

with the time period To = 7.197620947. A vector T(0) is obtained by sampling.
For N = 16 a system with 32 ODE's is integrated numerically over the period
T., using [193 with TOL = 10-9 . For various values of t the matrix 2(t(t))
is determined by n, rical differentiation (see S 3) and the eigenvalues are
computed numerica' [20]. For t = 0, T0 /2 and To there is found a quadruple
of eigenvalues: ± 0.08 ± L 2.86, and t(t) is not in accordance with the lin-
ear theory [27; Ch. IX], while for t = T0 /4 and 3T0 /4 the eigenvalues do not
have dominating real parts, and t(t) is in accordance with the linear the-
ory.

5. CONCLUDING REMARKS

For the solution of some two-dimensional surface water wave problems
under gravity a Eulerian method is given in the form of a system of 2N ODE's
(2-3), where the moving boundary is described by means of N "Eulerian" points.
On the moving boundary the problems in question satisfy some conditions
written as a system of PDE's (2-1). It is known [33) [353 [44] [59) that
two-dimensional water waves can travel with a permanent form with a certain
phase speed, and that the waves are stable to superharmonic perturbations
provided that the waves are not too high compared with the wave length.
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In consequence of the stability of the problems under consideration
described by the system of PDE's (2-1) the system of ODE's (2-3) has been
investigated with respect to stability of equilibrium solutions and peri-
odic solutions. Unfortunately, definitive results could not be obtained-on
the periodic solutions because of difficulties in determining the Jordan
canonical form of the monodromy matrix. However, the monodromy matrix could
be analysed further: Actual numerical calculations carried out on the mono-
dromy matrix of S 3.2, Example, and other examples, indicate that the mono-
dromy matrices are symplectic [29; pp. 181-183]. Such matrices which arise
within Hamiltonian mechanics [35] can be analysed with respect to stabili-
ty using more refined methods [17]. For the integration of symplectic prob-
lems specialized algorithms are available [4]. Furthermore, the stability
of systems can also be analysed in terms of the Lyapunov exponents [29;
S 5.2b, 5 5.3], which can be computed numerically [56]. It would be of in-
terest to continue the analysis of the system (2-3), but now applying the
methods which are used in connection with nonlinear dynamics.

Numerical experiments based on the system (2-3) have not disclosed un-
provoked saw-tooth instabilities, but it is possible to provoke such insta-
bilities by carrying out an integration with a timestep which is too large.
Some of the provoked instabilities have the same form as those shown in [34,
Fig. 4]. But from this coincidence it is - of course - not possible to draw
conclusions about the reason for the saw-tooth instability observed in [34],
because the present method is Eulerian while the method of [34] has to be
characterized as Lagrangian. With respect to stability there may be an es-
sential difference between a Eulerian approach and a Lagrangian approach
[49]. Therefore, it is not possible to conclude with certainty whether or
not the instability of [34] and the stability of [54] are due to the appli-
cation of first-kind integral equations in [34] and second-kind integral
equations in [54].
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SUMMARY

Abstract: This paper is devoted first, to the presentation of a new expression of the Boltzmann

collision operator in axisymmetric geometry, and second, to its use for practical computations in connection

with the deterministic particle method.

In numerous situations, the solution of the Boltzmann equation is invariant under the rotations of the

velocities about a given axis. This invariance is seldom used to reduce the computational cost of the

simulation. In this paper, we present an expression of the Boltzmann operator, which takes advantage of this

invariance to reduce the dimension of the integrations involved in this operator.

We use this feature to propose a direct evaluation of the Boltzmann operator by quadrature formulae. This

method is coupled with a particle method for the approximation of the differential part of the equation. The

numerical scheme has been applied to different test cases, with an emphasis on the verification of the

momentum and energy conservation by the discrete collision operator. The method is also applied to a real

problem arising in semiconductor physics. The numerical results are presented and commented.

Acknowledgements: The authors wish to acknowledge the "Centre de Calcul Vectoriel pour la

Recherche" for supporting the computer cost of the numerical simulations.

1. INTRODUCTION

The Boltzmann equation is not usually considered as part of the class of non-linear

hyperbolic problems. However, there are numerous connections between these two areas, and
particularly between the kinetic and fluid models of gas dynamics. From the viewpoint of
numerical modelling, these two models have often been brought into conflicts together, since
the kinetic models, although relying on safer and wider physical bases, are much more costly

for a numerical computation. However, kinetic models provide interesting informations for
instance on the internal structure of one dimensional shock waves [1]. Moreover, in

hypersonic aerodynamics, the excitation and the relaxation of internal degrees of freedom
(such as the rotation, vibration, and dissociation of the molecules) introduce additional features
in the shock structure which must be taken into account by a reliable simulation program, and

which are more accurately modelled by kinetic equations. To preserve the physical accuracy of
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kinetic models, with a moderate computational cost, a possible solution is to investigate mixed
models, where the population of the thermal particles (which is expected to be large) is
modelled by the fluid dynamics equations, and the suprathermal particles, by kinetic equations
[2]. Thus, it seems important to develop accurate methods for the kinetic equations at the same
pace as for fluid equations.

Most of the numerical computations make use of Monte-Carlo methods, which can be
devided into Bird's method [6], and Nanbu's method [7,8]. A review on these methods can be
found in [9]. Monte-Carlo methods are used in various areas of physics, such as semi-
conductor physics [10]. Very few direct methods have been investigated (see Chorin [11]).
This paper is a contribution to the development of direct simulation methods for the Boltzmann
equation.

First, we investigate the Boltzmann collision operator in axisymmetric geometry. This
situation arises in the study of shock or boundary layers, where the distribution function is
invariant under rotations of the velocity about the normal axis of the shock layer. The

distribution function can be expressed in terms of the reduced velocity coordinates (vl,v2) E

v, = (v,el) ; v2 = Iv-(v,el)el1 (1)
where e1 is the unit vector of the symmetry axis. The symmetry hypothesis reads f(x,v) =

f(x,viv 2) . By the isotropy of the collision operator Q, there exists a reduced operator Q,

acting on functions f, such that Q(ff) = Q(f,f). In this paper, we give an explicit expression of
Q, which seems to be new. The details of the derivation of Q are given in [121. Since Q
involves integrations over a lower dimensional manifold than Q does, this expression can be
helpful in numerical computations.

Second, we investigate the weighted particle method for solving the Boltzmann equation.
This method has been proposed and analyzed by P. A. Raviart and S. Mas-Gallic [3,4,5], in
the case of diffusion equations and linearized Boltzmann equations. This paper deals with its
first application to the non-linear Boltzmann equation. Although this method can be used in
any geometrical situation, we will restrict the presentation to the axisymmetric geometry, and

to the reduced operator Q. No error analysis is yet available in the non-linear case. In this
paper, we present some numerical results for test problems.

2. THE BOLTZMANN OPERATOR IN AXISYMMETRIC GEOMETRY

Let f(x,v,t), xe p 3 , ye IR3, t >0 , be the distribution function, solution of the Boltzmann

equation:

a + V.V X f  Q (ff) (2)

at

Q(f,)(vo) = ff s2 (f'fo-ffo) B(v-vo,cosxI do)dv (3)

where
fo = f(x,vo,t) ; f = f(x,v,t) ; f'o = f(x,v'o,t) ; f = f(x,v',t)
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v - vo-W(WO,Vo-V) ; v v+wo{W,vo-v) (4)

= V - V0 v' - v,

We denote by S2 the unit sphere of P 3, and o e S2 . B is a smooth function which is
characteristic of the interaction potential.

From now on, we will concentrate on the collision operator, and will omit the x-
dependence of the distribution functions. We suppose that f is invariant under the rotations of
v about a given axis el, and introduce the reduced velocity coordinates according to formula
(1). By the choice of a referential in the orthogonal plane to el, we can introduce the cylindrical
coordinates of a vector v by:

v V I = v, v2cosO,v 2 sinO) ; Oe [0,2X]

We let

df(V) = 2nv 2 dvldv2 ; etvi - (v 2 +v 2 ).

For an axisymmetric function f, ftv) = f( V{O)) is independent of 0 in [0,2x], and therefore,
we may introduce f ( V) such that:

f(V) = f(V(0)) ; V 0r [0,2n]• (5)

LEMMA 1: Let f be a continuous function from P 3 into R, symmetric about e 1 . Let f be

associated with f according to (5). Then, we have:

Qff,f)jvo) = Qifflvo)
with

- J(Vo, V;, V) !(V ) i(Vo)]df{V ) dQ(V } (6)
and

j ( V6,Vo ,V) = (27[) 2 ft 2( Vo-V~((j6J V (0 ~ i(~
10,2x]

8[.(v(0 )+V6(0O)-VO)+Oo-e- ]dO d 0o (7)

where 8 stands for Dirac's measure, E = E(v) , E' E(v') , and so on, and H is related to B
according to:

B( lv-vol, cosx) = H(Ivo-%,,,v,-v J)Ivo-v6 (8)

with ovv I s

PROOF: The details of the computation are performed in [121, and are omitted in this paper.
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The outline is given below. The following expression of Q:

Q~f,fIvo )= JJJH(I vo-v4,l v -vol) (f4 f'-fof)

8(e'+E4-e -Co) 8(v.+v'-v -vo) dv dvdv'

is equivalent to (3) provided that H and B are related by (8). Indeed, the explicit integration of
the Dirac measures leads to the conservation of momentum and energy, which is equivalent to
(4). Such an expression is widely used in semiconductor physics [10]. Now by interchanging
v' and v, we are led to:

Q(f,f)(vO) = (9)

fJJ H( vo-vb'II v -vbl) f'f 8(c +F'0-e'-E°) 5(v +vb-v'-vo) dv dv'

- JJJ H(I vO--vI,I v -vol1) fof 8(e'+e -e -eo) 8(v'+V -v -vo) dv dv~dv.

We only consider the first term G(ff) of the right hand side of (9). The treatment of the other
term is analogous. First, the integration over v is achieved, which cancels the Dirac measure
over momentum, and leads to:

G (f,f I(vo I = f I H(I VO.v , v -Vj I) f f a (C( v +Vb- vo) +CO - ei- E) dv dvb.

Now, since f is axisymmetric, we use cylindrical coordinates to perform the v and v'0
integrations. By a formal use of Fubini's theorem for Dirac measures, we get:

G(f,f)ivo) = ff !(V'o)j(V, )(2,1 f Ho.2 n o-1 ( 0; V (o0 - (o)

s[e(V e )+1e)~)c-~e dO de V) dK4Vb
which formally leads to (6), (7). These formal computations are proved in [121.

We can get a more explicit expression of J by introducing additional hypotheses and
notations. We suppose that H only depends on I v0 - v0 I, and we let:

Mo= v v °) ; V =(vl,v2); V;= (Viol V2

We suppose that v2 v2 * 0. We define:
2 0 .0 0 0 1

"

b = ((v,)2 - -(vi-vi)(vt -Vl))(vo)4

0
2  

02 i1 2 V 0 -

c = [v +(viV?)( v,-o)) (v2V . A ( (vv o)

A = 19-c.
If A >0, we also introduce:

88



, = -b-'V ;y, = -b+4A

al=Max(-1,y1 ) ; a2=Min(l,y 2 )
and for u in [-1,1]:

P (u) = ( l-u 2 ) (y 2 -u) (u-y 1 )

(u) = H(() + vO O + (vil2 v~vOuI)

LEMMA 2: (i) If A<0 or IbI > -+ 1, then J(Vb, V0 ,v) = 0.
(ii) if A >0 or INl 5 A" + I , then:

(V V ) 1 h(u)
J '' 2 0 0 - u (10)

X V'2V2 'a
0

REMARK 1: (i) The above expressions are only valid for v0 V2 * 0. A complete expression of
J for all the possible situations is given in [12].

(ii) The proof of Lemma 2 relies on the explicit integration of (7) with respect to 0 and
can be found in [12].

(iii) The integral (10) is undefined when the fourth degree polynomial P(u) has a
multiple root in [al,a2] , which occurs in the following cases:

71 = Y2 or Y1 = -1 or 71 = 1 or ^12 =-1 or 72=1
In these cases, the function J is singular. These singularities are reminiscent of the singularity

of the Dirac measure 8 e' + - e - o) which expresses the energy conservation. A

numerical treatment of the integral (10) requires a smoothing of the singularities which
introduces a discrepancy in the conservation of energy. This feature will be discussed in the
next sections.

(iv) If the expression of H is sufficiently simple, which is the case for most
intermolecular potentials, the integral J can be sampled and stored in the computer memory
with respect to the three parameters (y1 ,T2, 8), where 8 , is given by:

8 [- 2 + (V - v 0)2 + -12 .(2vov O)1

EXAMPLE : For the Coulomb interaction between electrons in a semiconductor, under

Thomas Fermi screening, the interparticle potential is given by V (r) C exp (-Ir) / r where jI
is the reciprocal Debye length. Then H and J are written [13):

H j vo-vI= CU 12+ P2) (11)

f a2  
d

S( V, = cVJ dV (12)
2(V 0 ,o3  (S-2u)2 p ' -'it v2 2j u

where S is defined by
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S + 2+ (v 2 + 2(v 0 I ')

PROPOSITION 1 For any regular f, we have:

(i) Conservation of mass: f Q(f,f)rvd dQFld = 0

(ii) Conservation of momentum: f Qi(ff)Vo v 0 dQ{Vo} = 0

(iii) Conservation of energy: fJQ(U)V 8(vo) erd fl(v) 0

(iv) For any triple of scalars (p,u,T) e J + x , x JR , we denote by Mp.u.T (V), the

Maxwellian:

Mp,u,T V 3/2 e- e( fu / 2T

where u = (u,0) . Then, we have: Q( Mpu,T, MP.u,T) = 0.

PROOF: These properties are inherited from the usual properties of the three dimensional
Boltzmann operators [14].

3. THE DETERMINISTIC PARTICLE METHOD

From now on, we will always deal with the reduced distribution f given by (5), and since
no confusion will be possible, we drop the bars. We consider the following space
homogeneous, axisymmetric Boltzmann equation:

af afa + E-1- =Q(ff }  (13)

where Q ( f,f ) is the reduced operator (6), and E is a constant scalar. The E af/av I term
describes the effect of the electric field on a population of charged particles (e.g. charge
carriers in a plasma or a semi-conductor).

The deterministic particle method [3,4,5] relies on the approximation of f by a sum of
weighted Dirac measures:

f (V1, V2, t0- c0 i fi(t) 8jVl-Vl,i(4) } 81V2"V2,i0

where Vi(t) = (VI.i(t), v2i) is the position of the i-th particle in the velocity space, coi its
constant control volume, and fi(t) its variable weight. The convective part of equation (13)
gives rise to the evolution of the position of the particles:

dvij(t) - E . (14)
dt

The collision term is accounted for by the variation of the weights:
dfi (d)

dT Qi (15)

where Qi is an approximation of Q(f,f)j,,(d, v2.i). So far, any type of approximation of !I
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Qi can be used. Our method considers the particles as quadrature points for a numerical
quadrature of the double integral involved in (6). This gives:

Qi(O = ,[ JaIVjlt(, Vi t, Vkl(0)fitdfjt - Ja(Vi (0, , Vk (0)fkt)fi(] Wj Wk. (16)

Jt is a smoothed approximation of J, which is needed because of the singularities of J (see
remark I (iii)).

REMARK 2: (i) Equation (14) for the evolution of the particles is particularly simple due to the
space homogeneity hypothesis. The extension of the method to space inhomogeneous
problems does not lead to major difficulties [4]. Indeed, the main question remains the
discretization of the Boltzmann operator, and equation (13) retains all the complexity of the
problem.

(ii) Neither error estimates nor convergence proofs are available for this method.
However, this method has been proved to be convergent for linearized Boltzmann operators
[4]; most of the numerical tests are performed with linear operators [5,15], or weakly non-
linear ones [ 16].

We now detail some points of the implementation of this method. We have
investigated the screened Coulomb interaction, given by (11), (12). The computation of the
integral (12) at each time step, for each triple of particles (i,j,k) would lead to a tremendous

computer cost. Since J depends on (VO, V6 V) through only three scalar parameters

(yl,/'2,S), we perform the sampling of J on a grid. The sampled values are computed by a

numerical quadrature of the integral (12). The smoothed approximation Jet is obtained by a
truncation of J near its singularities (see remark 1, (iii) ), which is performed during the
sampling procedure. The asymptotic behaviour of J for large values of y1, Y2, and S is used
to compute J outside the range of the sampling parameters, when needed in formula (16).
Since J only depends on the intermolecular potential, the same sampling can be used for all the
problems involving the same intermolecular potential. The algorithmic complexity of formula
(16) is N3 (N being the number of particles), which is very large, even for a moderate number
of particles. To reduce the CPU time, formula (16) is computed using only a few number of
"effective particles". The effective particles belong to a ball in the velocity space, centered at
the maximum of f, and of specified radius, chosen large enough to retain more than 98 % of
the total mass of the distribution function, but small enough to lead to a reasonable computer
cost.

With this methodology, the sampling procedure (over 300,000 sample points) needs 10
mn of CPU time on CRAY-2, and the simulation itself over 50 time steps needs the same
amount of time (with 1000 particles and 200 effective particles).

4. NUMERICAL RESULTS

Examle 1: We consider equation (13) with a centered Maxwellian Mp,O,T( V) as initial

data. Since the Maxwellians are in the kernel of the collision operator Q (proposition I (iv)),

the exact solution is a translated Maxwellian Mp,Et.T( V). This test is intended to check whether
the discrete collision operator acting on Maxwellians is vanishing, or at least small. The
equations for the mean velocity u and the mean energy E follow from the consevations

9
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properties (proposition 1 (ii) and (iii)):
dv E -= E v (17)
dt 'dt

and are also analytically solvable. The simulation has been performed in a context of semi-
conductor physics, with p = 1022 electrons per m3 and T = 77 Kelvin. In this context, the
strength of the Boltzmann operator is measured in terms of the electron-electron relaxation time
Tee, which is estimated to 0.2 10-12 seconds. The simulation has been performed over a time
equal to 5 10-12 seconds, corresponding to 50 time steps.

The error on the mean velocity u has been observed to be smaller than 1 %. Figure 1-a
reproduces the time evolution of the mean energy. At the end of the simulation, a small
discrepancy of about 3 % is visible. On the average, the mean velocity and the mean energy are
quite accurately described. Figure 1-b shows snapshots of the v, dependence of the
distribution function, at the beginning of the simulation and at time t = 2 ps. Although the peak
has correctly moved towards the positive velocities, its magnitude has considerably decreased
and its width has increased. This behaviour certainly comes from the non-conservativity of the
energy by the discrete collision operator Qi. This discrepancy is due to the smoothing of the
singularities of J and to the approximation of the collision integral by a quadrature. These
effects are particularly apparent in this test problem. Indeed, since the continuous collision
operator vanishes while the discrete one does not, the numerical errors are not balanced by
anything else, and the relative errors on the collision operator are infinite. Therefore this test
problem can be considered as very severe.

Exanle 2: We now initialize equation (13) with a non equilibrium distribution function:
the "half Maxwellian":

_ { MpO,T V) ifV,2 0
koV 0 ifvl.<O

The exact solution is not analytically known, but its qualitative behaviour is clear. As the time
proceeds the solution must approach a Maxwellian with the same density and temperature,
moving in the velocity speed at the speed E, just as in case 1. The "initial layer" during which
the solution relaxes to a Maxwellian shape is or the order of a few Tee. Furthermore the

evolutions of the mean velocity u and energy e are still governed by equations (17), and are
analytically known. As shown on figure 2-a, the relative error on e is of the same order as in
example 1. Figure 2-b again displays snapshots of the distribution function along the v, axis at
time t = 0,0.2 and 2 picoseconds. It shows that the relaxation towards a Maxwellian shape (t
= 0.2 ps) correctly happens, and that the degradation of the shape of the distribution function
occurs afterwards. This confirms the conlusions of example 1, that the approximation of the
collision operator is better when applied to distributions which do not cancel the continous
operator.

Examl.3: We now investigate a real problem of semi-conductor physics. We consider
equation (13), where Q(ff) is now the sum of the Boltzmann collision operator (denoted by
Qee, representing electron-electron collisions) and of a linear operator (denoted by Q,
representing the collisions of electrons against optical phonons):

Q (ff) = Q (f,f) + Q1 (f)
The operator Q1 is written:
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Q(f)(V)= J [s(V,V)f(V1) - s(V,V)f(V)I dQ(W')

s (V,V') = 3(VV) I (No+l ) 8(e -e + 0) + No 8 (e, -E OO)]

where No and iio0 are positive constants and 0 is a smooth function. The reader will find more
details about these models in [13,15] . The phonon interaction exhibits a threshold
phenomenon at the energy lico0: indeed, Q1 f ) ( V) is almost vanishing for energies e(V1V

Wto0. If the equation is initialized with a centered Maxwellian, the solution stabilizes at a
stationary solution after some transient behaviour. The stationary solution results from the
balance between the electric field and the collision operator Q, (which has a dissipative effect).
The threshold behaviour of the phonon interaction induces a very particular shape of the
transient solution: the mean velocity and the mean energy first reach larger values than those of
the stationary state before decaying towards these values. This "overshoot" behaviour is due to
the fraction of the electrons which are accelerated by the electric field up to the energy liwo and
suddenly undergo a phonon interaction which makes them lose all their energy. It is expected
that including the electron-electron interaction should decrease the magnitude of the overshoot.
Indeed, this interaction makes the distribution function more isotropic, and therefore
diminishes the number of the electrons reaching the energy Ro0. Figure 3-a and 3-b display
the mean velocity and the mean energy versus time for the phonon interaction alone and for the
phonon and the electron-electron interaction together. We actually observe the expected
influence of the electron-electron interaction on the magnitude of the overshoot.

Conclusion of the numerical tests: The proposed discretization of the Boltzmann equation
leads to a quite accurate description of the moments of the distribution function (mean velocity
and mean energy). This is important since these are the quantities of interest for engineers.
Moreover, it seems to (at least qualitatively) predict the correct behaviour in the physical case
that has been tested. However, improvements should be made to reduce the discrepancy in the
conservation of the energy by a better description of the singularities of J. More significant test
problems should also be investigated.

5. CONCLUSION

We have presented a new formula for the Boltzmann operator in axisymmetric geometry,
and its application to numerical simulations in connection with deterministic particle methods.
This method is one of the very few direct methods (i.e. non Monte-Carlo) to be investigated
for the solution of the Boltzmann equations. We have developped some computational aspects
of the method and presented numerical results on test problems. Its relatively low cost (about
10 minutes CPU on CRAY-2 for one simulation) makes the method attractive, even though it
displays some unpleasant features. Many improvements may be investigated, and this method
may appear, in the near future, as an interesting alternative to Monte-Carlo methods.
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Figure 1: Equation (13) with a Maxwellian initial data
I-a: mean energy versus time for the exact solution (solid fine) and for the computed solution (dashed line).
The relative error reaches 3% at the end of the simulation.
1-b Distribution function versus v, at time t = 0 (dashed line) and t = 2 ps (solid line). The computed
solution exhibits a non physical diffusion.
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Figure 2: Equation (13) initialized with a half Maxwellian:
2-a: mean energy versus time for the exact solution (solid line) and for the computed solution (dashed line).
Same observation as for figure 1-a.
2-b Distribution function versus v, at time t = 0 (solid line), t = 0.2 ps (dashed line), and t = 2 ps (solid

line).Btween 0 and 0.2 ps, the correct relaxation of the distribution function towards a Maxwellian shape is

observed. Between 0.2 and 2 ps, a non physical diffusion occurs.
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Figure 3: Equation (13) where Q(fU) is the sum of an electimn-electron collision term and of an electrn-phonon

collision term:
3-a mean velocity versus time for an electron-phonon collision term alone (solid line), and for the sum of an

electron-electron and an electn-phonon collision term (dashed line).

3-b mean energy versus time; iden./

We observe a smoothing of the overshoot by the elctro-elecron colison erm, in accordance to the

/ lox

qualitative predition (see text).
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ABSTRACT

We propose two formulations of the boundary conditions for nonlinear

hyperbolic systems of conservation laws. A first approach is based on the

vanishing viscosity method and a second one is related to the Riemann

problem. The equivalence between these two conditions is studied. The

latter formulation is extended to treat numerically physically relevant

boundary conditions. Monodimensional experiments are presented.

INTRODUCTION

We study initial-boundary value problems for nonlinear hyperbolic

systems of conservation laws. Recall that with strong Dirichlet boundary

conditions the associated problem is not well posed. Generally there is

neither existence nor uniqueness. Thus weaker conditions are necessary ; in

the linear case by example we know that data are given only on incoming

characteristics.

In this paper we define the boundary condition in terms of admissible

values at the boundary, related to the boundary datum. In our first

formulation the set of admissible values is defined thanks to a boundary

entropy inequality obtained by the vanishing viscosity method and the

second set is related to the resolution of a Rliemann problem at the
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boundary. The equivalence of these two formulations is established for

nonconvex scalar conservation laws and strictly hyperbolic linear systems.

The second formulation is naturally applied to Godunov-type numerical

schemes : the numerical boundary condition reduces to the computation of a

boundary flux thanks to some Riemann problem (or partial Riemann problem in

physically relevant situations). As an application, outgoing waves fvom the

Sod shock tube are presented.

BOUNDARY ENTROPY INEQUALITY (FIRST FORMULATION)

We consider a nonlinear hyperbolic system of conservation laws in one

space dimension

au a
- + - f(u) - 0 ; u(x,t) E Rn  , x > 0 , t > 0 (1)
at ax

where f : R - R is a smooth flux-function. We suppose that there exists at

least a pair (q,q) of en-ropy-flux in the sense of Lax [9]. The initial

boundary value problem obtained by the viscosity method (e>O)

I2
au a E 8 u
- +- f(u) -C x x> 0 t > 0
at ax jx

2

u (x,O) - v0 (x) x > 0 (2)

u (Ot) - u0 (t) t > 0

C c

admits a unique solution u and we study the behaviour of u at the

boundary as e tends to zero. In fact a discontinuity appears, in general,

at the boundary. The following result (essentially formal) yields an

inequality at this discontinuity.

Theorem 1. Suppose that u is bounded in Wtoc(RxR*,R") and converges

in L' to u as e-0. Then for each admissible pair (q,q) of entropy-flux we
I.o

have the following boundary entropy inequality

q(u(O*,t)) - q(u,(t)) - d.((u(t)).(f(u(O+,t))-f(u0 (t))) : 0 , t > 0 (3)
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between the taken value u(O*,t) and the prescribed value Uo(t) at the

boundary.

This result was first derived in [2] in the particular case of scalar

conservation laws. The details concerning the derivation of the boundary

entropy inequality (3) in the case of systems of conservation laws are

presented in [6]. Remark that the latter inequality was independently

obtained by other methods [1,12].

Given a state u0 we define a (first) set of admissible values at the

boundary :

E(u0 ) - J v e R", q(v)-q(uO)-dn(u0).(f(v)-f(u0 )) : 0

V (q,q) pair of entropy-flux

Therefore let us extend the notion of Dirichlet boundary condition and

define our (first) formulation of the boundary condition

u(0+,t) e E(u0 (t)) , t > 0 , (4)

The set E(u,(t)) can be entirely explicited for both strictly hyperbolic

linear systems and non-convex scalar conservation laws (see [6) for the

proofs).

Proposition I. Strictly hyperbolic linear systems.

Suppose that f(u) - A.u, with a constant matrix A characterized by n

eigenvalues A, (and n associated eigenvectors r,) satisfying

AI < A2 < ... < Ap 0 < Ap+1 < ... < An . (5)

Then the set E(u0 ) is the affine space containing u0 and generated by the p

first eigenvectors of A

p
Z(u0d - + V a_ 0 r1 , P , .. ~ e R

The interpretation of the boundary condition (4) here is the following

the components of u(O*,t) on the (n-p) last eigenvectors (i.e. the incoming

characteristics) are given by the boundary state uo(t). With the present

approach we recover the classical one in this particular case.
4i,
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Proposition 2. Scalar conservation laws.

Suppose that the flux f(u) is a C1 function from R to R. Then the set E(uo)

of the admissible states u is entirely characterized by the family of

inequalities :

f(u) - f(k)u k 0 V k V [u,u0 ] u [uo ,u]. (6)

This proposition was previously established in [101, and a geometrical

interpretation is presented in [6]. In the particular case of convex scalar

conservation laws the latter is simpler. Let us specify it for the Burgers

equation.

Propositon 3. Burgers equation.

When u E R and f(u) - u2/2 , the set E(u0 ) is given by

(i) if uo 2 0 , E(u) - ]-.,-u] Uo

(ii) if uo S 0 , E(u) - ]--,o]

In the general case of an hyperbolic system of conservation laws, the lack

of mathematical entropies does not allow a complete description of this

boundary set E(u0 ).

APPROACH BY THE RIEMAUNN PROBLEM (SECOND FORMULATION)

For our second formulation of the boundary condition [5,61 we suppose

that each Riemann problem R(uL,uR) associated with (1) admits a unique

entropy solution denoted by w(x/t;uL,uR). Let us define a second set of

admissible values by :

V(uO ) - w(O ;u0 ,uf), u3 varying in Rn

Then we have the following result which generalizes (9]

9
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Theorem 2 Let v0 , uo be constant states of 
. The problem

au 8- + - f(u) -0 x > , t> 0
at ax

u(xO) -v 0  x > 0 (7)

u(Ot) 6 V(u0 ) t > 0

is well posed in the class of functions which consist of constant states

separated by at most n elementary waves (rarefactions, shocks, contacts).

Proposition 4. Link between the two formulations.

In particular cases of strictly hyperbolic linear systems and (non

necessarily convex) scalar conservation laws, the two sets are identical:

E(ue) - V(u o ) V U0 r=R.

The advantage of the second formulation is that V(uO) can be easily

computed. For the p-system, V(u0 ) is exactly the 1-wave containing u0 . And,

in [5,6] we have given details on the V-sets in the case of barotropic

Euler-Saint Venant equations. For more precise relations concerning the E

and V sets in the particular case of 2x2 systems of conservation laws, we

refer to [3,6]. Refer also to [11] about a formulation of boundary

conditions for weighted conservation laws.

APPLICATION TO THE EULER EQUATIONS OF GAS DYNAMICS

We apply now the ideas developed previously to Godunov-type finite

volume numerical schemes [8]. We restrict ourselves to the first order

accurate methods. The interval [0,1] is divided into N cells and the

numerical approximation of the conservation law (1) at time tn-nAt in the

j' cell is given by

1 n+l n 1 n n
Uj uj - ( fj+1/2 fj-1/2 ) - 0 (8)
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For the internal cells we have classically

n n nfj*112 I ( u u|1 ) ' J -1, . . . - (9)

n n
for some numerical flux function $ that approaches the flux f(w(O;u ,uj1,))n n
of the Riemann problem R(uj,uj+.) when x/t-O. We suppose that a boundary

state uL (reasp uR) is given for x : 0 (resp x 2 1) and we consider it

intuitively as a limiting state for x tending towards -- (reap +W). Thus

the numerical boundary condition at time tn results from the interaction of
n n

uL (resp uR) with the value u, (reasp u.) of the field in the first (resp

last) cell:

n n n n
f / 2 u L ; +. / 2 -u I , R ) . (10 )

This kind of numerical boundary condition in terms of a numerical flux

is natural with the approach of finite volumes. This fact was first

recognized by Godunov (e.g. (7]).

The numerical scheme (8)(9)(10) has been applyed to the Sod shock tube

[15] for the Euler equations of gas dynamics, i.e. with left and right

states UL - (pL,vL,pL) - (1,0,1) , uR - (p,,vo ,p,) - (0.125,0,0.1) , and

N-100 cells. We used the Osher upwind scheme (131 and have performed the

numerical computation for a time sufficiently long so that the different

waves have been gone outside the computational domain [0,1] (see Figure 1).

Some results are plotted on Figure 2. The boundary condition (10) appears

numerically as transparent for all these nonlinear waves and the physical

fields at x - 0 and x - 1 are correct (the difference with the exact

solution is first due to the high level of numerical viscosity contained in

the first order scheme). More details on this problem with the use of the

exact linearized implicit Osher scheme are developed in (4].

We focus now on more realistic boundary conditions for the Euler

equations. For most of the internal aerodynamics problems a state u,(t) is

not physically given at the boundary. As usual, we distinguish between four

cases : the fluid may be sub or super-sonic at the in or out-flow and

physical parameters can be associated with each case (16] : (i) supersonic

inflow a state u0 , (Li) subsonic inflow : total enthalpy H and physical

entropy S , (iLL) subsonic outflow : static pressure P , (iv) supersonic
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outflow no numerical datum. We review briefly the main ideas of [4]. For

each of the four above cases a manifold (eventually with boundary) N is

defined by the boundary data; we have respectively

i) N < (p 0 ,v 0 ,p0 ) I

() - (p,v,p) / f- H , p - S p

(iii) N - (p,v,p) / p - P F

(iv) N { (PvP) / v " c 2 0 , c2  P }"

Then the formula (10) relative to the computation of the boundary flux is

adapted as follows (we consider only the case x - 0). A partial Riemann

problem P(N,z) is posed naturally by the boundary condition between the

manifold N and the state z located in the (first) cell of the computational

domain. We solve this problem in the same manner as Lax did [9] for the

classical Riemann problem. A family of codimM (equal respectively to

3,2,1,1 in the previous cases) nonlinear waves issued from z intersects N

at a state I. Interpreting those waves in the (x,t) plane, the solution of

P(M,z) joins the state I (of N) to the state z thanks to a fan of codimM

waves (Figure 3). Then the boundary flux f /2 is given by

f1/ 2 - f(W) (11)

where W is the state of this fan located at x/t-O. In [4] we have used the

Riemann solver of Osher that contains only (eventually multivalued)

rarefactions. Thus we have taken into account the (eventual) multiplicity

of the states W. Furthermore in the particular case (iii) (given pressure

P) and for a sufficiently weak nonlinearity (i.e. p(z) not too far from P)

we recover previous results obtained by Osher-Chakravarthy [14]. We have

also tested in [4] all thoses boundary conditions (i)-(iv) for one

dimensional nozzles using both the explicit and linearized implicit

versions of the scheme.
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SUMMARY

For the solution of the steady incompressible Navier-Stokes equation, an explicit Runge-
Kutta, finite-volume solver has been created using the artificial compressibility method.
The standard k - e turbulence model has also been included. A stability analysis was
performed for the condition of the local time step for the Runge-Kutta scheme. Numer-
ical results are presented for laminar and turbulent flow over two different backward
facing steps.

INTRODUCTION

Recently Miller and Rizzi developed a Navier Stokes solver based on an explicit Runge-
Kutta finite volume method to simulate laminar compressible flows over wings [1]. In
this paper we are concerned with incompressible flow. If we were to simply apply the
compressible code to this problem we would find that it would not converge well at all
because with decreasing Mach number sound waves travel at a speed much larger than
the speed of convection and they dominate the system making it stiff. This increasing
disparity in wave speeds causes the governing system of equations to be poorly condi-
tioned, and the stability of the computation is greatly impaired. If, however, the interest
is only the steady flow, artificial compressibility is one way round the difficulty, because
this approach removes the sound waves from the system by prescribing a pseudotempo-
ral evolution for the pressure through the continuity equation which is hyperbolic and
which converges to the true steady state value.

Our purpose here is to describe a rather general numerical method that takes the
artificial compressibility approach for solving the steady incompressible Navier Stokes
equations for laminar flow and also for turbulent flow with a k - e turbulence model.
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We show how it leads to a hyperbolic/parabolic system, we carry out a numerical study
of its condition and set forth the CFL stability limit for the time integration.

Results are presented for internal laminar and turbulent flow over two backward
facing steps. The numerical simulations are compared to the available experimental
data.

MATHEMATICAL MODEL

Incompressible Navier-Stokes equations

Since the continuity equation for incompressible flow contains no time dependent term,
an artificial time dependent term is added to the continuity equation. This is done by
using the method proposed by Chorin [2]. The Navier-Stokes equations governing an
incompressible flow, using the above method for the continuity equation, can then be
stated in the following way: I - 0 1--+c - = 0()

poot 8xi
Ou, o8u L ap , a Ou" -+ 2 + p:0 (2)

at x! pO, oxj 0ix, x
where Po is the constant density, ui are the velocity components, p is the viscosity
coefficient and p the pressure. The viscosity coefficient 1 is supposed to be constant,
and c is an arbitrary parameter for optimal convergence. These equations have no
physical meaning until steady state is obtained.

Introducing the integral formulation of (1, 2) the incompressible Navier-Stokes equa-
tions can be written: j O--dV + fn H(").dS =0 (3)

where in two space dimensions:

4'== .. ' (2 '-gradgl'= , H(q-)= (CC~ l ~ 'Cp

\u +0Ir PO
I is the identity matrix and -is the stress tensor.

The k - e turbulence model

Assuming that all flow variables can be expanded in the form f = 7 + f' where 7 is a
mean value and f' is a fluctuation around the mean, the transport equations governing
an incompressible flow can be stated in the following way [3]:

au. + a 'u 1 ap + a af' Xi7Uj, (4)

&at X P axi PO ,axjaxj x

The turbulent Reynolds shear-stress Yu 'uj'/8x, is connected to the mean field by
means of the generalized Boussinesq's hypothesis:

=1_ T- u, 2k (5)
ax,' Pa a~x, ax.
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where AT = rPo is the eddy viscosity, 6bj the Kronecker delta and k = u-" the turbu-

lent kinetic energy. The bar denoting mean quantities will from now on be dropped.

Introducing a new variable e for the dissipation rate of the turbulent kinetic energy,
the standard k - e turbulence model, consisting of two additional transport equations
for k and e, may be stated :

Ok Oauk a ( VTOk ) Ou. 8u(

=+_ - CU (7)

where vT chi c,, aU., a., ci. and c2. are empirically determined constants. The first

terms on the right hand side in equations (6) and (7) are the diffusion terms, the second
terms are the production terms and the third terms are the dissipation terms.

The integral formulation of the incompressible Navier-Stokes equations with the k - e
turbulence model can be introduced in accordance with (3). One additional term occurs
though, a volume integral containing the production and the dissipation terms[3].

NUMERICAL METHOD

Spatial Discretization

The centered finite volume method is adopted here for solving the governing equations
(3), the same method used for the incompressible Navier-Stokes equations [41 and the
Euler equations [5]. The same method has been applied to the incompressible Navier-
Stokes equations with the k - e turbulence model. A short description of the method
will be given below.

Let the computational domain 0 be divided into a number of quadrilateral subdo-
mains f4lj which form a structured grid with m x n cells. The solution to the volume
integral in the governing equations is then approximated in the following way:

-dv d - vol (8)

where vol4j is the volume of cell (ij).

The surface integral in equation (3) is approximated by the sum over all cell lattices

in the quadrilateral of the averaged value of H at the lattice times the surface vector S:

/o H(,) • d.- ,H" (9)

where 9 is the outward pointing surface vector at cell lattice I and where A'L is the
averaging operator.

The flux tensor H is readily available in cell Qjj except for the gradients of the
velocity components. Following the definitions of the conservative variables as cell
averages, the gradients in cell Qjj are defined by:

fo. . grad~dV _ n',, OdS 1 (10)(9,'adO),,,, =oi = 0' (10)
n-, vo lij
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where 0 = u, v (or w if three dimensions).

The approximations (8), (9) and (10) finally lead to the semi-discretized formulation

This equation will be referred to as the interior scheme. A corresponding interior
scheme is obtained for the incompressible Navier-Stokes equations with the k - e turbu-
lence model, but we will restrict ourselves for the time being to talk about the laminar
equations.

Boundary Conditions

At a solid wal the no-slip condition for the velocity is used. The wall pressure is obtained
by assuming the boundary layer approximation to hold on the solid wall Op/ooDn. = 0.

It is physically meaningless to integrate the k - e equations up to the wall since the
standard high Reynolds number model is not valid in the vicinity of the wall. In order
to avoid modifications to the model, a fictitious boundary is generally located inside
the flow at a distance y, from the wall. Then universal laws are used to describe the
behaviour of the fluid at this boundary. This so-called wall-function approach can be
obtained by assuming the near-wall region to be in local energy equilibrium, so that
the velocity profile is logarithmic and the turbulent shear stress is constant. For a more
detailed description of the wall-function approach, see the article by Chieng et al. [61
and also [3].

Numerical Damping

Using the interior scheme (11) and the boundary conditions described in the previous
section, the physical flux over each cell has now been determined. The physical difference
operator F thus reads:

fi H 1  (12)

The central differences in (12) give rise to oscillations and that is why some numerical
damping have to be added to the scheme in order to damp the short wavelengths. The
damping must then be of higher order than (12). Thus, the total difference operator

P consists of the physical part Ph and the numerical part .. In interior cells the
numerical damping is defined by a fourth order difference operator, and the semi-discrete
approximation of the inu-;-nilressible Navier-Stokes equations can be written:

& = Fph(T,j) + A(&) , F~(j) = -r( 1
4 + ) (13)

where 6 ifj = f+jj - f_ j, equivalent for bjfj. r = e4 IMAG/At with e4 a constant
in the range 0.005 to 0.01, IMAG being the maximum CFL number used and At the
time step. Near boundaries P,, is defined by non-centered differences [7] [4] to ensure
the dissipative property of damping.
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Time Integration

The method to integrate ordinary differential equations like (12) is, in this paper an
explicit one step, four stage, first order accurate Runge-Kutta algorithm. It has earlier
been shown that this algorithm is superior to the standard three stage, second order
Runge Kutta scheme [4]. For a general system

'f= P(q) (14)

dt

this scheme is defined as

+ ±Af +1 (15)
15q = . + -AtF(?+1 ) (s

= q + 5 tF ( ,)

and allows a CFL limit of 3 and the stability region is shown in Fig. 1.

Stability Analysis

A scalar model equation is used to study the stability of the semi-discretized incom-
pressible Navier-Stokes equations (11)[4]:

8 q qq O q 2 q + 2q eq + 4q
= V1j + At0 O O 2  + + (16)

Equation (16) is derived from the differential form of the incompressible Navier-
Stokes equations written in curvilinear coordinates and q by linearizing the momentum
equation and from the differential form of the fourth order damping term [8]. The 1st
derivatives are due to the convective terms, the 2nd derivatives to the viscous terms
and the 4th derivatives to the numerical damping. They are discretized by second-
order central differences, which are equivalent to the finite volume approximation on an
equidistant Cartesian grid:

1 q 1 q 1 2Zq 8- i=iqi + O(A 2) pj6qj + O(Ar/l) (17)

S_ ,b2, + (A ) , = "-L(Aj6 ) qid + O(A7') (18)
8id. A2 &2* ij 417

092q _ 1A -jij 6jp j6 jqj4 + O(A 2, Ar72) . (19)

The fourth derivatives are discretized according to (13). The semi-discrete approxi-
mation of (16) is then obtained:

q A,+ _L2 p l , 2 V2-+- +,-,+ , -- (.)- -

V 3, " ,2 = 0 • (20)
EV A,10
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The stablilty region of the Runge-Kutta scheme applied to the test equation

dq7- = Aq (21)

is given by
[g(AAt)I _< 1 (22)

(Fig. 1) where g(z), z = AAt is the growth factor.

A Fourier analysis is used to investigate the stability of the scheme (20) by setting

q = q(t, ki, k2 )e 0 14+ %
") (23)

where kt = 2ir/A 1 and k2 = 21r/A 2 are the wave numbers, Al and A2 the wavelengths
and i = V/X] . The stability condition (22) is then satisfied if:

0 > Re(AAt) At[--!!- 2 3 (24)_ _ A eA +T 16- + 16-zo>RAL (4

and

fIm(AAt)l_< At[ -I + -11:5 _MAG (25)

where Re and Im denote the real and imaginary part of a complex number. REAL
and IMAG are choosen such that all complex numbers with REAL < Re(z) < 0 and
[Im(z)l < IMAG lie inside the stability region of scheme (14).

To be able to choose a stable time step for the present method, the coefficients in
the model equation must be related to the incompressible Navier-Stokes equations. The
coefficients IA1! and IA.1 are choosen equal to the maximum eigenvalues for the Jacobian
matrices for the Euler equations in t- and iT-directions [4]. By using the relation between
metric expressions in (- and 17- coordinates and the geometric quantities in the finite-
volume technique [9], the following relation is obtained:

-t +' = [U + (U2 + c2S2)I]/vo4,4  (26)

where S' = (ISIXI + ISJXI) 2 + (ISIYI + ISJYI)2 , C1 = 1i. 11 + Ii. SrJ. 9*1 and
SJ are the arithmetic average surface vectors in I and J direction. SI = (SIX, STY)
etc.

The coefficients v, v2 and v3 in (16) are derived by the viscous part of the linearized
momentum equation. Again using the relation between metric expressions and the
geometric quantities in the finite-volume technique leads to:

V1 V2. II , §g. jI P3e- §s j ()
=e v ' - 2v o4,7 ' = ,ol 

' - - 7

where v = u/Po. The coefficients el and e2 are choosen according to (13) :
S=-= -r . (28)

This leads to the following relation for the local time step in two dimensions:

At= min[IMAG- vol,,
CU+ (T2 + C22)1'

IREAL - 32f 4 IMAGI Vol 2.. (29)
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The condition for the local time step in three dimensions is derived analogously. Cor-
responding stability analysis can be made for the incompresible Navier-Stokes equations
with the k - e turbulence model in a similar manner[3].

RESULTS

Laminar flow

Results have been obtained for internal laminar flow, Re=50, 2:3 expansion, over a
backward facing step, the problem of a 1984 GAMM workshop[10]. A parabolic shape of
the velocity on the inflow boundary was given and the pressure is extrapolated upstream.
The derivative of the flow variables in the streamwise direction is supposed to be zero
at the outflow.

The point of reattachment can be seen in the streamline plot (Fig. 2) and the wall
shear stress plot (Fig. 3). It was calculated to 2.83 step heights. The experiments
state 3.0 for the point of reattachment, though most of the participants of the workshop
managed to predict the reattachment point between 2.7 and 2.9. The agreement between
numerical results and experimental data is quite satisfying in the wall shear stress plot.
The evolution of the maximum velocity (the maximum velocity along the y-axis in x-
direction, Fig. 4) also shows a good agreement between numerical and experimental
data.

Turbulent flow

Flow over a two-dimensional backward facing step was modeled using the k-e turbulence
model. The calculations simulated the experiments by Westphal et al. [11] in which
the Reynolds number Re based on the step height reaches 42.000, the expansion ratio
is 3:5.

In the inflow cross-section the one-seventh power-law profile is assmned for the non-
dimensional velocity u while k and e are given fully turbulent profiles[31. The v-velocity
is set to zero and the pressure is extrapolated upstream. At the outflow cross-section it
was assumed that the derivative of!the flow variable is zero in the streamwise direction.
In the wall region the standard wa unction approach was used.

Numerical predictions were obtained for a 121 x 41. Results are presented at dif-
ferent locations at constant x (streamwise coordinate), x = 4,8,12 and 20 step heights
downstream the step. The simulated profiles for the u-velocity and k are compared to
experimental data [111 in Fig. 5 and Fig. 6 at z = 4 and 20. The velocity profiles are in
good agicament close to the step but the discrepancies become more prominent as the
outflow section is approached. A similar behaviour can be seen for the k-variable. The
discrepancies also tend to become graeter near the upper wall and outflow where the
simulations fail to the predict the second peak. Except for this the locations for local
maxima and minima are well predicted.

The simulation lead to an underprediction of the reattachment length. In this case
the reattachment length was calculated to 6.5 step heights while the experimental reat-
tachment length was about 7.3. This underprediction has been -eported also by others
and in a paper by Autret et al. [12], the numerical estimate for the reattachment length
was 5.22 for the same problem.

Autret et al. used a very coarse grid (28x 44 nodes for a finite element solution) which
might explain their bad estimate for the reattachment length. The mesh resolution is
obviously important, thus a mesh of 121 x 41 was choosen which was the largest possible
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mesh in the y-direction in order to satisfy the boundary condition (11). However, (11)
can never be satisfied in the vicinity of the reattachment point and that is why the wal
function approach is bad in this area. In Fig. 7 two solutions for different mesh sizes are
shown, 121 x 41 and 101 x 25. The u-profiles are compared at x = 8,20. As indicated,
the agreement between numerical results and experiments is better for the finer mesh.
The reattachment length was calculated to 6.0 for the coarser mesh. On an even coarser
mesh, 61 x 21, no converged solution was obtained.

CONCLUSIONS

An explicit central finite-volume Runge-Kutta method for the incompressible Navier-
Stokes equation has been developed. The standard k - e turbulence model has also been
included. The code is simple and an extension to three dimensions is straight forward.
The numerical simulations have proven to be in good agreement with other numerical
results and with experimental data for laminar flow. For turbulent flow the ageement
between numerical data and experimental data is acceptable for a separated flow, but
the numerical solution seems to be mesh dependent.
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SUMMARY

The problem of finite velocity in wave motion modelled by not strictly hyperbolic
systems is discussed. The main idea is to establish associated systems by a certain
perturbation scheme permitting to determine eigenvalues which serve as a basis
for a moving frame. Such a procedure leads to the construction of evolution
equations describing single waves with a certain accuracy. The final wave velocity
is then determined from the evolution equation relative to the moving frame. This
scheme is used for several nonlinear, weakly dispersive and/or dissipative systems.
A model example of a solitary wave gives the explicit values of all the velocities
under consideration.

t. INTRODUCTION

Hyperbolic equations and waves have been cornerstones of physics for a long
time and they extend over most fields of contemporary physics. Waves are used
as carriers not merely of energy but also of information. Every disturbance in
the real physical world propagates with a finite velocity, which, generally speaking,
should be easily related to the governing equations. The real physical model.
however, is so complicated that 'waves are not necessarily governed by strictly
hyperbolic equations since various asymptotic methods have been used for deriving
the governing equations from conservation laws. Nevertheless, every mathematical
model should be traced back to Initial hyperbolic equations as complicated as
they could be and every wave motion should be related to finite velocities. The
main problem here is the following: how to determine these finite velocities If
the initial system governing certain wave motion Is not hyperbolic.
There are several characteristic features which should be taken into account.
Variation of wave velocities with wave numbers and also with amplitudes is
often of Importance since most real processes are dispersive and nonlinear. The
nonlinearity plays a crucial role In wave motion being responsible for discontinuities,
solitary waves. interaction, etc., including chaotic motion which is Intensively
studied in contemporary physics. The complications in an analysis are also related

115



to the possible existence of mny waves In a real process, which becomes even
more essential in nonlinear systems. Here considerable sucess has been obtained
by introducing the notion of evolution equations governing Just one single wave,
The celebrated Korteweg-de Vries, Schrdinger. Burgers. etc. equations have
been the milestones In the contemporary mtthematical physics. Very few evolution
equations are hyperbolic except some single cases but as a rule they have been
obtained in a moving frame, 1. e. a certain velocity is already taken into account.
The final velocity, however, may differ from this basic velocity and the question
about the finite velocity remains with Its utmost Importance. Here one cannot
also forget the dissipative systems with source terms which may govern certain
progressive waves with finite velocities.
The need for an explicit theory explaining from one hand the correspondence of
initial multi-wave systems to one-wave evolution equations and from the other
hand the relationship between elgenvalues, phase and/or group velocities, and
the final wave velocity (eigenvelocity) Is obvious. This report does not pretend
to present a full theory rather than to outline some examples which could be
used as model problems in a general theory.
In Section 2 the main mathematical models used In describing wave motion are
presented. Section 3 deals with a typical example of a perturbed system for which
the elgenvalues, phase, group. and wave velocities are all explicitly determined. This
example concerning the celebrated solitary wave serve as a model while the cases
analysed In Section 4 do not permit exact determination of wave velocity. In
Section 5 a system with a source is discussed. Finally, in Section 6 some
conclusions are presented Including the list of the possible stages in the analysis.

2. PR.ELIMINARY

In this Section several basic systems of equations and evolution equations used for
describing wave motion are presented.

Hyperbolic systems. The system

Ut+A U *CUrZO, (2.1 a)

A i A)(x 1,t,U ), C = C (x). t) xi - R. (2.1b)

where ig is an n-element vector, Is strictly hyperbolic in Rn if the elgenvalues ), i1
of A,, satisfying the determinant (A, - (l) I ) = 0 are all real and the
corresponding left eigenvectors 1() satisfying £(0) A = A I (I) , I= 1, 2 . n
are linearly independent [1, 2 ]. Here and further, the summation convention over
repeated indices is used and the subscripts denote the differentiation.

Perturbed hyperbolic systems. In this case a system may also contain the higher
derivatives modelling weak dispersive, dissipative e. a. effects [ 1. 3-5 J

Cgs M. I~ jtz~x 
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where E is a small parameter. Existence of such a parameter enables us to use

certain asymptotics In form of system (2.1) called an associated system [3]. The

eigenvalues of this system determine the velocities as well as the number of
waves used further for constructing higher asymptotics.

There is an interesting subcase of (2.2) which leads to wave hierarchies [1.4]. In

this case the operators in parenthesis describe also a wave motion. As an

example for n= 1. j 1, x 1 = x it may read

U t - C 1I U. S (ultt c 2: U..) 
= 0 ,(2.3)

2

where c, and c, are constants.

Dispersive systems. These systems are characterized by the form of the solution

u (x j , t) = a exp ( jix -lot). (2.4)

where k are the wave numbers and (a is the frequency. The system itself may be

of the form (2.2) or also of the form [4]

U [ (H. CKI ] = 0. (2.5)

Perturbed dispersive systems. In this case the elementary solutions (2.4) with
kJ - conat., -o = const. do not exist but the periodicity in E = kI xj - (ot holds
with k V const., (t f const. [4] and the dispersion relation depends upon the
amplitude. The system may be either of form (2.2) or of form (2.5) usually

having a small parameter which emphasizes weak nonlinearity and weak
dispersion.

Evolution equation. As mentioned in the Introduction, the evolution equations are
single-wave equations written In the most cases in the moving frame [1, 3. 5].
For a certain u i = u E U a typical evolution equation reads

[u, + F(u. u, u , u ... )]= G (u) . (2.6)

where t f t(clt - xj) is the phase variable (moving frame) and T = T(t)

(or T = T (xi)) is the variable characterizing propagation. The operator F(u, u ... )
does not contain the derivatives with respect to T. The velocity c1 used for the
moving frame may be: (I) the elgenvalue (characteristic speed [6]) from a
corresponding associated hyperbolic system [3, 5]; (W) phase velocity for
dispersive systems [ 4, S 1 ; (ill) group velocity for strongly dispersive systems [ 5].
If G (u) - 0 then under certain conditions at infinity (2.6) yields

u, + Nut, uU, u M . 0 (2.7)

which Is the most common form of evolutions equations [1. 3-S. 7]. The formal
procedures of derivation of evolution equations are given elsewhere [1, 3. S, 7].
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3. A PERTURBED DISPERSIVE SYSTEM - A MODEL EXAMPLE

The moving frame used for deriving evolution equations needs a finite velocity to
start with but the final wave velocity (signal velocity) may be different. Further a
specific example is considered which is solved explicitly in order to demonstrate
the possible differences in velocities.
Let us consider the one-dimensional (x, = x) wave motion in a nonlinear medium
with microstructure. The governing equation is usually written in terms of the
longitudinal displacement U,

c2 ( 1. X ) U1, X + C2 2 1.4 x- U,.,t- 0, (3.10

where c2 = (X+ 210 p-0 ; X, 11 are Lam6 parameters, po is the density, m and Io
are the nonlinear and scale parameters, respectively, the latter characterizing the
microstructure [3]. The deformation is small but finite and there are two small
parameters in this problem: (I) the maximum deformation and (1i) the scale
parameter. Using the matrix notation as in Section 2, (3.1) yields

U ,+ A L, + 0 BU3== 0 (3.2a)

u,.U , U1  o -c 2(1+mu+ 0 -c 2

= , A( I , B= .
U 1' u 2  1-1 0 0 0

It is easily seen that according to Section 2 system (3.2) belongs to perturbed
dispersive systems with weak nonlinearity. The corresponding linear associated
system

0 2
Ut+ Ao, k =0, A o- (3.3)-0 

0

gives the eigenvalues c o , 2) = -C 0 as characteristic speeds. According
to a well- established procedure [3, 5] the ray coordinates (moving frame)

t= Cot - x , T = S X (3.4)

are introduced. Then together with a series expansion the following evolution
equation describing the wave motion to the right is obtained

u I  n a ul I to a u t+m U at = 0 (3.5)

at r 2' 2 =0.

Here u1 actually denotes Uto 1 1. e. the first term in the respective expansion of
.(,see [3]). In the dimensionless form (3.5) yields

+ sign ImI v - = 0 (3.6 a)
a 0~

118 ? 18 1



Vi U, a. I aa T,(.b

and the small parameter a is related to the initial amplitude ao through the
relation

S = Iml aoCo t  (3.6c)0

Here -c denotes the characteristic wave length.
Assuming m > 0 without any loss of generality the model Korteweg-de Vries
(KdV) equation

- v .v + V jv = 0 (3.7)
00 r k tC3

is obtained. The KdV equation possesses the soliton-type solutions which are of
the form [8, 9]

v = a sech[ L, --T- ' )) (3.8)

I. e. this solution propagates relative to the moving frame with a velocity a

which according to Bhatnagar is called eigenvelocity [10 J and according to Drazin -
wave velocity [911. The phase and group velocities, determined from the corres-
ponding linearized system

- - 2 -

St+ AoUX+ LoBUix!= 0 (3.9)

are following

Cph co - icolok (3.10a)

cgr c - 1coI k (3.10b)

corresponding to the solution with a phase E = kx - (it. It is clear that this
result cannot be directly derived from the linearized form of the evolution
equation (3.5). Here the phase

E), = -k. t (3.11)

must be used resulting in

Cph=  L k./oe (3.12a)
3 2 -1

Cgr = _2 k 0 (3.12b)

It is easily verified that the expressions (3.10) and (3.12) are identical provided
(3.9) and (3.11) are taken into account [ll. Now It is clear that the real finite
velocity of a solitary wave in a nonlinear dispersive system (3.2) Is neither the
characteristic speed co = X( 1) nor the phase (group) velocity but completely
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different depending on the balance of nonlinear and dispersive effects. This is
certainly a limit case and the solution to (3.7) may also be obtained in the form
of cnoidal waves with another limit case being the usal sinusoidal wavetrain for
which (3.10) holds [12].

If the wave motion is perturbed in such a way that the evolution equation (3.7)
has also a r.h.s.. then the wave speed is influenced again. In order to demonstrate
this effect let us present (3.7) in its normalized form

VT - 6VVx+ VXX X = 0, (3.13a)

= I I
V - X v X = , T = 0 . (3.13 b)

Then the solution (3.8) takes the form

V = - 2x 2 sech 2 [x(X - 4x 2 T)], (3.14)

where x is the eigenvalue from the corresponding Schrddinger equation for the
potential [9. 10]. The wave velocity is equal to 4x 2 . If a source-like term is
included to (3.13) describing the energy influx [13, 14] then the governing equation
reads

VT - 6VV + Vx XX = IR(V). (3.15)

where q is a certain new small parameter and R(V) - a smooth function. According
to Lamb [14]. a soliton-type excitation is perturbed and the elgenvalue x to (3.15)
is governed by the equation

CD

XT - J dz R(V s ) sech2 z . (3.16)

where z is the phase function and V, - the initial soliton-type excitation. Suppose

R(V) = - bV 3 
, b = const. Then

X o( I+ 3 axoT) -  . ai-Tb. (3.17

It is obvious that in this case the eigenvalue x is decreashag in the course of T
growing and the corresponding wave speed is also decreasing.
Finally, let us remark that this is a model example - on the basis of the charac-
teristic speed c o = k( t ) the wave velocity is explicitly determined being dependent
on the amplitude. However, this result is correct only for a solitary wave, formed
as a result of balance between nonlinear and dispersive effects. With nonlinear
effects decreasing, the corresponding cnoidal waves are in effect with a limiting
case of a sinusoidal wavetrain. For this limit the usual notions of phase and
group velocities hold but k. (a. and k. (a. obtained from the initial system
and the evolution equation, respectively, should be clearly distinguished.

120

I



V r ____-

4. PERTURBED HYPERBOLIC SYSTEMS

4.1. Thermoelastic medium.
The classical theory of thermoelasticity is based on Fourier's law of heat conduc-
tion which leads to the paradox of infinite thermal wave velocities in the dynamic
theory of heat conducting continuous media [IS]. There has been a long discussion
about the proper form of governing equations for modified thermoelasticity in
order to remove this paradox [16]. This problem is not yet solved and in this paper
only the mathematical questions are discussed while the physical considerations
about the validity of one or another model need to be analysed separately.
The rate-type law of heat conduction in one-dimensional approximation (x, = x)
leads to the linear system (2.1a) with

UIt 0 -c2 xp o  0 0

U1X -1 0 0 0 0
= A = I I I CU . (4.1)O xT. 0 0 - 0

POCE 0 POCE0
k o

Q 0 0 -

where 9 is the dimensionless temperature, Q is the heat flux, c o = + 2?) P-o)
X = (3 X + 2 oT " PO 'To are the initial density and temperature, respectively, cE
is the specific heat. ko is the thermal conductivity and To is the relaxation time
of the heat flux [31.
The dimensionless relative to c o velocities - the eigenvalues of the matrix A are
determined by the formulae

).)= ±(M- N) (a).(4)= (M+ N) (4.2a)

I
M =f .2-[ 1 1 (6Odr

- 1 + el ,2 (42b)

N = -I (I d~r)-2 + e2 - 2(Wdr) -I + 2e + 2 e(Wd~r)
- I] (4.2c)

where the dimensionless parameters are determined by the expressions

e = x2 To[(. + 2)pocEi . (4.3 a)

L ,(4.3b)

Wd= LPOcEcok 1  (4.3c)

where L is a scale parameter. The parameter e is the standard coupling parameter.
the relaxation parameter Orwas introduced by Lord and Shulman [17], and the

diffusion parameter 6)d by Johnson [18]. The phase velocity cl for sinusoidal
waves is easily determined in terms of a dimensionless frequency X 6)(.ro1 where

(a. Is the characteristic frequency [IS]

G.= CO2 PO CE k (4.4)
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The phase velocity depends upon the retixation time t through a parameter
n =, T 0 , . The plot of c1 c-! over X is shown in Fig. 1 I[3 where the curve for
n.= 0 is found by Chadwick I5].

j+E,,

Re

0At

102 10-1 10 102 103

Figure I

The evolution equation for v i u1 a; 1 (see Section 3) using again the dimensionless
variables takes the form of the Burgers' equation [3)

v v)2I'V(.)d-+ sign Im+e- v 17v - MS)

where the nonlinearity is also taken into account. The parameter F is known as
the acoustic Reynolds number. As it is known, the Burgers' equation allows the
Taylor shock profile [19], the velocity of which depends upon the amplitude

V = (v l + V2 )  (4.6)

where vr, v, are the amplitudes before and after the shock, respectively.

Consequently, in the case of thermoelastic waves the eigenvalues (4.2 a) determine
the velocities which differ from the phase velocities (see Fig. 1). The moving
frame for the evolution equation (4.5) is given by C = C[( I + e)1/ 2 t - x] and the
possible shock wave velocity (4.6) is determined relative to this velocity. A
stable solitary wave as shown in Section 3 is not possible.

4.2. Relaxing medium.
According to the standard viscoelastic body [20] the governing equation belongs
to the type (2.3) [3)

C2 ( I m x)x-U l~t e2 olxt4

T o0[ C2 (I + mUt ) U - Ut.¢tt]t = 0, (4.7)

where E, To are material parameters. The linearized dispersion relation is
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(a c. k (1 I . J 1 +1 i J) 48

0 0

where c. is the equilibrium velocity determined by

c; a (X + 2v) P' (4.9)

1.00B
c4,c;1

1.004

1.000 n.= 0

ne= 0.1

0.996 n*=.5

0.992
o.1 , 10.0

Figure 2

The real part of the expression (4.8) versus w O s plotted in Fig. 2 and it is
easily seen that for high-frequency processes the equilibrium velocity c. does
not correspond to the real velocity. in this case the instantaneous velocity c,
must be introduced

c i IM )( + 20) (4.2 .0 )

The evolution equations may be constructed on the basis of both velocities (3]
with suitable approximations for low- and high-frequency processes. However,
there is no distinct estimation for a real velocity c between the equilibrium
(minimum) and instantaneous (maximum) velocities.
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5. THE SYSTEM WITH SOURCE TERMS

There has been a considerable Interest to dissipative systems with source terms
which also may lead to wave-type solutions [21, 22). Here the governing system
is of diffusion type and the progressive wave corresponds to a certain closed
orbit in the phase space. Since the finite velocity is not known beforehand and a
wave at the absence of a source is also absent, all the methods known In wave
theory fail in analysis. The wave profile is usually determined from the corres-
ponding ODE [21, 22]. The problems of convergence may be serious (23] preventing
to calculate the wave profile over all the needed space.
Since the evolution equations have proved to be an excellent tool for describing
the wave motion in complicated media, then a natural question arises about the
possibility to model wave motion with source like terms by such systems which
permit the construction of evolution equations. In this case the problem of real
velocities may be solved by the most Lonvenlent approach presented in this
paper (see Section 3). If this is not possible in a straightforward way then the
problem is still simplified both in mathematical and physical senses.
Let us consider the nerve pulse propagation as an example. Instead of a usual
diffusion-type model [21. 22] we start from the corresponding perturbed hyper-
bolic model [24. 25]

Ut + Aiux +H (5.1a)

v 10 ml M 2-f 0 m , = [ (S.lb)
SA~ 0 H - I

where Ia is axon current per unit length. v is potential difference (voltage)
across membrane; I is ion current density, m, , I = 1, 2, 3, 4 are the constants.
The ion current is taken according to FitzHugh-Nagumo model [26]

I = K1 v + K3 v 3 + R. KI  0 . K3  0 . (5.2)

and the recovery variable R is governed by its own equation

Rt = qo (v + q1 ), q1 . qo - const. (S.3)

The telegraph equations (5.1) give the eigenvelocity > 1), (2)= + (m1m 3) =± C0
but every wave with I = 0 will be heavily damped. The source term I , 0 leads to
a progressive wave with the velocity which differs from c. . The evolution
equation, written in the moving frame c =ct - x, in terms of z = v + q,
takes the form

-.,-Z + 2

,x V ,(b o - b1z + bz) + b 3z = 0. (5.4)

where V. b o. b. b2. b3 are positive constants [27]. The full analysis of the
corresponding ODE

z'" + (b o - bz + b2 z2 )z' + b3 -1 z = 0. (S.S)
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where (.d.)'= . = x i + 9 Z is given elsewhere [27). The final velocity of a
constant profirlis given by the expression

c = 8c o ( 8- I)- , e •I , (5.6)

but the procedure for determining 9 is not known. Nevertheless, the convergence
of a solution is not a problem here while the numerical calculations are stable
for every 9 giving c - c. . In some sense, the problem is similar to that of a
relaxing medium (see Section 4.2).

DISCUSSION

The examples given above reflect several faces of the problem of wave velocities.
A possible way to deal with not strictly hyperbolic nonlinear systems some of
which are listed in Section 2. is the transformation to single-wave equations. I. e.
to evolution equations. Such an approach goes through the following steps:
(I) the analysis of the associated systems in order to establish the elgenvalues.

phase and/or group velocities;
(ii) the construction of nonlinear evolution equations using the velocities deter-

mined from the corresponding associated system for determining the moving
frame:

(iiithe analysis of evolution equations in order to establish the final wave
velocity. Here the corresponding ordinary differential equations may also be
needed for determination of stable trajectories in the phase space.

A model example of a solitary wave is presented in Section 3 where all the
velocities are explicitly determined. Other examples demonstrate in one way or
another the possible shortcomings of the theory which does not permit to
establish the exact velocities except the limit estimations. The evolution equations.
however, seem to be the best tools in handling of finite velocities especially for
typical nonlinear systems in contemporary mathematical physics.
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HYPERBOLIC SCHEMES FOR
MULTI-COMPONENT EULER EQUATIONS

G. Fernandez , B. Larrouturou
INRIA, Sophia Antipolis, 06560 Valbonne, FRANCE

INTRODUCTION

Our purpose is to build efficient conservative schemes for the computation of multi-
species (possibly reactive) flows. On this way we consider simplified models in which
the governing equations include Euler's hyperbolic terms for several species. Even in
the case where the different species have different molecular weights and specific heat
ratios, the model is shown to remain hyperbolic. We present several numerical results
obtained by extending to this multi-component Euler system the classical flux-splitting
scheme of Roe [5).

MULTI-COMPONENT EULER EQUATIONS

For the sake of simplicity, we consider in a first step the one-dimensional flow of a
mixture of only two species E, and E2, and we neglect any reactive or diffusive effect.
We therefore consider the following "multi-component Euler equations":

W+F. = 0,(1)

with:
W= ')W = F = 2+Pu (2

W u(+p (2)

W4 pY PUY

The notations for the density p, velocity u, pressure p and total energy per unit
volume E are classical; moreover, Y is the mass fraction of the first component E,
[that is, pY (resp: p(l - Y)) is the separate density of E1 (resp: E2)]. To close the
system (1), we need to express the pressure as a function of the dependent variables
Wi. We classically assume that the mixture is locally at thermal equilibrium, which
means that the temperature field is the same for both species, and that the species E,
and E2 behave as perfect gases. Using Mayer's relation we can write:

pi = pY-VT = (-- 1)pYC,,jT, i =1,2. I

In these relations, pi, Mi, -y and C,, are respectively the partial pressure, the molecular
weight, the specific heat ratio and the specific heat at constant volume of species E1 ;
moreover, R is the universal gas constant, and Y = Y, Y2 = 1 - Y. On the other
hand, the total specific energy E is given by:

E = E(pYC,jT + I pyt2)
i 2
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Using now Dalton's law p = p,p,, we obtain:

p = (y- 1)(E- Pu2), (3)

where -, the local specific heat ratio of the mixture, is given by:

YC,1- 1 + Y2C,,27 2  W4CY1 + (W -W4)C 272

YI C,,l + Y2C,,2  W 4C,,1 + (WI - W4 )C,,2  (4)

Thus - = y(W) is an homogeneous function of degree 0, and the flux vector F =

F(W) is homogeneous of degree 1, as in the single component case:

-y(rW) = -y(W) , F(rW) = rF(W) for r > 0. (5)

Setting F(W) = .F(W, -y(W)), we can write the Jacobian matrix as:

dF O .F d-yA(W) = dW = W- 8-y dW'

that is (only the terms appearing in bold are new compared to the single-component
case):

0 1 0 0

(--3)--+X (3--y)u 7-1 Z
A(W)=

-uH+(y-1) +uX H-(_-y1)u2  
YU uZ

-uY Y 0 u

where H= E + p is the enthalpy per unit mass, and where we have set:
P

X= p  ay Z = P a0Y
- 1 1W' Y-11W 4

The developed expression of Z will be useful in the sequel; we have:

Z = P C,,1C,,2(71 - 72) =C-lC,,2(-YI - -y2)T

Y - 1 [YC,, + (1 - Y)C,]2 YC, + (1 - Y)C,2

A remarkable result is that the matrices A and a have the same real eigenvalues.

The eigenvalues of A(W) are indeed the roots of the polynomial:

2 Pp(A)=(_u)2 [(Au) _- (X+1YZ)]9pt
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but the homogeneity (5) of 7 implies:

X+YZ= (m +) w W 0

and the eigenvalues of A are:

A 1Iu , 2 =U+c , \ 3 =U-C , 4 =u

where the sound speed c still has the classical expression:

C = F~

with the local value (4) of -y. The corresponding eigenvectors

IF,= -2 ' 92 = + u3 U H CC ' 1 0

are linearly independant, which shows that the system (1)-(4) is hyperbolic (although
non strictly hyperbolic since \, = A4).

There is no difficulty in checking that these results also hold in several space di-
mensions or if the number of species is greater than two.

NUMERICAL APPROACH

Following previous studies on the numerical simulation of perfect gas flow or reactive
gas flow, we use for the approximation of system (1) a finite-volume approach, which, in

multidimensional situations, may operate on an unstructured finite-element mesh (see

[2], [3]). Our goal is therefore to investigate how the classical flux-splitting hyperbolic
schemes perform when extended to the full system (1) with the species equation added.

To present the numerical method, we describe its explicit first-order accurate form,
which we write as:

At AX (
with:

wtn+1 = t(W7', W+ 1). (7)

All numerical results presented below have been obtained using the following numerical
flux function 4 based on Roe's average [5]:

*(WL, WI) = F(WL) + F(WR) + IOWL Wf) I A(W/,) I (WL -"WR), (8)

where iV = WV(WL, WR) is defined by the density , the velocity fi, the enthalpy H
and the mass fraction Y7 given by the relations:

PLv/Z + PR-/"f UL_/_ + U_'9
I U= - -(9)
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H HLvrp-L+ HRP YL/P (10),P

An interesting question now is to know whether the fundamental property of Roe's
scheme still holds for the mixture, that is if:

F(WL) - F(WR) = A(W)(WL - WR)• (11)

The answer is yes in the case where both species have the same specific heat ratio, that
is if 7y12 2= 7(W) for all W. In fact, checking the property (11) in this particular
case almost amounts to checking it in the single component case, since we then have
X = Z = 0; this is easily done using the following arithmetic rules, for any variable U:

AUV = EAV +VAU, PU = 9 17,

where:

AU=UR-UL, ULV' +URV'P _ UrX/v i+URVrT
VIT + , PR VIP- + VrPR

In the case where y, # 72, the property (11) no longer holds just as it is. To recover
this property, we have to slightly modify the flux function (8) and use instead of A(W)
a modified matrix A ; A(Ik); more precisely, the property:

F(W,) - F(WR) = A(WL - WR)

holds for all WL, WR if we define A as:

0 1 0 0

3) + (3 -,i - 1

fi = (12)
ii 3

-~ £0 ii

where fi, fl, k are still given by (9)-(10), and where:

- 1C11 + (1 - f)fC2(3
YC'i+(1-Y)C 2 (

with: =TL.," + TJVrP
Vr"T + -1'- 34 T(W,).1)

We refer the reader to [1] for the details of the derivation of (12)-(15).
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NUMERICAL RESULTS

We first consider a Riemann problem for system (1), namely Sod's shock tube
problem (61 with two different components on both sides of the discontinuity at t = 0,
with -y 12 = 1.4. The exact solution of this problem consists of the classical known
solution of Sod's problem for the hydrodynamical variables p, u and p, with a jump of
the mass fraction located at each time at the contact discontinuity.

In Figure 1, we compare the results obtained using the scheme (6)-(8) with those
obtained using the usual Roe's scheme for the classical Euler equations pt + (pu)z = 0,
(pu), + (pu2 +p). = 0, E, + [u(E +p)],- 0, combined with a donor-cell approximation
of the species equation (pY)t+(puY), 0 (in the sequel, this second scheme is referred
to as the "donor-cell scheme"). Incidentally, it is easy to check that, in this particular
case where -y1 = Y2, the numerical values of the hydrodynamical variables obtained
with both schemes are exactly identical; they are shown in Figure 1.a/. In Figure 1.b/,
we show the species profiles Y(x) obtained with both schemes in an experiment where
the species El is initially on the left side of the discontinuity (i.e. Y(x, t = 0) = 1 for
z < 0.5, 0 for z > 0.5); on the opposite, the species profile of Figure L.c/ correspond to
the initial condition Y(x,t = 0) = 0 for x < 0.5, 1 for x > 0.5. For both experiments,
the results obtained with the scheme (6)-(8) are much better than those obtained
with the "donor-cell scheme". In case b/ the differences between the two schemes
disappear when time increases. Such is not the case for the second experiment c/
where the observed kink for the "donor-cell scheme" remains as long as we pursue the
computation. Moreover, when the grid point number is increased, this kink becomes
thinner and thinner but keeps the same amplitude.

Another remark on these results concerns the comparisons of both experiments b/
and c/. For sake of clarity, let Yb(x, t) and Yc(x, t) denote the exact solutions of the
Liemann problems b/ and c/. It is clear that these exact solutions satisfy the relation:

Yb (X,t) + Y, (X,t) = I . (16)

But the analogous relation does not hold for the numerical solution; in other words,
(Yb)7 + (Y)7 0 1, which means that calling El or E2 the gaseous species which is
initially in the left compartment of the shock tube has an influence on the numerical
results ! This surprising fact comes from the conservative formulation in which the

mass fraction is obtained as a nonlinear function of the dependent variables: Y = W4
W1,

In practice, this difference between experiments b/ and c/ is very small when the
scheme (6)-(8) is used, but it appears to be important for the "donor-cell scheme".

This nonlinear character of the scheme also has the drawback that the inequalities
0 < Y < 1, which are required from a physical point of view, do not necessarily hold
for the numerical solution (again, this drawback is more important for the "donor-cell
scheme"). In fact, the only way of guaranteeing the discrete maximum principle for
the mass fraction would be to use a non-conservative formulation (i.e. to solve the
equation pYl + puY,, = 0), which would have several other disadvantages for the shock
problem considered here.
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a/ b/...

a/ Hydrodynamical variables:

; Density

1.............. Pressurec/
Velocity

b/ & c/ Mass fraction obtained with:
Scheme (6)-(8)

- -- ....------------ Donor-cell0.00 1

Figure 1: Density, pressure, velocity and mass fraction profiles for a two-compo-
nent shock tube.

Next, we address a case where the species E1 and E2 have not the same specific
heat ratio: 71 = 1.2, 72 = 1.4. The results are less satisfactory. When we use the
scheme (6)-(7) with the flux function:

A(WL, WR) = F(WL) + F(WR) + 1IAI(WL WR)

[with A given by (12)-(15)], we obtain the results shown on Figure 2.a/, where one can
observe a small but non physical pressure jump at the contact discontinuity. Almost
identical results are obtained with the flux function (8). Lastly, when we use the flux
function (8) while neglecting the terms X and Z in the Jacobian A(IW'), we obtain the
results presented on Figure 2.b/, which are worse than the preceding ones. This shows

1
that neglecting the derivatives of y in the dissipative term I A(IT') (Wf, - WR)
negatively affects the numerical results.
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1 - -- 1.4

1A
0.00 f.6 0.00 I

-- ----- 1.4

b/b

000 0. 0.00

Figure 2: Pressure, velocity and specific heat ratio profiles for a two-component
shock tube with a non constant -y.

A different physical problem is addressed in Figure 3: we now consider the propa-
gation of a planar premixed flame with one-step chemistry. In this case, diffusive and
reactive terms are added to the energy and species equations, and system (1) becomes:

0
0

2 0

Dy.- A pY ep(-. )

Here, DT and Dy are the thermal and molecular diffusion coeicients, Q is the heat

released by the chemical reaction, £ is the activation energy of the reaction, and
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pY exp(-L) is the reaction rate (see e.g. [41).

The results of several numerical experiments are shown on Figure 3, where we
compare the results obtained with three different schemes: the scheme (6)-(8), the
"donor-cell scheme", and a "centered scheme" in which the usual Roe's scheme for the
Euler equations is combined with a centered approximation of the species equation.
We also use two different computational grids, a coarse mesh of 61 equally spaced
nodes in the interval [0,11, and a fine uniform mesh of 401 nodes. The error in the
flame location which is observed when the "centered" and "donor-cell" schemes are
used on the coarse grid is considerably reduced when the "global flux-splitting" (6)-(8)
is employed.

Lastly, we show in Figure 4 the two-dimensional interaction of two supersonic
gaseous jets; the impinging jets are made up of two different species, with different
molecular weights and different specific heat ratios. The system of governing equa-
tions is simply the two-dimensional analogue of (1)-(4), with no diffusive and reactive
terms. Although the diffusive effect of the scheme (6)-(8) clearly appears when ob-
serving the mass fraction contours (obtained on a uniform non adaptive mesh), the
scheme behaves in a very promising fashion. In particular, we want to emphasize here
that no acceptable result can be obtained for this experiment with the "donor-cell
scheme" (that is, as above, with a donor-cell approximation of the mass fraction equa-
tion coupled to the usual Roe's scheme for the Euler equations): indeed, the maximum
value of the mass fraction Y rapidly increases above 1 and even exceeds 1.5 when the
"donor-cell" calculation proceeds, while the mass fraction remains in the interval [0,11
(with an error of the order of 10-2) when the scheme (6)-(8) is used.
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*Centered" 61 nodes

----------- -Centered" 401 nodes

..... ........... Scheme (6)-(8) 61 nodes

0.0 1.00

____________"Donor-cell" 61 nodes

------------ "Donor-cell" 401 nodes

schesne (6)-(8) 61 nodes

0.00 1.00

-------- scheme (6)-(&) 401 nodes

-. scheme (6)-(8) 61 nodes

0.00 1.00 D9

Figure 3: Mass fraction profiles across a planar premnixed flame.
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Figure 4: Gaseous jets interaction: velocity field and mass fraction contours.

CONCLUSION
We have presented several numerical experiments which show that, for the simula-

tion of (possibly reactive) multi-component inviscid flows, the results of calculations in
which the usual Euler terms and the added continuity equations are treated separately
can be substantially improved by using a global flux-splitting approach, in which one
of the classical upwind schemes developed in these last years for the Euler equations
is globally applied to the whole system of conservation laws, as in the scheme (6)-(B).
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ABSTRACT

Two solution methods for the solution of the equations

,.i -- .K (P ,g]-O
--- = V. [ (VP. + p.g)] - Q.at A

aS,. k,,K

for incompressible, two phase flow in a porous medium were employed together
with multigrid solvers. The IMPES method is implicit in pressure and explicit in
saturation. The simultaneous solution (SS) method is a linearized fully implicit
method. Both methods relied on special interpolation operators for multigrid
transfers based on the iscretized differential equation. This provided a method
of overcoming the difficulties associated with the discontinuous coefficients. The
application to the SS method was completely new and showed the usual increase
of efficiency associated with multigrid methods.

1. INTRODUCTION

For flow in a porous medium Darcy discovered that a good method to use to calculate
the superficial velocity was to regard the pressure gradient as the driving force and
take the properties of the medium as transmission factors. The velocity, of course,
was inversely proportional to the viscosity and the pressure could be due to gravity
effects. For each phase t, then, we have the velocity

Vt =-Li(VPI + ptg) (1)

where u is the viscosity, K is the permeability, P is the pressure, p is the density, and
g is the gravity vector.

The volumetric fraction (saturation) of phase t is denoted by St, so that Z S, = 1.
It was discovered that for nmultiphase flow the permeability tensor could be more

Part of the Brazilian-German Cooperation in the Field of Informatics in the Area of Computational
Mathematics; P. J. Paes-Leme, Brazilian Project Leader of ORESIM in Rio de Janeiro, Brazil.
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accurately split into two parts, so that KI = kIK, where k,1 is a scalar depending on
the saturations and K is a tensor depending on the spatially varying structure of the
medium. The mass conservation is represented by the continuity equation

O(O¢ptl =t )-- - . (ptvt) - qt (2)

where qt is a production (sink) term depending on time and location and 0 is porosity
(fraction void space).

In order to solve the equations boundary and initial conditions must be specified
together with the parameters in the equation. Usually the boundary conditions are no-
flow Neumann type conditions. For constant temperature, the following are specified:
O(P, X), pl(Pt), p,(P), and k,,(S 1,..., S.). Another relationship is then needed in
order to close the set of equations. This is usually taken to be the capillary pressure
function P, defined to be the difference in pressure between a wetting and a non-
wetting phase, and is usually considered an empirical function of the saturations.

The Darcy's law equation can be combined with the continuity equation to elimi-
nate the velocity and gives

O(OptSt) - -v [PtkIzK (VPt + ptg)] - qt. (3)

& JPt

The unknowns are then the Pt and St. For incompressible flow Pt and 0 are constant
and this becomes

where Qt = qt/pl. In order to eliminate the saturations we can sum the above equa-
tions to give

V. E[ X(VPt + ptg)] - Qt= (5)
t At

where Qt is the total production. This is an elliptic equation and -demonstrates why
one might expect multigrid methods to work.

Unfortunately, there is a strong hyperbolic part to this set of equations resulting
from the mass conservation requirement. In order to demonstrate this suppose there
are just two phases, o and w, where w is the wetting phase. Then the capillary pressure
P, = P. - P.. If the capillary pressure is taken to be zero, then P. = P. = P. If the
flow is horizontal, then ptg = 0. We now have

Vt = -kK VP
At

for each phase t, and
k,,oo

Let vi = v. + vw and

10k + k
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for I = o or w. Then vt = fivt and the equation for phase t becomes

As- = - V iO - Q1.

If we look at the places where there is no source or sink term, then Q, 0. Expanding
the right side, we get

-- = -y " ,t - V, . Vfl.

For incompressible flow this becomes

s, df,- = -V-. .V S1

which has the form of a first order hyperbolic equation. The discontinuities in the ini-
tial conditions are then propagated. This is why one might expect multigrid methods
not to work so well. T. F. Russel, J. Douglas, and R. E. Ewing, among others, have
used properties of characteristics in solution methods designed to take advantage of
the hyperbolic nature of the equations describing some kinds oil reservoir simulation

problems.

The discontinuities in the solution are not the only problems. There are large
discontinuities in the coefficients as well. K can have discontinuous jumps of several
orders of magnitude due to changes in the medium's geological features. These are
aggravated by large discontinuous changes in k,j as a result of the sudden changes in
the saturations. These difficulties give rise to special discretization problems as well
as difficulties with the grid transfer operators required with multigrid methods.

2. EQUATIONS SOLVED

The equations we solve are those for incompressible two phase flow in two dimensions.
We use two general techniques, both using multigrid, one called IMPES (implicit pres-
sure, explicit saturation) and the other called the simultaneous solution (SS) method.
The general equations for both methods are

- V. [ ,K (VP. + P.9)- Q. (6)

_-= V.[ (VP. + p.g)] - Q.. (7)

For the IMPES method we add the two above equations to obtain a "pressure equa-
tion," as follows,

V. [(Xo + A),)VPo - AWVP - (,Xop. + A,.p,)g] = Q. + QW (8)

where \, = k, 1K/p for t = o or u,. This equation is elliptic. The solution method
proceeds as follows: All saturation related terms are taken at the old time level and
equation (8) is solved for P. at the new time. Once P. is known, equation (7) is then
solved explicitly for the new saturation S... From this P, is known and the process is
started again.
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The problem is discretized by the standard finite difference method with reflection
boundary conditions. The space discretization is carried out as follows, For

OP

we approximate by
I P41l Pi Pi - P,-1

defined as A(AP). This produces a five point discretization pattern which we use
on grids which are uniform in each direction. The Ai changes with P,, which changes
with time, where

AiK

k, is taken upstream, while K is the harmonic mean. p is taken to be constant. The
standard multigrid method will fail because of the large jump discontinuities in the
coefficients \,. The difference operator itself is used for the interpolation operator
as originally proposed by Alcouffe, Brandt, Dendy, and Painter Il]. This then more
closely follows the continuity of the AtVP terms rather than attempting to interpolate
the discontinuous VPt terms. The IMPES method has the '.Jvantage for multigrid
methods that the implicit part of the procedure is an elliptic equation. This is partic-
ularly well suited to multigrid solution techniques. Because of the explicit treatment
of saturation, however, the following restriction on the size of the time step, as was
shown by Aziz and Settari 121, is imposed for stability:

Ar<imin k,,.

If the mesh sizes are very small or P, is very large, then the sizes of the time steps
required for stability are unacceptably small. In this case the simultaneous solution
method preferable.

The system we use in the simultaneous solution method is symmetric. The equa-
tions (6) and (7) are transformed into

, OP. oP.

V. [,o(VPo + Pg)] = -( - ) + Q . (10)

by taking S.' = OSW/OP, on the assumption that. P,(S.) is invertible and S." exists.
The discretization of the spatial derivatives is carried out the same as for the IMPES
method to produce a five point pattern. The discretization of the time derivative is
produced as follows:

Pi,.+- Ap'.

Weighting by 0 in time taken for space derivatives gives

142= O.,(A/P)]+ + (I -
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According to the stability analysis we performed, this is stable for values of 0 greater
than a half and unstable for values of 0 less than a half, with conditiona stability at
the value of one half. Although the possibility of using this time weighting parameter,
0, was programmed as an option, it has so far not been used.

The equations are linearized by taking A and S', at the old time, except for non-
linear P,(S,) where an iterative approximation to Su, at the new time is made (see
12,91). The fully implicit case takes A and Su, at. new times, bul then this is nonlinear.
There is also an unsymmetric form given by

V. [A0(VPo + Pog)] =- 0

V. {A:(VPo - P'VS. + Pwg)] as. + Q,
but, generally, unsymmetric sets of equations are not as well handled by multigrid
methods. For this reason, we chose to tackle the symmetric form first.

The equations are solved simultaneously for Po and P,,,. The new saturations are
then found by S.(P,). The finite difference discretization of the system leads to a
symmetric, block-pentadiagonal system where the blocks are 2x2 submatrices. The
off-diagonal blocks are diagonal matrices. The discretization is backward in time
with explicit mobilities \. and X.. Again the difficulties in a multigrid scheme are
the discontinuities in the coefficients A,. We use a generalization of the interpolation
procedure we use for the IMPES method applied to systems, which was originally
proposed by Dendy [8].

3. SOLUTION BY A MULTIGRID METHOD

Simulation of large reservoirs by the methods described above requires the solution of
very large sets of linear equations. The number of unknowns may run up to several
thousands. If direct methods are used for the solution of such systems, the amount of
work increases as the square of the number of unknowns. In terms of computer work
and storage, it is generally much more economical to use a fast iterative method.

Very rapid convergence is provided by multigrid methods. These are 'asymptoti-
cally optimal' iterative methods, i. e., the computational work required for achieving
a fixed accuracy is proportional to the -number of discrete unknowns. The multigrid
methods work in the following way: It is well known that relaxation methods are very
efficient at the elimination of high frequency errors which have a wavelength of the
order of a grid spacing but are very inefficient at the elimination of long wavelength
errors. This fact is exploited in multigrid methods. By the application of a suitable
relaxation method approximations with smooth errors are obtained very efficiently.
Such smooth errors can be accurately represented on a coarser grid. Thus, corrections
of approximations with smooth errors can be calculated efficiently on this coarser grid.
This basic idea is employed on coarser and coarser grids. Finally we arrive at a very
coarse grid, on which a linear system of equations can easily be solved. Having found
a sufficiently good correction on a coarser grid, we return to the next finer grid by
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interpolating this correction and adding it to the fine grid approximation. This is
continued back to the finest grid.

Let a sequence of grids Gk (k = 1(1)M) be defined with h, > h2 > ... > hM,
where h. is the mesh size of G'. Lel LM be a finite difference approximation to the
differential operator L on GM and lei L ' be an approximation to LM on G' for k < M.
By X we denote the linear space of real valued grid functions defined on G;:

X': GA- R.

Obviously X k  R 'N' , where N. is the number of grid points of Gk. By

IA.-: XA x k - 3

we denote a restriction operator and by

ik_ :X k - 1  Xk "

an interpolation operator. For convenience we introduce the notation

i: = Sk(uk,fk)

to denote that iik is the result of a' relaxation steps applied to LkUk = fk starting with
u as first approximation, where uk . -k, fk E Xk. Similarly we denote by

i:k = MT (Uk,Pk, f)

so that 12-k is the result of y successive applications of the following algorithm MGk
to Lku' = fk starting with uk as first approximation:

Algorithm MGk:

Step 1: If k > 1 go to step 2, else solve exactly

L' = f'. (II)

MG 1 : it . (12)

Step 2: (Smoothing)
.,: = S k' (U , L-. fk) (13)

Step 3: (Transfer to the next coarser grid)

P-1 = Ik- ' [f' - L kf2k, (14)

V0- 0. (15)

Step 4:

f = k- ,-1 ,f- 1), (16)
Stcp 5: (Transfer to the next. finer grid)

w: la + IfA 1 (17)
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Step 6: (Smoothing)

Mc = .(19)

The multigrid method consists of the following iteration:

Initialize: U0 °) E X M ,  (20)

0 + ') : = GM (u(J),LM,fM). (21)

7 in step 4 is either equal to 1 or 2. With -y = 1 ve obtain a V-Cycle and with
-y = 2 a W-Cycle. If the coefficients of the differential operator L are continuous, it
is usually very efficient to use bilinear interpolation for Ik_1 and the transpose of this
interpolation operator for the restriction - Moreover, in this case very good results
are generally obtained if Lk for k < M is the same finite difference approximation of
L on G" as LM on G".

If we solve the oil reservoir differential equations by the multigrid method, we
have the difiiculty that the transmissibilities may have large jump discontinuities of
several orders in magnitude. Discontinuities in permeablity occur between different
layers having different geological structures. Furthermore the relative permeabi]ities
are dependent on the saturations, which have discontinuities at the oil-water-interface.
As noted by Alcouffe et al. (see [1]) the multigrid method exhibits poor convergence
for problems with large discontinuities if the bilinear interpolation is used. If the
coefficients of the differential equations jump by orders of magnitude, the use of a
more appropriate interpolation is necessary to achieve the usual multigrid efficiency.
The interpolation operator should mimic the properties of the difference operator.
Consequently, the difference operator itself was used for the interpolation operator

I_1 (see 11,3,4,63). Moreover, it must be guaranteed that the difference equations on
the next coarser grid approximate those on the given grid. To achieve this we defined
the coarse grid difference operator L' -1 by the Galerkin approach

L"-= k-I1 Lk1L (k = M(-1)2). (22)

Lk- (k = M(-1)2) ae nine point operators, although LMW is a five point operator.

The interpolation operator used for the solution of the IMPES pressure equation
is defined in the following way. Let L be defined at point (xi, yj) E G' by

sw, 6 + w u,_1,j + NWikj u

Sk. u+,-A N+ ti+
% , u (23)

+ SV U + &6 +kJjU
8i S+ -i" + NE" i

Suppose (zi+i, yj) E G k \G k-1 and (Xi, Yj), (Zi+2, yj) E Gk n G - 
', where k = M(- 1)2.

On Gk- ' the latter two grid points are denoted by (zIyJ),(E;+igJ) respectively.
Form , i+ SW# + 1 4 k + NW" Ck S -+ + -,

"+ -~j - "+lj i++,j i+lJ i - ,+i + +j

SEk+ Ij + Ek+,j + NEi+1 6. Then for horizontal lines embedded in the coarse grid the
interpolation I _- is given by

,' Y -1 _kk k-I k
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A similar formula is used for the interpolation on vertical lines embedded in the coarse
grid. At fine grid points which do not lie on coarse grid lines [for example (xi+,, yi,+)]
the interpolation formula is found by solving the equation

L k
1+1J1lg1 , +.2 +l = 0 (25)

for u,+ j+]. This interpolation approximates the continuity of (A. + A,)Vpo over the

entire domain (see [1]). The restriction operator I' is defined by the transpose of
the interpolation operator

Ik-1  = (I;_])T. (26)

For relaxation we used the point, the line, or the alternating line Gauss Seidel method.

In the simultaneous solution method a system of two differential equations is to

be solved numerically. Here again we have the difficulty of jump discontinuities in
the coefficients of the differential equations. Therefore, we implement a multigrid
method which is a generalization of the method used for IMPES (see 18]), in which the
differential operator is used as the basis for the interpolation. This tends to follow the
continuity of AiVpl rather than trying to follow Vpt (which can be discontinuous here)
as in the usual schemes. Interpolation and coarse grid matrices are calculated in the
same manner as for the IMPES-method. In doing this we replace scalar operations
by matrix operations, so that, for example, the division by C[1J in equation (24) is

replaced by the matrix inversion J- Relaxation is done by the collective point,
line, or alternating line Gauss Seidel method.

4. RESULTS

We tested the multigrid method described above for the following situation. The
reservoir was represented by a horizontal square. Initially the entire reservoir was
(almost) saturated with oil. Water was injected in one corner and oil was produced in
the opposite corner of the square. We assumed no flow Neumann boundary conditions

and considered the following cases:

1) Isotropic case, i. e. K. = K,, where K., K, are the permeabilities in z- and

y-direction respectively.

2) Anisotropic case with K. = IO' K , .

3) Anisotropic case with jump discontinuities. There were three subregions with dif-

ferent permeabilities K., K,,. In the first subregion we assumed K. = 102 K,, in the
second K. = K, and in the third K, = 10 K.

In case 1) the point Gauss Seidel method was a very good smoother. In the second
case it was necessary to use the line Gauss Seidel relaxation, whereas in the third case
only the alternating line Gauss Seidel was a good smoothing procedure. The capillary

pressure was assumed to be a linear function of saturation. The values of the capillary
pressure were assumed to be rather small, they ranged only between 0.0 and 0.1. The
relative permeabilities were approximated by piecewise linear functions.

In all these cases the multigrid method described above exhibited the usual multi-
grid efficiency. If the IMPES-method was used, for a grid with 65 x 65 = 4225 grid
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points for example execution times between 3.5 and 7.0 seconds were necessary on the
IBM 3090 computer, to make the residuals smaller than 101. For the simultaneous
solution method we found frequently that the same number of cycles and about the
same number of relaxations were necessary to achieve a certain accuracy as for IM-
PES. The execution times of the simultaneous solution method were of course larger
than for IMPES because we had to solve a system of two differential equations instead
of a single equation. On the average they were between 1.4 and 1.5 times as large as
for IMPES.

If the derivative of the capillary pressure function is very small., then the discrete
system of the simultaneous solution method becomes nearly singular (see 12]). In this
case we sometimes observed divergence of the multigrid method after it had converged
very well for a large number of time steps. When this happened, it was always possible
to obtain convergence by choosing the coarsest grid sufficiently fine. So far we haven't
observed any loss of efficiency in this case. The execution times were about the same.

5. CONCLUSIONS

We have programmed the IMPES method of solution for two phase incompressible
flow using a multigrid solver originally proposed by Alcouffe, et al [1]. This method
avoids problems which arise in usual multigrid techniques due to discontinuities of
the coefficients. The discretized operator equation itself is taken as the basis for the
interpolation operator, and, thus, the coarse grid operator, by means of the Galerkin
approximation. The efficiencies we have achieved are typical for those found when the
multigrid method is used.

We then programmed the simultaneous solution method (linearized fully implicit
method), which included the time discretized terms. We used a generalization of the
multigrid method used in the IMPES case for systems of equations 18]. The inclusion,
however, of the mass conservation terms in the system made the system much more
hyperbolic. As a result, although the method worked well, one had to take care not to
choose the coarsest grid too coarse. If it was chosen too coarse, then the equations were
dominated by the mass conservation part of the equations, rather than the diffusion
transport part. This restriction caused, however, no practical limitations to the use
of the method. Generally, it was sufficient to have at least several interior point on
the coarsest grid. With this slight caution, this form of the equations was solved as
efficiently as is usually the case for multigrid methods.
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A standard model
of generic rotational degeneracy

Heinrich Freistiihler
Institut fAr Mathematik, RWTH Aachen
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Summary

Riemann's initial value problem has been studied in our paper [91 for a rather broad
class of such hyperbolic systems with which rotational symmetry creates a specific kind
of degeneracy: under natural genericity assumptions it is found to have a unique stable
centered solution. This result, which holds locally near degenerate points in state space,
applies to important examples from continuum mechanics. In sec.3 of the present report
we will see that in all these cases the pattern of the degenerate transverse waves is
isomorphic to that of a rather simple standard model. In sec.4 important qualitative
features of the wave pattern in the general case are observed by means of simple explicit
calculations on the model. Sec.1 introduces to the situation by reviewing previous
results for reference and sec.2 discusses the concept of stability that we use.

1. Rotationally degenerate systems

We consider hyperbolic systems

u,( ,t) + (f(u( ,t))) =0, ( ,t) E R X I+, (1.1)

of conservation laws: the flux function f : U -+ R' is a smooth map defined on an
open state space U C R", and its Jacobian Df(u) is E-diagonalizable at any u E U.
We restrict our search for solutions to those of the Riemann problem, i.e. (1.1) together
with initial data of the special form

( ug , < 0
u(C,0) = ur , > 0 u, u, E U. (1.2)

Def. 1.1. For m,k,n = m+k E IV we decompose u E )Rn as u = (x,y) with
x E 1W', y E Rk and define for any (proper or improper) rotation 0 E O(m) ,the
orthogonal group on R', 0 E O(n) by O(x, y) = (Ox, y).A hyperbolic system given by
f : U --+ Rn is rotationally symmetric (to degree m ; with respect to z) if

fo0=Oof foranyOEO(m). (1.3)

We call the set C = {(x, y) E U; x = 0} the center of f.
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Clearly, (1.3) presupposes O(m)U = U, i.e. rotational symmetry of U, and implies
that the notion of solution is invariant: With u any solution of (1.1), also 0 o u is a
solution.

For m > 2 the hyperbolicity of any such system is always non-strict at its center: (1.3)
implies

Df o 0 DO = DO Df , (1.4)

especially at the center
DfIC = DO DfIC DO , (1.5)

and with respect to the modes (=(eigenvalue,eigenspace)-pairs (A, R) of Df) this yields
the rotational invariance

RIC = DO RIC , (1.6)

so that there exists at least one eigenvalue A of multiplicity m at C. Generically (in
a geometric sense; gasdynamics with its additional Galilean invariance is a prominent
counterexample), A splits into two different eigenvalues (branches over U): a simple one
and another one that is (m - 1)-fold and linearly degenerate. The latter corresponds
to rotations in state space: its eigenspace bundle R has (m - 1)-spheres as integral
manifolds. We are especially interested in the degenerate situation near C.

Obviously, any rotationally symmetric hyperbolic system f is of the form

f(x, y) = (X(x, y), Y(x, y))with (1.7)

X(x, y) = ±(xI, y)x, Y(x, y) = l>(Ixt, y), (1.8)

where X : JR x IRk -- R, Y: R x Rk -- JRk are smooth maps and even in the first
argument.

Def 1.2. To f we define the corresponding radial system f and the corresponding
central system I by

i(i,y) = (±(:,y)i, k(i,y)) on U {(i,y) E R x JRk;iS' - l x {y} C U}, (1.9)
f(y) = Y(O,y) on 0 = {y E JRk;(0, y) E U}. (1.10)

We fix u0 E C and denote by ii0, ft0 the corresponding points in C, 0'. If f is strictly
hyperbolic, then Df has exactly k eigenvalues A whose restrictions AIC to the center

= {(&, y) E &; . = 0} of f are also eigenvalues of D - D(fj6e), and there is exactly
one further eigenvalue A whose corresponding eigenspace R is transverse to C at C. For
reasons of symmetry, Ale = Rx {0} and . is even with respect to i; so (a/l&)(fio) = 0,
i.e. A cannot be genuinely nonlinear at C. Nothing, however, generally prevents A from
being genuinely nonlinear outside e; e.g. it is locally if (O2/O&2 )A(i 0 ) j 0. This
motivates the following

Genericity assumptions. We consider a rotationally symmetric system which fulfils

f is strictly hyperbolic at io, (1.11)

A fulfils (a 2 /ai 2 )A(ao) 5 0, (1.12)

any other eigenvalue of Di is either g. nl. or 1. dg. (1.13)
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The following is the main result of [9].

Theorem 1.1. Let f be a hyperbolic system that is rotationally symmetric and u0

a state in its center C. Assume (1.11),(1.12),(1.13) hold. Then locally near uo the
Riemann problem has a unique stable solution, which depends continuously on the
data. (See below for the meaning of "stable solution of a Riemann problem".)

A major motivation of our study of rotationally symmetric systems is that important
systems of continuum mechanics are rotationally symmetric or have rotationally sym-
metric systems associated to them. We mention a general result, which has been proved
in [9] as a consequence of theorem 1.1.

Theorem 1.2. Assume f : U --* R' is the flux function of a hyperbolic system, and
the eigenvalues of Df are all positive. Then the system

ut( ,t) - V(C, t) = 0

vt(C 0)- (U(,t)) = 0

of p.d.e. is hyperbolic.
If f is rotationally symmetric (see(1.3)) and fulfils the genericity assumptions ((1.11) to
(1.13)) at a point uo E C, then locally near (uo,vo) (,where vo E R' is arbitrary,) the
Riemann problem of (1.14) has a unique stable solution, which depends continuously
on the data.

Magnetohydrodynamic plane waves and elastic plane waves in isotropic bodies are gov-
erned by systems of the form (1.14). It is isotropy which induces rotational symmetry
of the corresponding f in either case; so this symmetry is present in magnetohydro-
dynamics, and it is present in elasticity if the material is isotropic. In realistic cases
assumptions (1.11) to (1.13) are satisfied for these physical systems, and in contrast to
gasdynamics, the geometrically generic form of rotational degeneracy is realized. Theo-
rem 1.2 seems to give the first rigorous results on existence and uniqueness of solutions
to the Riemann problem of these systems near degenerate states. Note also, for com-
parison, that another well-known system of the form (1.14) with rotationally symmetric
f, that of the elastic string (see [4], where its Riemann problem began to be studied)
has C = 0 and so lacks a central degeneracy.
For further details and proofs we refer the reader to [9].

2. Stable solutions of Riemann problems

In this section we define and interpret the concept of stable solutions. From the outset
we assume centeredness and a minimum amount of regularity:

Def. 2.1. A solution (of the Riemann problem (1.1),(1.2)) is a piecewise smooth
function u E £joc(R, U) that solves weakly the equation

-su'(s) + (f o u)'(s) = 0, s E JR (2.1)

and has
lim u(s) = ul, lim u(s) = Ur. (2.2)

a- O0 8-,oo

Equip the set of all solutions with the £ oc-topology.
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A solution may contain discontinuities where u- = u(s-) and u+ = u(s+) disagree.

Def. 2.2. A discontinuity is said to be linearly stable if it fulfils the Rankine-Hugoniot
conditions

f(u + ) - f(u-) = s(u + - u-) (2.3)

and, with

R_(u, s) = ker(Df(u) - A), R+(u,s) = ker(Df(u) - A), (2.4)
A<a A>a

also
R+(u-,s) + R-(u+,s) C R-(u-,s) E R+(u+,s) (D (u+ - u-). (LS)

Def. 2.3. A solution of a Riemann problem is called linearly stable if all its discontinu-
ities are; it is called a stable solution if it is the £oc-limit of linearly stable solutions.

In order to motivate condition (LS) we look at the solution

u0,)= u+, <>st, (2.5)

of (1.1.),(1.2) corresponding to u-, u+ which fulfil the RH conditions. The next argu-
ments follow [5], pp. 25-27. We assume that to slightly perturbed initial data 'u there
is a solution u of similar structure as u0 : smooth outside a smooth curve, along which
the RH conditions are satisfied:

u t (ct) + (f(u(,t)))c = 0 , ( C(t)

-('(t)(u(t) - uI(t)) + (f(ur(t))- f(ul(t)))= 0 (4, t) E R x 1P+ (2.6)
u(C0) =0 u(W , ((0) = 0

where u*/'(t) = u(((t) ± 0, t); we further assume that u depends smoothly on 0 u in
the way that there are families u, depending smoothly on a real parameter e point-
ing in appropriately arbitrary "directions" 'w = (-!(ue))e=o. If (,. parametrize the
corresponding discontinuity curves, the transformation

a a
tii(C,t) = u6(t - ((t),t),w = (W i,)e=0,G = (iwG).=0 (2.7)

yields the linearized problem

w t ( ,t) +(A(u') - sI)wC( ,t) = 0 , + > 0 (2.8.1)
-'I(t)(u +

- u-) +(A(u + ) - sI)w(O+,t) - (A(u-) - sI)w(O-,t) = 0 (2.8.2)
w(,0) =0 w( ) , o(0) = 0. (2.8.3)

Let CO consist of all functions E C (RW) whose support is compact and does not
contain 0.

Lemma 2.1. The linearized problem has a unique solution for any Ow E C ' if and
only if (LS) holds.
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Proof. Decompose any solution

n

w( ,t) Zw:( ,t)r', + > 0, (2.9)
k=1

where {r-}, {r + } are complete sets of eigenvectors at the left and at the right hand
state, respectively:

Df 4rk ; (2.10)

(2.8.1) decomposes into the characteristic equations

(5i+ (A± - s) )w (, t) --- 0 , -> 0. (2.11)

Now (2.8.2) is the linear algebraic system

n n

-o/(t)(U+ - u_) + Zw+(ot)(A + 
- s)rt - Zw (0,t)(A- - s)r = 0 (2.12)

k=1 k=1

of equations between the quantities -a'(t), w±(0, t). Depending on whether the corre-
sponding characteristics impinge or do not impinge on the boundary 0, the w"(0, t)
are determined by the initial values (2.8.3) or should be, as should be -a'(t), by (2.12).
The wellposedness of (2.12) in this sense is however equivalent to (LS).

3. The .. andard model

For any m E IV the system

ut( ,t) + (fm(u( ,t)))f = 0 , ( ,t) E JR X I+, (3.1)

of p.d.e. with the flux function

f.r: R, fl , fm(U) = IU12 (3.2)

is hyperbolic: the Jacobian

Df (u) = lUI2Im + uuT (3.3)

has a radial mode (A", Rr):

A (u) = 3ju12 , R'(u) = Jfu (3.4)

and,for m > 2, an azimuthal mode (Aa, Ra):

A(u) = Iu12 , Ra(u) = u 1 . (3.5)
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It is rotationally symmetric to (maximal) degree m: def. 1.1 applies with k = 0 and

foO=Oof , OEO(m). (3.6)

It fulfils the genericity assumptions (1.11) to (1.13): since the corresponding radial
system has the flux function

(1.11) and (1.13) are trivial; (1.12) follows from

= f'(i)= U2 (3.8)

The center of this system in the sense of def. 1.1 is the origin {0} C Rm".

Certainly we do not need theorem 1.1 and the rather complicated arguments used in
its proof in order to treat the Riemann problem of this simple system. The aim of
this paper is to point out important qualitative features of the degenerate part of the
wave pattern in the general case, that is the pattern of transverse waves: In the general
situation defined by the genericity assumptions (1.11) to (1.13), there is an interval 10, a
neighborhood of A(tao), such that elementary waves (RH discontinuities as well as simple
waves) moving at speeds s E 10 oscillate nearly orthogonal to C ("transverse"), whereas
waves of speeds s V Io oscillate nearly parallel to C ("almost central"). The almost
central waves can be considered as perturbations of waves of f, and so their pattern
is the usual one of a system with eigenvalues either g.nl. or 1.dg. (see [11). Different
phenomena appear with the transverse waves, and it is to observe these that we look at
the above simple system. It is a fairly true model of the general case in the following
precise sense:

Lemma 3.1. For an arbitrary hyperbolic system with a generic rotational degeneracy,
project (locally near C) all pairs of states (u-,u+) that can be joined by transverse
waves on their x-component (the component with respect to which the flux function
is symmcfric) to get pairs (x-,x+) and interpret x-,x + as points in the state space
of the standard model f,. of same degree m of symmetry. This yields a true picture
in the sense that these (x-, x+) also correspond to (locally all) elementary waves to
f,n, which moreover are "of the same kind": the speeds of these waves are in the same
order with respect to the characteristic speeds of the model as their preimages are with
respect to the transverse characteristic speeds of the original system. Also (in)stability
of discontinuities is carried over properly.

On purpose we avoid formulae here and will not give a technical proof of this lemma.
A look at the parametrization of transverse waves introduced in tb proof of theorem
1.1 in [9] brings the above statement immediately to the (inner mind's) eye, since this
projection is the key idea of that proof.
Also by the isomorphisms J+ (constructed in [9]) between solutions (of positive or
negative speed) of (1.14) and solutions of the original system with flux function f, it
is clear at once that the wave pattern of the standard model produces a true picture
also of that of any system of form (1.14) with rotationally symmetric f; note that this
applies to the said physical examples!

154



We begin our study of the standard model by surveying its elementary waves:

Property 3.1. To any point u- E lRm \{0} the following (stable or unstable) elementary

(i) u- can be joined by a simple wave to any state u + = pu- with p > 1;
(ii) u- can be joined by a RH discontinuity to any state u+ with u+i - lu-i;
(iii) u- can be joined by a RH discontinuity to any state u + = pu- with p E R.

The simple waves (i) belong to the fast mode A', the discontinuities (ii) are contact
discontinuities of the slow mode A" (for m > 2): there will be no doubt that these

waves should be admitted The discontinuities (iii), just all other solutions of the RH

(u-1 - s)u-- Iu+12 s)u + , (3.9)

cannot be generally assigned to any of the both modes and must be checked for admis-

sibility, which clearly depends on the criterion one applies. Before we compare different
criteria, we distinguish a special solution.

Def 3.1. The standard solution to the Riemann problem of the standard model is

constructed as follows:
If m = 1 (,which yields the cubic standard example of a nonconvex scalar law), take the

usual solution by one simple wave, one shock or one mixed wave (:the type introduced
by Liu in [3] consisting of a shock and an adjacent simple wave).

If m > 2, proceed like this: To given ul, ur E R'tm \ {O} find a unique intermediate state

um as that point in state space where the sphere luiSm-' and the ray JR+u, intersect.
ut can be joined to Urn by a slow contact discontinuity, and unless already urn = Ur, Urn

can be joined to ur by a shock or a fast simple wave, depending on whether 0 < p < 1

or 1 < p in u = put. If ut = 0 or u, = 0 there is a unique fast simple wave or shock
connecting the both initial states.

Ur t t

UMlU

0n Ur

~~~ 
U 

t 

r

U1  UrUjU

UU
UU.

It is easy to see that this procedure leads to a unique solution and that admitting
more discontinuities than those used in it leads to nonuniqueness. Except for a certain

geometric intuition, however, up to now the procedure lacks any justification.
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4. The wave pattern

We discuss the wave pattern of the standard model; this can be done by very simple
calculations. By lemma 3.1 we are sure that interesting phenomena we observe in this
way also appear with any other system exhibiting a generic rotational degeneracy. We
compare different admissibility criteria, discuss the question of embedding systems into
each other and that of the so-called anomalous shocks, and point out a continuous
version of lability of intermediate states in solutions.

Property 4.1. A discontinuity with left hand state u- 5 0 and right hand state
u+ = pu- is admissible
(a) in the sense of Lax's shock inequalities (:"SI"):

if m = 1: exactly for p E (-,),
if m = 2: exactly for p E 1, -1) O (0,1),
if m > 2: exactly for p E (0, 1);

(b) in the sense of Liu's condition (E): (for any m:) exactly for U E [-i, 1);
(c) in the sense of criterion (LS) of linear stability:

if m = 1: exactly for p E (-2, 1),

if m > 2: exactly for p E (0,1).

Proof. The shock speed
s(p) = lu-12(1 + p + p 2) (4.1)

must be compared with the characteristic speeds A(u - ) = 31u-1 2, Ar(u+) = 3p 21u-1 2,
and, for m > 2, A(u-) = lu-12 , A*(u + ) = p2 1u-12 .

If m = 1, the (SI) require r(u - ) > S > Ar(U+); if m > 2, they mean

either A(u-) <s and Ar(u-) > S > Ar(u+) (4.2)

or A(u-) > s > A'(u+) and S < Ar(u+).
Ar(u+)

Liu's condition (E) means (here) that s, . s
s(y) < s(ji) for all A between p and 1. " ... .. Ar(u-)
In checking criterion (LS) observe that

R = RL(u,s) are for
s < Aa(U) : R- =0, R+ = Rm,
s = Aa(U): R- 0, R+ = Ru,
A((u)<s<Ar(u) :R-=u, R+ = RU,
S = ,r(u) : R- = u ± ,- R+ ,.
s > A(u): R- =-Rm,R+ a(U+)

In the following comparison of (SI), . (U

(E), (LS) with regard to the question /
of uniqueness of solutions, we consider /
also limiting cases as admissible, since /
certainly the set of admissible solu- __"-_---"____

tions should be £o-closed. -1 _ ! 0 1
1562
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Property 4.2. If m = 1, (SI),(E),(LS) effect the same selection of admissible disconti-
nuities; it leads to the unique standard solution (see def. 3.1).
If m = 2, (LS) is the most restrictive criterion and leads to the unique standard solution;
(E) as well as (SI) admit more discontinuities, each in a different way, but both leading
to nonuniqueness.
If m > 2, (LS) and (SI) lead to the same selection of discontinuities and to the unique
standard solution; (E) admits more discontinuities and thus "causes" nonuniqueness.

This follows from property 4.1. The difference between (LS) and (SI) in the case m = 2
is worth an extra notice:

Property 4.3. With degree m = 2 of symmetry there are shocks that correspond
to the linearly degenerate (!) slow mode in the sense that (SI) are fulfilled with the
characteristics of this mode impinging on the shock on both sides. These shocks are,
however, not linearly stable. (In the above notation, these shocks are given by values
l, (-1,-1).)

An old and famous example are the magnetohydrodynamic so-called intermediate shocks
(more precisely: one species of them), about whose stability there was an interesting
discussion about thirty years ago (, see [2]). In 1980, Keyfitz and Kranzer encountered
such "anomalous entropy shocks" in their well-known treatment [4] of the Riemann
problem of the elastic string.

A comment might be in order about what we do not intend to say here. Lax and Liu
designed their conditions for situations with separate eigenvalues, in which they are
well-known to be very fruitful and have good justifications. In the situation that Lax
originally considered in his famous paper [11, the local Riemann problem for a strictly
hyperbolic system with each eigenvalue either g.nl. or l.dg., the (SI) are equivalent
to linear stability e.g. in the sense of (LS). On the other hand linear stability as an
admissibility criterion does not lead to uniqueness even in the simple case of a nonconvex
scalar law with several inflection points, which is treated perfectly well by condition (E).
Finally, in our situation, (E) and (SI) together are equivalent to (LS) for any m.

We now turn to the question of embedding systems into each other. For the standard
model of degree m any linear subspace L C 1R of dimension rih < m is an invariant
submanifold in the sense of [6]. The restriction fraIL has just fh as a coordinate
representation, so the standard model of degree rh might be called a subsystem of that
of degree m. This must, however, be handled with care:

Property 4.4. The criterion (LS) may make a different choice when applied to a sub-
system as when used with the system itself. Here this is the case for the subsystem given
by f = fi of the system given by fn, m > 2: whereas (LS) allows discontinuities across
the origin and, as a consequence, Liu type mixed waves for fl, the same discontinuities
and waves are forbidden as such of fn, m > 2.

This is an analogue on the level of dependent variables of the known fact that stability
of a multidimensional planar shock front with respect to perturbations that are one-
dimensional (in the independent space variable) is rather different from stability with
respect to perturbations that are themselves multidimensional.
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Finally we look at a phenomenon of structural lability.

Property 4.5. The standard solution depends continuously on the data. This is,
however, not true for the intermediate state urn: there are initial value pairs (uj, u,)
such that arbitrary small changes of them draw urn near any point of a whole (m - 1)-
sphere.

Continuous dependence of the solution as well as of the intermediate state on the initial
data is of course no question as long as u, : 0., since the speeds of the elementary waves
and also the state urn are continuous functions of (ul, ur), then. In the neighborhood
of the origin, small changes of u, can go hand in hand with large changes in its polar
angle, which determines the polar angle of urn; so urn may jump anywhere near the
sphere of radius lulI around the origin. In the limit case u, = 0 the intermediate
state is undetermined: any urn on the said sphere can be reached from ul by a contact
discontinuity; since, however, in this case the "shock" joining u.. to u, has speed equal
to that of the contact discontinuity, Ur will not appear in the solution. If u, -+ 0, the
width of the sector in ( , t)-space (the length of the s-interval) on which u = ur shrinks
to zero, so that continuous dependence of the solution is maintained.
Similar things were found in [41,[7]: with systems considered in these papers intermediate
states may jump near neighborhoods of usually two discrete points in state space. In
distinguishing by the type of the manifold near whose arbitrary points the state may
jump, one might call this a discrete version and the phenomenon described above a
continuous version of lability of intermediate states.
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SUMMARY

A numerical method for Riemann problems for a class of equations
(system of conservation laws) is presented. Stability and conver-
gence in a case of three-phase flow in porous media is shown and
the application to general Cauchy problems is discussed.

INTRODUCTION

Based upon ideas presented by Dafermos [1], a numerical method for

one-dimensional, scalar conservation laws :

ut + f(u)x  = 0 with u(x,0) - u0 (x) (1)

was developed by H.Holden, L.Holden and Heegh-Krohn [2]. The algo-
rithm is tracing envelopes of the flow-function f. By approximating
f by a piecewise linear function and u0 (x) by a piecewise constant
function one obtains a solution consisting of shocks only, finitely
many at any time and a finite number of shock collisions as t 4 0.
Hence, this method is different from the usual methods of finite
differences, first presented by Lax [3]. If f actually is piecewise
linear and u 0 is piecewise constant, the solution is exact, else
one has good error estimates (e.g. Lucier [4]). Existence and
uniqueness for (1) are well known (e.g. Oleinik [5]). For a 2x2
system with some restrictions of f, Isaacson and Temple (6) have
shown uniqueness of a weak solution for a global problem. As an
approach to a system of conservation laws L.Holden and Hoegh-Krohn
have studied Riemann problems for a specific class of equations

ui ,t + fi(ul,..ui)x - 0 i - 1,...,N

= u_ if x ( 0 (2)uO(x) - u(x,O)-
u+ if x > 0.

The results are presented in a preprint [7] in which their proofs
suggest a numerical method for the problem (2).

THE NUMERICAL METHOD

The algorithm works inductively, so assume that

ut + f(u)x - 0 , u(x,0) - u if x < 0 (3)
U+ if x > 0
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is solved. u may be either a vector or a scalar. Different kinds of
assumptions on f may be made, see [71 for more details, here we
assume that f is continuous and piecewise linear. Let uI - u-, u2,
u3 , . ,un - u+ be the constant states that make up the solution
and al, s2 . .. . an- 1 the corresponding shock speeds.

S Un- 1 sn - 1

Fig. 1 The solution of : ut + f(u), - 0.

Consider the next equation :

v_ if X <0
Vt + g(u,v)x  -0 , v(xO) = v+ if X <0v+a if I ) 0(4

v is a scalar variable. We know that passing from g(ui, ) to
g(ui+l, ), that is, passing from an area in the x-t plane of u = ui
to an area of u - ui+ I , we have a shock of speed si . On the other
hand, within each area u is constant, so there we have a scalar
problem with a restriction of the permitted shock speeds :
si-l < 8 < s i . Hence, the sequence of u-values induces a sequence
of g-functions to be considered; let gi denote g(ui, ). To help us
explicitely constructing the solution we define two kinds of sets:
Hi,in is the set of v-values where we may land after having made a
jump from gi+l to gi, and Hi+l out is the set of points from
where this jump may originate. Hence, Hi,in and Hi+l,out are the
permitted values to the left and to the right (respectively) of the
ui/ui+l shock. We start out on the function g, at the point v-v_.
We then find the set of points on gl from where we may jump to
gl(v_) with speed less than or equal to a, . By a jump we mean to
find a path along the upper/lower convex envelope (2). These are
the points that we may invoke where u-ul, and so make up Hl,in.
Next we consider 92 and find the points upon it from where we may
jump with speed sI and land on g, at a point of Hlin. This points
make up H2,out. H2,out is contained in H2,in (if we may jump from
a point, we may of course come there first). in addition we know
that we may move along g2 with speed between el and s2 . Therefore
we have to include in H2,in the points of g2 from where we may jump
to H2,out with such speeds. From H2,in we now repeat the process
for g3 as we did with g2 from Hl,in. The process is repeated until
Hn,out is constructed. We are now prepared to trace the solution,
and start out in the point gn(V+). If this point is in Hn,out we
Jump across to gn-l- Otherwise we first have to jump along gn with
decreasing speeds larger than sn-l until we reach a point of
Hn,out. Then pass to gn-l (where we know we land in Hn.l,in), from
where we may have to jump into Hn-1,out before passing to gn-2 etc.
In this way we construct our solution path all way down to gl(v_).
As shown by L.Holden and Heegh-Krohn [71, the solution exists, but
is not generally unique. However, the set of initial values where
we do not have uniqueness is finite, and in the case of two
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equations there is uniqueness. That will be the kind of system we
will examine closer, a system of equations modelling a case of
three-phase flow in a porous medium.

FLOW EQUATIONS

We write the equations

ut + f(u), - 0
Vt + g(u,v) x  = 0

and the initial states (to the left and right of x-0 respectively)
(u_,v-) and (u+,v+). Interpretated physically u denotes gas- and
v is oil-saturation. The saturation of water w = 1 - u - v. The
equations describe a system where gas-flow is independent of
whether it takes place in oil or water environment, whereas the

oil-flow is sensible to the amount of both water and gas present.
We have approximated f with a piecewise linear function. (Usually f
is determined experimentally, and so it is piecewise linear in most
applications.) We will denote the approximation f. Furthermore we
assume that both f( ) and g(u, ) are strictly increasing, con-
tinuous functions with at most one point of inflection. We also
assume f(O) - 0 and g(u,O) = 0 (no substance gives no flow) and
that g, ( 0 (the more gas present, the less relative amount of the
flow is oil flowing). The physical situation implies that g is not
defined for negative arguments nor for arguments so that u+v > 1.

EXISTENCE

We first state that the solution exists, that is, we can always
find the H-sets and the solution always remains within the phase-
space 0 1 u + v • 1.

Lemma 1.
The slope of the line connecting two g-functions at their endpoints

gi(l-ui) and gi+,(l-ui+1 ) equals si, the ui/ui+1 shock-speed.
Proof:
The slope of the line is

g(ui+l, l1-ui+ I ) - g(uj, l-uj)
5 7 ( 1-ui+l ) - ( l-ui )

Now, if h is the fractional flow function of water, we always have
f(u) + g(u,v) + h(u,v,w) - 1 (all that flows is u, v and w). If
v 1-u, w - 0, and so h 0. Hence g(u, 1-u) - 1 - f(u), and:

( 1 - f(uj+) ) - C 1 - f(u4) ) - f(u4 +I) - f(u 4 ) =

- 2- ui+ 1 ) - 1 - ui ) ui+l - ui

This lemma guarantees we do not pass out of the phase-space at

u+v-1. It also implies that if v-l-u i  H i (in or out), then 1-uj 6
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Hj for all J. The same is true for v-0, since all g-functions
coincide here. To show that the H-sets are non-empty, observe that
v- 6 H6,in (by construction). If Hlin - (v_} then (by Lemma 1) the
line through v- with slope s1 will cut g2. This cutting point will
be in H2,out. Then, by induction no H is empty. On the other hand,
if Hl,in consists of more than one point, at least one of the two
points 0 and 1-u1 is in it, and again no H is empty. Hence

Theorem 1.
The solution of the Riemann problem (5) exists and is well-defined
inside the phase-space 0 % u + v • 1.

THE H-SETS

For the S-shaped functions that we will be interested in. there are
basically three kinds of H-sets.
1) A cutting H-set. A H-set including one point of g

where gv is greater than a (fig.3a).
2) An upper-touching B . A H-set including all v > v1

where g(u,v') v - s (fig.3b).
3) A lower-touching H ° As for 2), but for v smaller

than some vO (fig.3c).

H o-P H p-H

Fig. 2 The three kinds of H-sets.

If Hi - (0,l-ui) we may name it both upper- and lower-touching.
(These names are motivated by the properties of the so called h-
functions of [7], our H-sets are the intervals where h - g.) We
define the points that determine the H-s in the following way:
A H-set consists of at most three parts, two intervals and possibly
one single point, for each index "i,xx" we call the right point of
the left part vi,XX,l , the middle point (cutting point) Vixx,c
and the lefthand point of the Right part vi,xxr. The v. or vr
("i,xx" is omitted when no confusion is possible) is called the
touching point if H is touching and gv(vl) or gv(vr) equals the
corresponding a. Denoting the u-solution sequence uI - u-, u2 , u3 ,
* . , un - U+, we order the H-sets :

Bl,in # H2,out . H2,in * H3,out I . . . . Hn,out,
With respect to this order we have the following useful property

Lenma 2.
Except for the first it-set we may divide the sequence into two
parts (possibly one is empty). The first part consists of cutting,
the latter part consists of only upper or lower-touching sets.
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Proof
Assume that uI < U2 < Un Then gi gi+l. Assume that Hi is
upper-toucing. We will prove that the next H is upper touching. If

Hi is an "out" set, we construct Hi,in by adding the interval v',
vi~out,r) where gi(v')v - si. (Or v1 - 0 if the slope of gi is
always smaller.) In addition we include the interval (vi,out,l ,
v'') where v1' is the point where the line through v' with slope si

cuts gi. Then, Hi,in is upper touching. If Hi is an "in" set,
Hi+l,out is constructed by tracing gi+l from the right until gi+lv
- si (touching point), then including the part to the left of the
point where the line through this point with slope si cuts gi+l. So
Hi+1,out will be upper touching also in this case. A lower touching
or a cutting H may induce a cutting or an upper touching H in the
next step. The case of a decreasing u-sequence is treated symmetri-
cally, upper should be substituted with lower, right with left and
vice versa. #

By simple use of Lemma 2 we find the following monotonity property

of the solution (see Gimse [81).

Theorem 2
There is a value so , so that both v(s), for s < so
and v(s), for s > so are monotone functions. #

The following lemma determines how Hin is related to Hout

Lemma 3:
If the points are defined
vi,in,l ) vi,out, 1  and vi,in,r ( Vi,out,r.
Proof:
Since we have a finite number of u-shocks, there is only a finite
number of shock speeds to consider. Hence, there is some minimum

difference 5smin - min(si-si I ) ) 0. Consider the following figure

h

vi,in,l x

Here si - h/x and si_ 1 - h/(K+B x ) (the H-sets are assumed
cutting, if one (or both) are touching , the upper line is higher
above, and so 5x will be even greater). Thereby 

8 0min 1
( h 6x / x(x+8x) ) I ( h 6x / x2 ) , which gives: 5x 2 5smin x

2 /h.
Since gi is increasing, 5x S vi,inl-Vi,out,l* The argument for the

upper part is similar, if Hi is upper touching, vi,in,r is the
point where gv - si and where gv - si-1, Vioutr is greater . #

Before investigating continuity and stability properties we make

the following observations concerning jumps between the H-sets. (We

assume that the u-sequence is increasing, the case of a decreasing

sequence is treated symmetrically. )

1) The points of the right part of Hi,out is mapped continuously

onto the right part of Ri-l,in ( say (v'', l-ui..)).
2) Either s The middle point of Hiout is mapped into the middle

point of Hi-l,in.
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Or : There is an interval (v, vi,out,l) that is mapped con-
tinously onto the interval (Vi.l,in,r -v')

3) The rest of Hi,out is mapped continuously onto (01 vi,in,l).
4) The rightmost part of the left and the leftmost part of the

right part of Hi,in is mapped into the middle or touching point

of Hi,out.

CONTINUITY AND STABILITY

With respect to v+ and v-.
Consider two values v+ and v+'. We will demonstrate that if v+' is
close to v+, the solution paths are close (Ll-close). Assume the
last Hout is upper-touching. (The case of Hout lower-touching
(decreasing u-sequence) is treated symmetrically.) If both v+ and
v+' are outside Bout, we have to jump into the touching point, and
so their paths coincide from there. Next, if v+ is on Rout, but v+'
is not, they move closer if v+ is in the upper part, while they are
separated if v+ is in the lower part. In the latter case, v+'
passes to the touching point. This situation is however equivialent
to the case of v+' in the rightmost point of the lower part of
Hout. The only difference in the solution path is the jump up to
the touching point and down. Observe that the speed of these two
jumps are close, and that the difference tends to zero as v+' - v+.
It remains to consider the case when both v+ and v+' is on Rout (or
have come there by jumping as above). If the two points pass to the
same part of the next Sin, (and if gvv is not zero in some inter-
val), it is obvious that the mapping is continuous with respect to
the distance between the v-values (the observations above). Then
assume the two points do not pass to the same part of Hin. The
leftmost point then end in the lower part of Hin, while the right
point goes to the upper part. However, by Lemma 2, the leftmost
point, if it was sufficiently close to the other, cannot be on the
next Hout. (If Bout is cutting, nor can the right point.) Thus,
the leftmost point have to pass to the upper part (with speed
between the incoming and the outgoing) and so will come closer to
the right point. Finally, assume that we start out on a cutting
Bout, If both v+' and v+ are on Hout , we pass continuously over as
above. If none of them are, both jump into the cutting point, from
where the paths are identical. If one is and the other is not part
of Hout, the latter jumps into the cutting point, from where it
continues back to v-, while the other passes over, but (by Lemma 3)
it will not land in a point of the next Hout. Therefore, in the
next step this point also passes into the secuence of cutting
points. Hence, the solutions, as curves in phase-space, are close
in the two cases ; Single shocks are not necessarily stable, but
rarefaction waves are.
Remark : If g is approximated by piecewise linear functions, one
may have an interval of slope equal to some si . Thereby the jumps

between the gls do not map the distance from v' continuously in a
small neighbourhood of v'. However, as the approximation is done
finer, the discontinuities tend to zero.
In fig.3 we have illustrated the construction of the solution in a
simple case of three different u-values (ul ( u2 ( u3 ).
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~pH 3  t

H 3,out

Fig. 3 An example of H-sets and solution paths.

We now turn our attention to the problem of variation of v-. For
any value v-1 in a small neighbourhood of v-, let H' be the H-sets
constructed from v_.

Lemma 4 :
If Hj* and Hj are both touching, then Hi - Hi' for all ikj.
Proof:
The slope at the touching point is the same (independent of v-),
hence the touching points are equal, and so the entire sets.#

We turn to the case of two cutting H-sets. We have

Lemma 5 :
The perpendicular distance between the two parallel1 lines through
the cutting points is less than the distance Iv- - v_11
Proof:
The lemma trivially holds for the first pair of H-sets. Assume it
is valid for index J. Since g(u, ) is increasing, the upper line
intersects with g(uj, ) above and to the right of the intersection
of the lower line. The algorithm tells us to tilt the lines a bit
more (sj-l ( sj), and so the perpendicular distance shrinks. #
Observe that this lemma is also valid if one Hi is touching, while
the other is still cutting. Then assume H1 ' is touching while Hj is
cutting. Since gu ( 0, we know that the perpendicular distance
between the lines from the point of gj with slope sj to the similar
point of gj+l, 8, is greater than 0. If Iv- - v-'1 < 5 then the
perpendicular distance between the touching line of HI and the
cutting line of H is also < 8, (by Lemma 5), and so the next H
cannot be cutting. Hence,

Lemma 6 :
If Hi, is touching and Hj is cutting, then Hi' = Hi for i > j

provided v-s is sufficiently close to v-. #
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We are now prepared to trace the solutions. AS long as we have
touching functions there are no problems, the first step where we
have to differ, is when reaching a point on some H' but not on the
corresponding H (or vice versa). In the latter case we proceed to
the cutting point, while in the first case we jump across. However,
by Lemma 3, we will have to enter the sequence of cutting points in
the next step. These sequences are close (Lemma 5), and so are the
solutions.

With respect to all initial data.
In the proceeding sections we have proved stability with respect to
the initial values v- and v+ independently. It is easy to see it is
not necessary for one of the initial v-values to be fixed : The
solution with initial values (v_,v+) is close both to the solution
of (v_,v+') and of (v_',v+). Hence, (v_',v+') which is close to any
of the two, is close to the solution of (v_,v+).
Finally it remains to discuss stability with respect to u- and u+.
Consider again an increasing sequence of u-values, (the opposite is
treaded symmetrically,) and observe that the solution of ut +
f(u), - 0, will consist of at most one rarefaction wave ( an
approximated rarefaction wave ) and one shock. (This is due to the
shape of f.) Assume it starts out with a rarefaction wave. Then,
by taking some u-1 close to u-, we introduce or lose one (or a few)
u-value(s). The remaining u-values of the approximated wave are the
same. (Assume u-1 > u-, else, rename.) If Hi,in is upper touch-
ing, so is all H'. If Hl,in is lower-touching or cutting we know,
by the continuity of g, that the touching/cutting point of the
first H' is close to the corresponding point of H. Hence, the
situation will be similar to the problem of variation of v-. On the
other hand, if u+ is varied slightly, the last g-function will be
slightly different (again by continuity of g), and so will Hout.
(If there is no distinct shock at u+, one (or a few) g(s) may be
added or subtracted at the end of the sequence.) Thus the jump
from the last function will be slightly altered only. We have:

Theorem 3 :
The essential structures of the solution of the initial value
problem is stable with respect to variation of the initial values.
( By essential structures we mean rarefaction waves, approximated
rarefaction waves or major discontinuities. The structure of single
peaks are not necessarily stable.) #
Corollary .
The solution (as a curve in phase-space) depends Ll-continuously
upon the initial data. #
This Corollary is weaker, since approximated rarefaction waves
consist of single points in phase-space.

THE APPROXIMATION

Finally we investigate the correspondance between the exact
solution, where f is not approximated, and the numerical solution
where it is. If the not-approximated f gives a discontinuity in u,
so does the approximated, so assume that u is continuous. If u is
constant, we solve a scalar problem exactly (g is not approxi-
mated), so it remains to consider a not-constant u. Then, by
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carrying out the differentiation of vt + g(uv) x - 0 (e.g. (7])

S . gu usA + gv
vs

The algorithm for the approximated case gives us a sequence of
g-functions (gij - g(ui,vj))

93 1  
g3  

g 33

911 2 g1 3

We make a difference approximation to s at 922 by setting 2

gu . g3 2  g1 2  and gv 923 - 921
gu u3 - Ul V 3 - v

3 u3 -v3- vI
and Us= 6 Vs = bs

Then put these approximations into the expression for s:

8 - (g32 - g 1 2 + 923 - g 2 1 )/(v 3 - vl) .

Now, by using the same approximation for gu and gv in a first
order Taylor's formula (expanded for the point g22 ) we find :

gij g2 2 +[(g 3 2 -g 12 )/(u 3 -ul)J'(ui-u 2)+L(g2 3 -92 1 )/(v3 -vl))'(vj-v 2 )-

We solve for s, - (g2 2 -gll)/(v 2-v I ) and s2 - (g3 3 -g2 2 )/(v 3 -v2 )

al t; [(g32 - g1 2 )-(v 3 - vl)/(2(v 2 - vl)) + 923 - 921

s2 R; 1(932 - g1 2 )°(v 3 - vl)/(2(v 3 - v 2 )) + g 2 3 - 921

Where we have assumed : ui+l - ui - bu for all i (uniform
approximation).
Hence : Il 8 : 2, or sI  a 8 2, and sl - 82 when 6u # 0.
Furthermore, we know that a difference approximation will con-
verge, so our approximated s will tend to the exact s value. Thus,
Theorem 4 :
The solution when f is approximated by a piecewise linear function
will converge to the exact solution as the approximation converges.

APPLICATIONS

We close this paper with some remarks on applications. In general
Cauchy problems we may approximate the initial value function by a
piecewise constant function to obtain a finite number of Riemann
problems. These may be solved as above. We may apply the results of
(2] to the (scalar) gas-flow equation. They proved that when a

finite number of Riemann problems are considered, there is only a
finite number of shock colli-sions, and so the method solves the

167



problem in a finite number of steps. In our case, in a bounded
spatial area, we will find a single, constant u-value after some
time (since all speeds are greater that zero, all shocks will move
out of our area of interest). Then our second equation is scaler,
and we may apply [21's argument once more. In [8] some examples of
such problems are shown, also with some comparison to upwind
schemes. Also note that our model, when applicable, gives no
problems with elliptic regions ((9), [10] ) nor unbounded variation
(e.g. (11]). The second important application of the ideas pre-
sented here, is the problem of discontinuities (e.g. in geological
dates in oil reservoir simulation). Such differences give rise to
one flow f-nction in one region and a different flow function in
the neighbouring region. By assuming a shock of zero speed at the
discontinuity we may solve the problem by making a jump from the
one to the other as we do between different g-functions. Alterna-
tively we may add an equation with a zero flow function
u0,t = 0 , with appropriate initial conditions.
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ABSTRACT

Arguments are advanced that physically meaningful

nonunique solutions to Riemann problems can occur. The impli-
cations of this point of view for both theory and computation are
developed, as part of a review of recent progress concei.ing the

interaction of nonlinear waves and the front tracking method for
computation.

I. Computations

We emphasize the possibility of nonuniqueness for solutions of Riemann

problems. The implications of nonuniqueness for computational science are
clear: there is a decisive advantage for computational methods which allow
explicit choice under user control among possible nonunique solutions. The

case of flames and reactive fluid flow is a well explored test case. Either it is

necessary to use exceedingly fine computational scales, to resolve the chemistry

and internal fluid layers fully (which would normally be prohibitive in a large
scale computation) so that the flame speed is determined correctly as a conse-

quence of the computation, or it is necessary to add the flame speed or some
equivalent information explicitly to the computational algorithm. Although

front tracking is not the only way to do this, it has been recognized as a

promising vehicle to achieve the second of these possibilities. The second

route, because it does not require the full resolution of internal layers, allows
1. Supported in part by the National Science Foundation, grant DMS - 8619856
2. Supported in part by the Applied Mathematical Sciences subprogram of the Office of Energy Research,
U. S. Department of Energy, under contract DE-AC02-76ER03077
3. Supported in part by the Army Research Office, grant DAAO29-85-0188
4. Supported in part by the Air Force Office Office of Scientific "fearch AFSOR-5-0025.
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enhanced resolution in the computation. To the author's knowledge, the

second route is the dominant one for the large scale computation of reactive

fluids, especially in the case of flames and detonation waves.

Enhanced resolution in fluid computations is a problem of major impor-

tance. Front tracking is an adaptive computational method which is especially

oriented to fluid discontinuities. For problems with significant discontinuities,

such as shock waves and fluid interfaces, it has yielded enhanced resolution by

factors typically in the range of 3 to 5 per linear dimension (27 to 125 per

space time grid block in two spatial dimensions) and occasionally up to 50 per

linear dimension (1.25 x 105 per space time grid block) [10]. One could expect

further advantages in the more complex cases involving nonunique Riemann

solutions, such as reactive flow, where the full resolution of a complex internal

structure can be avoided by the use of front tracking.

Front tracking is based on marker particles, which locate a discontinuity

surface sharply, without numerical smearing. The particles are propagated by

a fluid velocity, characteristic velocity or shock speed velocity, and thus

represent Lagrangian or characteristic particles embedded in an Eulerian com-

putation.

Front tracking is also based on mathematical theory, and necessity being

the mother of invention, it has motivated some of the recent developments in

the theory of hyperbolic wave interactions (Riemann problems), as is discussed

in the next section.

II. Mathematical Theory

11.1. The Isolated Umbilic Point. We study the hyperbolic conservation

law

U, + V.F(U) = 0. (2.1)

Let

A F (2.2)a

be the Jacobian matrix and

Xl, '' (2.3)
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its eigenvalues, assumed to be real but not necessarily distinct. Let
rl, ' • • , r. be the corresponding right eigenvectors. Points Uo with non dis-

tinct X's, i.e. X,(Uo) = X, + 1(Uo), are called umbilic points.

Let the solution values U(x,t) lie in a state space S :

U(x,t) E S C R-. (2.4)

Then the hyperbolic wave structure of (2.1) defines a geometry on S and
umbilic points are generically singular points in this geometry as we now
explain. Let = x/t. Then U = U(6) = U(xlt) is a solution of (2.1) provided

(6I - A)Ut = 0, (2.5)

or in other words = X,(U) and up to a scalar factor U1 = ri(U). These solu-
tions, called rarefaction waves, define coordinate lines on S, one for each i,
1 - i - n. For distinct eigenvalues X1, standard perturbation theory for
matrices is available, and yields a regular geometr3 defined by the rarefaction

wave curves. However for degenerate eigenvalues, matrix perturbation theory
involves fractional powers and the singular wave geometry at umbilic points

reflects this fact. The singular geometry of the wave curves associated with
umbilic points U E S gives rise to striking and novel phenomena for the

interaction of nonlinear hyperbolic waves. A survey of this work, due to E.
Gomes, H. Holden, Eli Isaacson, D. Marchesin, P. Paes-Leme, F. Palmeira,
B. Plohr, D. Schaeffer, M. Shearer and B. Temple, is contained in [12]. An
essential tool in the development of this theory was the development of a com-
putational code for the numerical solution of such Riemann problems by Mar-
chesin, Plohr and co-workers.

1.2. Entropy Conditions. Shock waves are jump discontinuous weak

solutions of (2.1), characterized by the relations

s[U] = [F] , (2.6)

where

[U] =U + - U- [F] =F + -F- (2.7)

are the jumps in U and F and s is the shock speed. These weak solutions are

nonunique, and supplementary conditions, known as entropy conditions, are
imposed to reject undesired solutions and hence to yield uniqueness for solu-

tions of the Riemann problem.
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The Riemann problem is the Cauchy problem with scale invariant data, so
that in one space dimension, U(x,O) = UL for x < 0, U(x,O) = U, for x > 0.

Gomes [14] has observed that a fundamental entropy condition for solutions
of the Riemann problem fails. She obtained this result in the process of com-
pleting the solution of Riemann problems for quadratic flux F models.

The Lax entropy condition counts the number of characteristics which
enter the shock wave; it is required that for one family (i), the characteristics
enter the shock wave from both sides while for all other families, the charac-
teristics cross. Thus they enter from one side while leaving from the other.
Such shocks are clearly associated with a single (i) characteristic family.
Gomes has given what seems to be the first example of a system (2.1) with a
Lax shock which fails to have a viscous profile. A shock has a viscous profile
if it is the limit as e - 0 of solutions U, of the associated parabolic equation,

Utf + V.F(U') = eAUI, (2.8)

see also [3]. A second fundamental entropy condition is shock profilability, as
defined above; namely U = imU, . Gomes finds profilable shocks which are

not Lax shocks in her examples. Thus these two notions are properly disjoint.
She shows that the Riemann problem has a satisfactory existence theory, when
solved in the class of profilable shocks, but it may fail to have solutions in the
class of Lax shocks. Gomes' examples are simple mathematically and are
motivated by three phase flow in oil reservoirs, so they cannot be rejected on

either aesthetic or pragmatic grounds.

11.3 A New Paradigm For Differential Equations of Mathematical Physics.
The ideas of Hadamard hold that mathematical equations modeling physics
should be well posed, in the sense that the solution should exist, and be
uniquely and continuously determined by the data. For more than forty years,
examples of an equation of state with nonunique Riemann solutions were
known. See [21] for example. The shocks are profilable Lax shocks in these

examples. The equation of state is thermodynamically consistent but appears
to be pathological and perhaps does not correspond to any real material. For

whatever reason, these examples have been somewhat overlooked.

The Riemann problem associated with polymer flood of oil reservoirs has

a line of umbilic points. An entropy condition gives a unique solution of this
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Riemann problem. Eli Isaacson and B. Temple have analyzed the large time

asymptotics for solutions with fixed left and right states, UL and UR [17]. The

asymptotics is not uniquely determined by UL and Uit. There is a one parame-

ter family of asymptotics, each a solution of the same UL - UR Riemann prob-

lem. In other words these particular non unique Riemann solutions are physi-

cally meaningful and should not be rejected. In forthcoming work, Eli Isaac-

son, D. Marchesin and B. Plohr [18] have shown that the allowed solutions of

a Riemann problem may depend on the explicit form of the viscosity matrix

(taken as the identity in (2.8)), in the neighborhood of an isolated umbilic

point.

Brio [1], in studying Riemann problems for MIHD, has found umbilic

points with two and three coinciding eigenvalues. Admissibility of shocks

depends on the form of the viscosity matrix and numerical computation shows

that the nature of the computationally resolved wave patterns depends sensi-

tively on the choice of numerical method. Freistuhler [5] has also studied

Riemann problems associated with MHD. He has a simple model with an iso-

lated umbilic point and a cubic flux function. The solution has a very dif-

ferent character from the previously studied isolated umbilic point with a qua-

dratic flux function. Again most commonly used entropy conditions give

inconsistent and unsatisfactory results. He also has an example of nonunique-

ness of solutions of the Riemann problem for shocks with viscous profiles.
Freistubler proposes dynamical linearized stability as an acceptable entropy

condition in his model.

Combustion waves also depend on a ratio of length scales to set the speed

and hence the wave structure between a given left and right state. Computa-
tions with combustion are also very sensitive to numerical methods when these
internal length scales are not fully resolved computationally.

Physically meaningful nonunique solutions are known from other exam-

ples. Combustion equations with unburnt UL = UR have two solutions, one
for unburnt U = UL for all t and one for ignition of combustion at

x = 0, t = 0. Both solutions are physically meaningful.

A paradox is associated with shock reflection problems, in that simple

arguments cannot distinguish between two possible solution geometries (regu-

lar reflection and Mach reflection). Non uniqueness of weak solutions for the
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Euler equation is a possible resolution of this paradox.

The Riemann problem for steady two dimensional flow with supersonic

left and right states has a high degree on nonuniqueness. In this problem there

is a body of lore for selecting the "correct" solution, some of which seems to

imply a further specification of the problem physically, such as the existence of

boundary layers.

We propose a new paradigm for the study of uniqueness in Riemann

problems. It is convenient to express our ideas in the language of dynamical

systc .. Nonuniqueness corresponds to a bifurcation. A mathematical charac-
terization of nonuniqueness is given by a complete unfolding of the Riemann
problem, which would identify the multiplicity and or dimensionality of
nonuniqueness. Some of this nonuniqueness should be rejected as "universally
unphysical", and then canonical forms for the remaining "possibly physical"
solutions could be found.

Next standard unfoldings can be constructed, and mapped onto the canoni-
cal forms above. The viscosity profile criterium has been described above.
limits of smooth Cauchy data approaching jump data is a regularization
related to both the combustion and the polymer nonuniqueness examples dis-
cussed above. Most systems are subsystems or asymptotic limits of larger sys-
tems. Enlarging the system is or might be a regularization in agreement with
fundamentally correct physics. This is most commonly the correct regulariza-
tion for equations with embedded elliptic regions. Heterogeneous, noisy or
stochastic perturbations to the data or the equations may also resolve some
examples of nonuniqueness.

The conservation law (2.1) is invariant under the scale transformation

group

x-ax , t-at, a>O. (2.9)

It is a general feature of scale invariant problems that they may be underspeci-
fied, and hence sitting on bifurcation points. Scale invariant problems are
characterized by the setting to zero of all length scales. There is no reason to
require that the unfolding of this bifurcation has a unique physically meaning-
ful branch. For example if the physics of well posed problems in a neighbor-
hood of a conservation law depends in an essential manner on two length
scales, then their ratio is a dimensionless number, which must be specified as
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an addition to the conservation law, in order to give it a unique physical con-

tent.

1.4. Wave Structures for Real Systems. A comprehensive treatment of
the wave structures implied by real (as opposed to ideal) equations of state has
been written [21]. In this work, the older theory is reworked and unified and
new results have been added. A presentation of the equations of elastic flow
in Eulerian conservation form has been given [22] using the language of
modem differential geometry [20]. Modeling related to three phase Buckley-
Leverett equations for oil reservoirs was mentioned above [15,16]. (See Sec-

tion 2.1.)

11.5. Two Dimensional Waves. The elementary waves are the building
blocks out of which a Riemann solution is constructed. The Riemann solution
is characterized by invariance under scale transformations (2.9), while the ele-
mentary wave is invariant under an additional symmetry: it moves at a constant
velocity with fixed form as a traveling wave. The elementary waves for a
polytropic fluid equation of state were classified in [8]. In two dimensions the
Riemann solutions will in general have an infinite number of pieces, and can-
not be described explicitly. However this objection does not apply to certain

restricted classes of two dimensional Riemann problems [19.27], nor does it
apply to the approximate solution of general Riemann problems. A very suc-
cessful line of work has been the study of two dimensional (wave front curva-
ture) corrections to one dimensional wave motion for reacting fluids. Let D(K)

denote the detonation velocity for an unsupported wave, as a function of cur-

vature K, and let 8D(K) = D(0) - D(K). For expanding waves, Bukiet, Jones,
Bdzil and Stewart [2,26] have determined 8D as a function of K and the reac-
tion rate 8, to leading order in K. They find

8D =C 1 K, 8<1,

8D=C2 KIn(K)+ C3 K, 8 =1,

1
8D = C4 KT , 1<8.

The coefficients cll , c4 depend on the equation of state, the reaction rate
and the kinetics. They can be determined analytically in simple cases and

numerically in any case.

175



111. Applications

Our primary applications to technology have been to the modeling of oil

reservoirs [4,7,11]. Those to science have concerned chaotic mixing associated

with unstable fluid interfaces. We have given what appears to be the first

correct computation of a single mode Rayleigh-Taylor finger and bubble, both

for the incompressible [9] and compressible [6] cases, for general values of the

Atwood number A. These computations were compared with a large body of

experiments for a range of values of A, and to theory and incompressible com-

putations (for A = 1 only, because the theory and prior validation of computa-

tion was available in this case only).

However, in a discovery which should be a warning to chaos workers in

other, related, problems, we found [13] by analysis of experiments of Read

[231 that the single mode theory is irrelevant to chaotic flow, and gives a termi-

nal bubble velocity which is incorrect by a factor of two or more. The cause of

this discrepancy has been traced to bubble-bubble nearest neighbor correla-

tions.

A statistical model for bubble interactions due to Sharp and Wheeler

[24,25] was tested and found [13] to give agreement with experiment.
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SUMMARY

In this note we discuss new, simple stability criteria for a wide
class of finite difference approximations for initial-boundary value
problems associated with the hyperbolic system au/at = Aau/ax + Bu + f in
the quarter plane x ) 0, t ) 0. With these criteria, stability is easily
achieved for a multitude of examples that incorporate and generalize most
of the cases studied in recent literature.

Consider the first order system of hyperbolic partial differential
equations

8u(x,t)/3t = Aau(x,t)/ax + Bu(x,t) + f(x,t), x ) 0, t ) 0, (Ia)

where u(x,t) = (u(1)(x,t),... u(n)(x,t)) ' Is the unknown vector (prime
denoting the transpose), f(x,t) = (f() (x,t),....f(n)(x,t))' is a given
n-vector, and A and B are fixed n x n matrices such that A is diagonal of
the fbrm

A = diag(A ,A"I), A' > 0, A" < 0, (2)

with AI and AI1 of orders k x k and (n-k) x (n-k), respectively.

The solution of (la) is uniquely determined if we prescribe intial
values

u(x,O), x ; 0 (lb)

and boundary conditions

u I(0,t) = Su I(O,t) + g(t), t ) 0, (lc)

where S is a fixed (n-k) x k coupling matrix, g(t) a given (n-k)-vector,
and

u= (u(1 )  ,u(k)),, uI' (u(k+l). u(n)), (3)

a partition of u into its outflow and inflow components, respectively,
corresponding to the partition of A in (2).

* Research sponsored in part by U.S. Air Force Grants APOSR-83-0150 and
AFOSR-88-0175.

** Research sponsored in part by NASA Contract NASI-17070 and U.S.-Israel
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Introducing a mesh size Ax > 0. At > O,such that A a At/Ax is constant,

and using the notation vv(t) = v(vhx,t), we approximate (1a) by a general,
basic difference scheme - explicit or implicit, dissipative or not, two-
level or multilevel - of the form

S

Ql V (t+at) = Q av v(t-aAt) + AtbV (t), v = r.r+l,....

(4)
p

Qa j_A-r E v = V V+11 '~= rAEv = 1 1

where the n X n coefficient matrices A are polynomials in XA and AtB, and
the n-vectors b. (t) depend on f(x,t) its derivatives.

The difference equations in (4) have a uniqu. solution vV(t+At) if we

provide initial values

v,(pAt), A1 0. . = 0,1,2 (5)

and specify, at each time level t = IAt, p = s,s+l,.... boundary values
vv(t+At), p 0 ,...,r-l. Such boundary values are determined by condi-
tions of the form

T(V)v (t+&t) = Th))v (t-aAt) + Atd (t), v = 0,... ,r-l,
a=O

(6a)

(V) T (V)~
= L C "aE a = -1.. ..,q,T0 jo ...

where the n x n matrices C a depend on A, AtB and S, and the n-vectors

dv(t) are functions of f(x,t), g(t) and their derivatives.

Our Intention Is to interpret the difficult and often stubborn
Gustafsson-Kreiss-Sundstrom (GKS) stability criterion in [41 in order to
obtain simple and convenient stability criteria for approximation (4)-(6a).
While we were unable to meet this goal for general boundary conditions of
type (6a), we managed to achieve rather satisfactory results under the
further assumption that, in accordance with the partition of A in (2),
the CW) are of the form

( ja = (6b)

I ja ja
where

11

the C are independent of v, (6c)

II

the C are diagonal when B = 0, (6d)

I 11(v)
the C = 0 when B = O, (Be)
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CI =' 0 for J > 0 and a > -1 when 8 = 0. (6f)Cja

The essence of (6c)-(6e) is that for B = 0, the outflow boundary

conditions are translatory (i.e., determined at all boundary points by
the same coefficients), separable (i.e., split into independent scalar
conditions for the different outflow unknowns), and independent of inflow
values. Assumption (6f) implies that for B = 0 the inflow values at the
boundary depend essentially on the outflow.

It should be pointed out that our outflow boundary conditions are
quite general, despite the apparent restrictions in (6c)-(6e). Indeed,
(6c) is not much of a restriction, since in practice the outflow boundary

conditions are translatory. In particular, if the numerical buundary
consists of a single point, then the boundary conditions are translatory
by definition, so (6c) holds automatically. The restrictions in (6d),(6e)

pose no great difficulties either, since they are satisfied by all

reasonable boundary conditions, where for B = 0 the CII usually reduce to

polynomials in the block A
I, and the C! II(M) vanish.ja

ja

We realize that in view of the restriction in (6f) our inflow boundary

conditions are not quite as general as the outflow ones. They can, however,
be constructed to any degree of accuracy (see [1]); and if the boundary
consists of a single point, then such conditions can be achieved in a

trivial manner, simply by duplicating the analytic condition (Ic), i.e.,

V I(t+ht) = Sv (t+bt) + g(t+At).0 0

Throughout our work we assume, of course, that the basic scheme (4)

is stable for the pure Cauchy problem, and that the other assumptions which
guarantee the validity of the GKS theory in [4] hold.

The first step in our analysis was to reduce the above stability
question to that of a scalar, homogeneous problem. This is obtained by
considering the outflow scalar equation

8u/at = aau/ax, x ) 0, t ) 0, a = constant > 0, (7)

for which the basic scheme (1.4) reduces to the homogeneous scheme

s

Q_1v, V(t+At) = Q v (t-aAt), v = r,r+l ....
=0 a(8a)

p
o . Jo ES=-,. ,

j=-

and the boundary conditions (1.6) reduce to translatory conditions of the
form

q

T_ v V(t+6t) = T v (t-aht). v = 0,. r-,-Vo=o0~~-b) .. rl

(8b)

m
T a c jaE, -1,...,q,
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where ajo and c are scalar coefficients.

Referring to (8) as the basic approximation, we proved:

THEOREM 1 [3, Theorem 1.1]. Approximation (4)-(6) is stable if and
only if the reduced outflow scalar approximation (8) is stable for every
eigenvalue a > 0 of Al. That is, approximation (4)-(6) is stable if and
only if the scalar outflow components of its principal part are all stable.

This reduction theorem implies that from now on we may restrict our
stability study to the basic approximation (8).

In order to introduce our stability criteria for the basic
approximation, we use the coefficients of the basic scheme (8a) to define
the basic characteristic function

P(Z,K) = aj - a Z-- i
J=-r [= j

Similarly, using the coefficients of the boundary conditions in (8b) we
define the boundary characteristic function

m Iq aa- J
R(zK) = cJ, - c

Now putting

f(z,K) 0 IP(z,K)I + IR(z,K)I,

it is not difficult to combine Theorems 3.1' and 3.2' of [3] In order to

obtain:

THEOREM 2. The basic approximation (8) is stable if:

(i) either
aP(z,K) aP(z,K) I

az ac - Iz=K=-l < 0 (ba)
or

9?(z=-l,=-l) > 0. (lOb)

(ii) 2(z,K) > 0 for all Izi = JKJ = 1, K # 1, (Z,K) 0 (-1,-i), (10C)

Q(zi=l) > 0 for all Iz1 = 1, z * 1, (lOd)

O(z,K) > 0 for all IzI ) 1, 0 < lKi < 1. (loe)

The advantage of this setting of Theorem 2 is clarified by the
following lemma, in which we provide helpful sufficient conditions for j

each of the four inequalities in (lOb-e) to hold:
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LEMMA 1 (3, Theorem 2.2].

(i) Inequalities (10b,c) hold if either the basic scheme (8a) or the

boundary conditions (8b) are dissipative.

(ii) Inequality (10d) holds if any of the following is satisfied:
(a) The basic scheme is two-level.
(b) The basic scheme is three-level and

Sl(z=-1,K=I) > O. (11)

(c) The boundary conditions are two-level and at least zero-order
accurate as an approximation of equation (7).

(d) The boundary conditions are three-level, at least zero-order
accurate, and (11) is satisfied.

(iii) Inequality (10e) holds if the boundary conditions fulfill the von
Neumann condition, and are either explicit or satisfy

TI(K)- 0 cj 0for0< IJ K .1.
- J=0 ,-1

As mentioned earlier, we always assume that the basic scheme is stable
for the pure Cauchy problem, i.e.,

(I) The basic scheme fulfills the von Neumann condition; that is, the
roots z(.) of the equation

P(z, )j = 0

satisfy

Iz(K)l 4 1 for all K with kI = 1.

(1i) If JKJ = 1 and z(K) is a root of P(z,K) with Jz(K)j = 1, then z(K) is
a simple root of P(Z,K).

As usual, we say that the basic scheme is dissipative If the roots of
P(z,K) satisfy

Iz(K)I < 1 for all K with JIJ = 1, K 0 1.

Analogous definitions hold for the boundary conditions with P(z,K)
replaced by R(z,K). Clearly, both for the basic scheme and the boundary
conditions, dissipativity implies the von Neumann condition.

The stability criteria obtained in Theorem 2 depend both on the basic
scheme and the boundary conditions, but not on the intricate and often

complicated interaction between the two. Consequently, Theorem 2, aided by
Lemma 1, provides In many cases a convenient alternative to the celebrated
GKS stability criterion In [4].

Having the new criteria, one can now easily establish stability for a
host of examples that incorporate and generalize most of the cases studied
In recent literature (e.g., [3]). We conclude this note with three of
these examples:
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EXAMPLE 1. Consider an arbitrary basic scheme, and let the boundary
conditions be generated by either the explicit, first-order accurate,
right-sided Euler scheme:

v (t+At) =v (t) + X.a[v V1(t) - vV(),0 < ka < 1. i'=0 r-, (2

or by its implicit analogue:

v (t+At) = v V (t) + Aa~v +1(t+'At) - v V(t+At)], )An > 0, vi = 0,..r-1. (13)

These two-level boundary conditions are dissipative (see (1], Examples 3.5
and 3.6), hence fulfill the von Neumann condition. Further, for (13) we
have

Re[T_ (K)] = 1 +Xa[l - Re(ic)] 0 0, lid 4 1.

By Lemma 1, therefore, Inequalities (IOb-e) hold, and Theorem 2 implies
stability.

EXAM4PLE 2. Take an arbitrary two-level basic scheme, and define the
boundary conditions by horizontal extrapolation of order J-1:

v (t+At) I ( )(-I) v (t+ht), V) 0--r-1.
J=j Vi

Here,

J+1 1
R(z,K) (I) K~i (1-ic)

so R(z,x) 0 0 for K 0 1, which directly gives (10b,c,e). Moreover, since
the basic scheme is two-level, Lemma l(ii)(a) implies (10d), and Theorem 2
again proves stability.

It is Interesting to note (e.g. [2]) that this result may fail, both
for dissipative and nondissipative basic schemes, if the basic scheme con-
sists of more than two time levels.

EXA14PLE 3. Consider the Leap-Frog scheme

v (t+At) - v V(t-At) + Aafv +1(t) - v V1(t),0<A<1,V ,23.,

with oblique extrapolation of order 1-1 at the boundary:

v 0(t+At) X(')(-I)J+ 1 v [t -(j-l)At].
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We have

P(z,K) = 1 - - Aaz 1 (K - K-)

so

aP aP Z -1K-'T" - z=K=-i = Xa<o

Also,

Q(Z,K) k IP(z,K)I > 0 for z = K t ± 1,

and

D(ZK) ; IR(z,K)l = 11 - Z-K 1  > 0 for z 0 K.

Hence, (lOa,c-e) hold, and by Theorem 2 stability follows.
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1. Problem Formulation

In this note we consider melt problems for solid heat conductors. The basic conservation law is

the balance of energy

pik' + 6. = 0, (1.1)

where i is the internal energy density, 4 the heat flux, and P, the constant mass density of the

material in its reference configuration. We shall replace the Fourier law: 4 = -klt by the first
order relaxation process

614 1 + + kite = 0, 51 > 0 and k, > 0, (1.2)

where t is the local temperature. The internal energy is given by

c +(13)

where

cI=L' >0 and I=Le >0 (1.4)

are the specific and latent heats respectively. 0 is an order parameter or "phase field" variable.
Here 4' can be identified with the strain or specific volume at a material point 9 at time i; that
is the strain 1 can be recaptured from 40 via

S(1.5)

where f is a nonnegative increasing function. The order parameter 0 is assumed to satisfy a

Landau-Ginzburg type equation

620 - k2021=-,( 1) + A21, 1)

where 62, k2, and 1, are positive constants.1

It is convenient to scale (1.1)-(1.6) so that the coefficients in (1.1)-(1.3) transform to unity.
We let

a lI a a ---aeFt , a t' Tz V T k-1T'  = ,

* I ki I
T, and 1 -(1.7)

'Similar models have been considered by Caglnalp et. al. when the Fourier law is applicable; See (1-61.
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Then, (1.1)-(1.3) become

e T + ,(1.8)
dt + q. = 0, (1.9)

and

qt+q+T= 0. (1.10)

The Landau-Ginzburg equation transforms to
2T

A4t - A~a2q$, = - ( 2 - 1) + 3 , (1.11)

where
A=6, a2 = cjpj6jk2,adT 2 cl

2= _ ci61 a nd T 2= c. (1.12)

Our interest is in this system when

0<\<<1,0<a 2 , and 0< L<1. (1.13)
Ljs -

One might surmise that in this parameter range the equation (1.11) rapidly equilibrates and
that the heat flow process is adequately described by (1.9) and (1.10) where e and T are given
parametrically in of 4' by

) -1 and T T ( -1) 2  (1.14)
2 2

In fact, the reduced system does yield a satisfactory description of the heat-flow process so
long as 0 is in the solid phase (0 < - ) or the liquid phase (0 > JL). In both regions the

reduced equations (1.9), (1.10), and (1.14) represent a genuinely nonlinear hyperbolic system
and the standard theory for such systems yields a physically correct description of the underlying
thermal process. Difficulties arise when we wish to consider situations where both the solid and
liquid phases are present.

liquid + solid> 1/ / €< -1/V3-

t

Figure 1

To see this, consider the configuration shown in Figure 1. We assume liquid to the left of a melt
interface (shock) z = o(t), i(t) > 0, and solid to the right. In each region the reduced system

2The constraint 0 < T. < :- guarantees that the map 4 - e(#) Is 1-1 and this that T can be written as a

function of e.
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holds and we insist that (1.9) and (1.10) hold as conservation laws in the whole z-t plane. Then,
across the interface we obtain the Rankine-Hugoniot equations:

(.0-) - e(O+)) = (q- - q+), (1.15)

and
q- - +) = (T(4-.) - T(4+)) (1.16)

where e(.) and T(.) are given by (1.14). These, of course, are equivalent to

0/T(O-) - T(O+)
o_<8 = Ve(.) - e(.+) (1.17)

and
q- - q+ (T(q-) - T(O+))(e(O-) - e(.+)). (1.18)

Equation (1.17) does imply that the states 0- > 1and + < - must satisfy T(.-) -

T(#O+) t> 0, but places no other constraints upon the phase field 4. This calculation naturally
leads us to question the physical relevancy of states (4-, q-) and (4+, q+) satisfying (1.17) and
(1.18) and the constraints 0- > 7,4+ < -, and T(4-) >_ T(4+).

To see which solutions of (1.17) and (1.18) are meaningful we go back to the full system
(1.8)-(1.12) when (1.13) holds. We introduce inner variables

x t
y= A and r = A, (1.19)

and rewrite the equation in the stretched coordinates. The result is

e = T+0, (1.20)
e = +qj 0, (1.21)

q, +TI= -Aq, (1.22)
and

21) 2T (1.23)

We now look for right facing travelling wave solutions of (1.20)-(1.23) in the A = 0+ limit.
These solutions are functions of

=y - cr = , C > 0, (1.24)

and satisfy e= e- + -) T T + c(# - ) = q- + C and=- 1-c2  ' 1-c 2  and -  1c

2 (T_ c2

TA + 1+----- ( 1)--) , (1.25)

and the boundary condition
lim 4(0 =- > = (1.26)

At = -0o we assume the equilibrium constitutive equations (1.14)'hold. This guarantees that

+3T.e_(_ - 1) d 3+T, _(4!_ - I) (1.27)
2 2
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where again 0 < '. 2 -. Equation (1.27) reduces the problem to finding c > 0 and o{() such
that 2(-that a ot+C = 0(02 _1) _-(2_-l - 2c2(o -

0_ )  
(1.28)

31T.(1 - C2)

and 1
Uim $b() =4i-_ > -. (1.29)

The solutions representing a phase-change have the further property that

1
lim 0(f) = o+ < - 1 (1.30)

2. Travelling Waves

In this section we shall investigate the travelling wave problem formulated in the last section.
We seek c > 0 and 0(.) such that

2c2(o - 0-) (2.1)
32T(1 - C2)

'

and 1
lim ) 0 _> -. (2.2)

For <q - < 1 we have
(23

0(02 1) .0 -(02 - 1) = - O)(0 01 )(0 0 -) (2.3)

where

22 2

and the inequality 'ki > 0 guarantees there is no solution of (2.1) and (2.2) satisfying o+ =
1

lir 0() < --

For 1 < 'k_ < 2 the factorization (2.3) and (2.4) holds except now -I < 0'i(0-) < 0.

Additionally, for 0 < c2 < +!.s_),we have
( b - 1 2+- T.(3.1- 1) 2 - _

(- -... . - (0- *L)(0 - 9P)(0 - 0-) (2.5)
3 2 T. (I - C

2
)

where

-2. 1 C2  < -0_ 1
*L 2 24-3-+ 3"T(1 < = 2+i 4-3#-+ , c <-

23T.1 C2) 2[- 2 31.1C 2
)

(2.6)
In this parameter regime the travelling waves are given by

OM + *L ( 'P.- L) tanh (-)L) (2.7)
2 2 2-"'a R - o)2
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where c > 0 satisfies
3a 14-30+ 8C2 (2.8)2 N 3zT.(I - c2)

and ao is an arbitrary phase shift. The state 0,+ < - is given by

+ L > -1. (2.9)

When 0- = 1, c = 0 and *L = -1 and the travelling wave is stationary. This solution cone.
sponds to the equal area Maxwell line on a T - e diagram (see (1.14)). It should be noted that

when 1 < 0- 5 ;A, 4 - 3,6_ > 0 and 0_- 4 -3302 > 0 and that (2.8) has a unique positive

solution for any a > 0.

Similar results obtain when 7 < 0,.. Here, the issue is whether (2.8) has a solution, c, in
i 3T,(302 -- 4)  

33 - I' I - T. (3_ 0 1
the interval T. -3 ) . In general, (2.8) will not have

8+3T,(3 2 , -4) 8+31T.(30!_ -1)
such a solution for all a > 0.

Three points are worthy of note about these travelling waves. The first is that their speed,
c, satisfies

iT'(4,_) T/(4+) (2.10)e < and c < F,-+J(.0V -j( V 7R'-+)
where e(.) and T(.) are the constitutive functions defined in (1.14) and prime denotes differ-
entiation. Thus, the melt interface moves saubeonically relative to the states at C = +oo. The
second is that both the speed of these interfaces and the downstream state 0+ are completely
determined by the upstream state 0,-. The third point is that speed c depends upon the higher
order physics of the problem through the parameter a and thus the jump relations for the re-
duced description (equations (1.15) and (1.16)) do not suffice to determine the melt interface.
We will have more to say about this in section 3 when we discuss the Stefan problem (see (3.4)
and (3.5)).

We conclude this section by noting there are other travelling wave solutions to (2.1) and (2.2)
when 0- > 's. These solutions do not represent change of phase waves but rather shocks in the

liquid phase; that is s < 0+ < 0.. If0 < a << 1, these solutions exist for any I < 0+ <4-
with speed c satisfying

T'(4T+) T(4) - T(O+) < "-T'(00:-).
)<C = V (4) - e-4;) < V (2.11)

3. Stefan Problem

In the Stefan Problem one seeks a solution to (1.8)-(1.11) in the quarter plane x > 0 and t > 0
which satisfies the following initial and boundary conditions:

O(z,0)=-1, T(x,0)=0, e(z,0)=-1, and q(,0)=0,z>0, (3.1)

and

3That the last inequality is true in a neighborhood of 0- = I follows from
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0(0, t) o E (1, 2) and T(,t 3T. 1 ,t>0 (3.2)

The initial condition guarantees the material is in the solid phase at the nominal melt temper-
ature at t = 0, and the boundary condition implies that the end x = 0 is in the liquid phase.
Our interest is in the reduced description of this problem. Here we let

C +3TO-2- 1) adT=3 1 T.#,2.0 - 1) (.)
2 2

ad seek a weak solution of (1.8)-(1.10) and (3.3) satisfying the initial and boundary conditions
(3.1) and (3.2). The structure of the solution is shown in Figure 2.

t I - - z =a(t), i(t) >O

liquid - + solid

rarefaction wave

Figure 2

At the melt interface we impose the boundary condition.:

i = 6(0., a) (3.4)

where 8(0-., a) in the unique solution of (2.8) and

#.='@L (-0-, e(4-, a)) = -':L -i4-0- + 882(0_.,a) -4 (3.5)
2 A4~ 3T. (I - 8 (0, a))

The calculations leading to (1.25) imply that across the melt interface

e(4O+) - e(O'.) = (3.6)1 - 8 0 )

T(O+)~~~~ ~ ~ 4,(- (0,)0 -)(371 - a2 4,,))(37
and

q-q-= 8(0-, a(O'.-.0)) (3.8)

"These are just the admisuibility conditions derived In (2.6) and (2.9).
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' d thus that the Rankine-Hugoniot equations for (l.2)-(1.10) hold

(, )(e(+) - e(¢-)) = (q+ - q-) (3.9)

) q-_) = (T(O+) - T(O-)). (3.10)

We conclude with a set of identities which give a growth estimate for the melt interface. A
similar estimate was obtained by Greenberg in [6]. We observe that solutions of the reduced
system (1.8)-(1.10) and (3.4) and (3.5) satisfy

d ( f (e()f + 1)(, t) dx + (t)= q( ,t) dz (3.11)
() (t) qWO, + dx (

and '//
dat q(, t) d,+ q(x, t) dx = T(o) > 0. (3.12)

(3.12) implies that
sf q(r, t)dx = T( 0o)(1 - e- t )  

(3.13)

and (3.13), when combined with (3.11), yields

x(e(O) - 1)(x, t)dx + J x(e(O) + 1)(z, t)dz -I 8'(t) = T(*o)(t + e- 1 - 1). (3.14)

The inequalities I < q _ 4o in 0 _< r < s(t) and -1 < 0 < in s(t) < z imply that
e(O) - 1 > 0 for 0 < x < .(t) and e(O) + 1 > 0 for s(t) < r and then (3.14) yields

s(t) 5 T(Oo)(t + e- ' - 1). (3.15)

The interesting fact is that this estimate is independent of the parameter a.
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1. INTRODUCTION

When solving flow problems at low Mach-numbers E, the

coefficient matrices for the inviscid part becomes very

unsymmetric. This leads to severe difficulties when

constructing numerical methods, since the problem is ill

conditioned. We shall discuss the symmetrization procedure

for the Euler equations. For smooth solutions it is

possible to express the solution as an asymptotic expansion

in E. By defining a new dependent variable closely related

to the speed of sound and subtracting the first term in the

expansion, we arrive at a symmetric system which is

convenient for computation. Even with the symmetric system,

a fundamental difficulty remains. The low Mach-numbers give

rise to time-scales of different magnitude, since the

sound waves are much faster than the advection waves. If

the fast waves are present in the solution and are of

intezest, then an explicit method is natural to use for the

time dependent problem.The stability limit on the time step

is no real restriction, since the fast waves must be

resolved anyway. In the case where the fast waves are

negligible, -:he situation is different. There is no need to

take small time steps of accuracy reasons, and implicit or

semi-implicit methods should be used. As we shall see, the

form of the equations which is the result of our

symnetrization is very convenient for constructing semi-

implicit approximations.

Of special interest is the limit solutions as £ -4 0

corresponding to incompressible flow. The iimit system is
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(a) ut + uu X + vuy + P. = 0

(b) vt + uv x + vv x + py = 0 (i.I)

(c) u. + vy = 0

which is time incomplete. Consequently regular methods for

hyperbolic systems cannot be applied. Many ways of
overcoming this difficulty have been proposed, and we shall

not try to list all such methods. However, most methods for

the time dependent problem are based on a different form of

the system, even when the primitive variables u, Nv.p are

kept. One such form is obtained by differentiating and

adding the first two equations, which substitute the third.

Ut + uu x + uvy + Px = 0

vt + uvx + VVy + py = 0

Pxx + Pyy = f

Here f depends on the velocity components and its space

derivatives. For each time step the Poisson equation is

solved for p. One difficulty with this approach is to keep

the divergence zero or small.

Another approach is to introduce Pt as an extra term in

(l.lc). This is called the artificial compressibility

method, and was originally introduced by Chorin [] for the

Navier-Stokes equations. In this way the sound waves are

brought back into the solution, but now with an artificial

speed of propagation. The true solution is obtained only at

steady state.

Chorin (2] also introdu-cd another way of solving the true

time-dependent equations directly with difference methods.

It is applied to the Navier-Stokes equations, and is based

on a decomposition of the solution into one part with zero

divergence and another part with zero curl.

Finally it shoui: be mentioned that finite element methods

can be directly applied to (1.1). However, there are some

194



practical difficulties to construct basis functions which

satisfy the divergence condition, in particular near the

boundaries. We propose solution methods which are based on

the true compressible equations. (After all, there is

always some compressibility in any fluid.) We transform

these equations into an appropriate form for computation.

For the linearized problem we prove that the solutions

converge to solutions of the corresponding incompressible

problem, both for open boundaries and solid wall

boundaries.

Some of the material in Section 2 and 3 is found in [4],

(5], [6]. References of immediate interest are also found

in these papers.

2. THE EULER EQUATIONS

The Euler equations are

Ut + A(U)U, + B(U)y = 0

where

(=' 0( u p ( v ]

U J AU- j 0 0 uip 0

p = icpT, a2 = dp/dp.

We use a y-law for the pressure here but we could as well

use any equation of state of the form p = g(p ) where g is

a smooth function of p. Non-dimensional varables are

introduced by

tuu v
- -4 x Y , - -4 t, -- 4 u, -- 4 v,X* x* x, U* U*

_.E 9p, P -9p
p~u P*
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where * indicates a typical value of the corresponding

variable. Let a* be the typical speed of sound, and define

the Mach-number £ by £ = u*/a*.Then the Euler equations

take the non-dimensional form

Ut + A(U)Ux + B(U)Uy = 0

where

U =uJ, A(U) = i/P u , B(U) = v 0
),0 0 u /p 0 V

2

The non-dimensional speed of sound is

a = (2.1)

We shall consider small Mach-numbers £. Then there are two

drawbacks with this system. The pressure variable takes

very large values and the coefficient matrices are very

unsymmetric. In order to illustrate the effect of the

unsymmetric coefficients we consider the simple model

problem

Ut + AU,~ = 0, A = (0 l/E2), (p)'1 0 u

with periodic boundary conditions. With

T T/ V = T- 1 U (2.2)
\0 1),

the system becomes
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Vt + AV, = 0, A = 1E) (2.3)

which is energy-conserving, i.e. for the L2-norm we have

llvct) = 11v(o)1I.

This leads to the inequality

IIU(t)I l cond(T)IIu(o)ll, cond(T) = I TI. IT_' I. (2.4)

In our case cond(T) = l/E, and the problem is obviously ill

conditioned even if it is formarly well posed for any fixed

value of E. The estimate (2.4) is sharp. For example, the

initial condition

p(x, 0) = 0

u(x,0) = f(x)

gives the solution

p = -L[f(x--t/)-f(x+t/e)]

U [L f(X-t/E)+f(x+t/E)l2e

The unsymmetry of the coefficient matrix causes the

variable p to become large even when f is a bounded

function.

When applying numerical methods we must expect the same

type of ill-conditioning. Consider the Crank-Nicholson

method with centered difference operators in space

where k is the time-step. The Fourier transformed system is

I+ AisintU = (I-Aisint)U, ) =
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(h is the step-size in space).

Let T be defined by (2.2) and let V = T- U. We get

I+-isin = I--2sin
22

where A is defined in (2.3).. This system is a direct

approximation of the Fourier transformed version of (2.3).

Since A is symmetric, there is a unitary matrix S such that

with W = S*V we obtain a diagonal system

I+2-Disin + = (I--LDisin41,

D 0 ~( -1)'I~

Each component obviously fulfills

I V)n+1 I = Iw(v)nI, V--,2

and we get for the original vector

I UO 1 < ITl - v5 Il = ITI.IG°+'I = IT II = .'.n. . IT I- IG I
= ITI.IVOI ! ITI-IT-1 IUO = cond(T)I;l.

Parseval's relation then gives

II Un II - cond(T) 11 U0 I (2.5)

which is a direct analogue of (2.4). However, in practice

ve must expect even more severe difficulties than the ill-

conditioning represented by (2.5). For each time-step we

must solve a linear system of equations. In Fourier space

it has the form
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n+1U F,

-. isint
2z'

isin4 1

If, for example, there is a perturbation 8P in the right

hand side, a well known result from linear algebra shows

that the perturbation &Un+l in the solution satisfies

I~+1 < cond(C) 
81'

In our case

^1 C' = (1),

i.e.

cond(C) = Al /e2).

This shows that even rounding errors will have a serious

effect if e is very small. The conclusion is that the

unsymmetric form of the system is inappropriate for

computation.

3. SYMMETRIC FORM OF THE EULER EQUATIONS

The most straightforward way of eliminating the major part

of the unsymmetry is to make a simple scalin7 of the

pressure

p= p
i.e. the nondimensionalization in Section 2 is done

differently. This gives the coefficient matrices

AM) I AlPO u0 B(U) ( 0 v 0~
1 0 11(pe) 0 v
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and since p is of the order 1, these matrices are almost

symmetric. However, the new variable p is still of the

order l/e which is inconvenient. It is well known that the

error in the solution of a stable method is bounded by 6/k

where 8 is the absolute rounding error and k is the time

step. This is normally accepted.If the dependent variable

are all of the order 1, the large coefficients in the

matrices introduces rounding errors 6=01/E) and the error

in the solution is (k-l -l) which must be accepted.

However, in our case, when computing px/(pe) we get 8

(l/E2 ), and the accumulated error may be unacceptable.

2
The natural scaling of p seems to be C p -4 p. However, this

gives the coefficient matrices

A(U) = 2) u '0, B(U) = v
(P u) 0 v)Y0 0 u o/(pe 2 0o

and we are back to an ill conditioned system.

When considering smooth solutions corresponding to almost

incompressible flow, the momentum equations show that

p. and py are bounded independent of E. This means that the

large part of p is almost constant, and it is natural to

define a new variable by subtracting this part out. In

order to have the matrices exactly symmetric, we use the

transformation

2 Y-
1

* = -(p 7 - 1)
(Tl)C (

When taking the definition (2.1) into account, it is seen

that the new variable is closely related to the speed of

sound:

The new system is in component form
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(a) + u . + +Cu+ v~y + (L+c)vY =0

(b) u, + ( I+cx + uu, + vu, = 0 (3.1)

(c) V, + uv + L2+cy + vvy = 0

7 -1 .(C
2

Next assume that all the variables and its first

derivatives are bounded independent of £. The equations
(3.1b,c) imply that 0( = (e), *y = 0(), and with proper boundary

conditions we t .erefore have = ce). With * = */E we let £-4 0

and obtain from (3.1)

u t + uu X + vuy + *X = 0

v t + uvX + vvy + y= 0 (3.2)

Ux + vy = 0.

This is the well known system for incompressible flow. The

variable

2

is usually denoted by p and called pressure. Apparently,

the solutions to (3.1) converge to solutions to (3.2) if
they are bounded together with its derivatives.

The system (3.1) is well suited for numerical methods. It

has the form

Ut + LPo+PI)O = 0

where PO has constant coefficients. Hence, a semi-implicit f
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method is efficient. In [4] we have proposed the leap-

frog/backwards Euler difference scheme

un+l n-1- 1 +-Q 0U + Q1Un= 0

2k £

where Q0, Qi are centered difference approximations of P0 ,

Pl. The solution Un+l is obtained efficiently since Q0 is

linear, and with a regular grid it has constant

coefficients. The LU-decomposition of the coefficient

matrix can be made once and for all, and the solution is

obtained by two resubstitutions.
The scheme has proved to be very robust. This depends on

the fact that the backwards Euler part has a damping

property which keeps the divergence low when £ is small. We
refer to [4] and [5] for details about the scheme.

4. ANALYSIS OF THE LINEARIZED EQUATIONS

In this section we consider the linearized system with

constant coefficients corresponding to the state U =(0,uv):

1 -)U - 1 -v(a) *t = - U' - (2--+C)Ux- v~- (-+

(b) ut = - uux - xc - vuy (4.1)

(c) vt = - uv. - c - vvy

2

We take the domain in space as the unit square, and it is
assumed that the solutions are periodic in the y-direction.

Since we shall derive estimates also for the derivatives,
it is assumed that the initial and boundary conditions are
compatible such that no discontinuities are introduced

initially.
We consider the case u > 0 such that x = 0 is an inflow
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boundary and x = I is an outflow boundary. Since we treat

the linearized system, we prescribe homogeneous boundary

conditions:

Inflow. x = 0

*0 + Eou 0 = 0 (4.2)

Vo = 0.

Outflow. x = 1

U1 = 0 (4.3)

(The notation U0, U, is used for U(0,y,t),U(l,y,t) respectively.)

Here a * 0 is a constant.
The scalar product and the norm are defined by

1 1

(u, V) = J:J U*Vdxdy

Ihull2 = (u,u) .

We shall also use the boundary norm

,ut)8 = [J:c(u(oyt)12 + t

We shall now prove

Theorem 4.1 Assume that the conditions (4.2), (4.3) hold

with

S> u> 0. (4.4)
2

Then there is a constant 8 > 0 such that the solutions to

(4.1) satisfy
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+ d U (0)11 (4.5)

t 1 i i+j 2 ddr 22 ji+Ju 2I I T - ( ) 1 d y d C 5 ' I - ( ) 1 4 6
fo aylat j -a- layatj

for £ sufficiently small and for all non-negative integers
i,j.
Proof. When using integration by parts and the boundary
conditions we obtain

1 7II I021 dy -2 'Juo d ..
2dt 2E~o

- I dy + (+)(u, ) +

1 d tIU12 
- u 1 d

- y -i ~

2 dt 2 NU

By adding these three equalities and integrating, we obtain

(4.5) for i = j = 0. The boundary condition then implies
(4.6) for i = j = 0.
By differentiating the system (4.1) and the boundary

conditions (1.2), (4.3) with respect to t we obtain exactly

the same system for Ut, Utt e t c. The same procedure works

also for Uy, UyyUyt...; hence (4.5), (4.6) follows for all

positive integers i,j.

Since the boundary conditions cannot be differentiated with

respect to x, we must use a different technique in order to

obtain estimates for the x-derivatives. We shall prove

Theorem 4.2. Assume that the assumptions given in Theorem

4.1 hold. Then there are constants , Cl, C2 such that the

solutions to (4.1) satisfy
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t

IIu.(t)ll 2 + 81J ]u(,r) 12 d¢ < c1(IlJU(O)ll2+lluI (0)lJ2+IIu,(o) 2) (. 7)

00

(( 01 E2(, Iu(O)112+IIU,(O)fl2) .(4.8)

P . We first use the differential equations (4.1a,b) at

the boundary x = 0, and solve for Ox, Ux (Vy vanishes at x

=0). We get

( 10 .) 2 ( U ) 2 2 [ Y 2 2U y

0+ (u)0 < const o+

+ (0,)l + (u,)2] (4.9)

and (4.8) follows from (4.5).

By differentiating the system (4.1) with respect to x and

using integration by parts we obtain

1 d Uj12

1 7_ 11-

(a) 0-.Id + - c ~

- C

,,u1,2 [u ") lo 2
(b -- -1(: Iy - u,,)

(b) 1 at(xx U (xY-U .y + (4.10)

2 dt vI 2  o E-j~~o(~id

At x - 0 we use

)2 0.21 U) (4.11)
2 c T

Furthermore, we observe that
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Vo = (v )O = (vt)o = 0

hence, it follows from (4.1c) that

(v.)o = - I L+(

U

At x = 1 we get from (4.1b)

i.e.,

- +c= u(u)1. . (4. 13)

By adding the equations (4.10) and using (4.1l)-(4.13) we

obtain

TtUH P C C dy+(u+ I)(u)dy

2d-_" 2 2

+ l-)-)ody - u f(vdy + Ju[()1-(x)1]dy

(4.14)

Since (4.1a) applied at x =1 implies

(U.), = -(v) --- (Ot+vOY), u(Odi
i+Ec l+Ec

we get for the last term in (4.14)

- c2

where C 1, C2 are positive constants. When integrating

(4.14) with respect to t and using (4.5), (4.6) and (4.9)
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we obtain (4.7).
The linearized incompressible equations are

Ut + Uu, + vuY + 0

vt + uv" + vvY + y =0 (4.15)

U, +v = 0.

This system requires three boundary conditions, and in

accordance with (4.2), (4.3) we prescribe

*0 + au0 = 0

v= 0 (4.16)

U1 = 0.

The theorems above show that all first derivatives of the

solutions to the compressible equations (4.1) are bounded
if the system is properly initialized. Furthermore (4.6)

and (4.7) show that 4 - C(E), and consequently $ = 4/£ is

well defined in the limit £ - 0. We have proved

Theorem 4.3. Assume that JIU(0)I, JIUx(0)I, IlUy(0), IUt(O)I are bounded
independent of £ and that the condition (4.4) is fulfilled.

Then the solutions to the compressible problem (4.1),

(4.2), (4.3) converge to the solutions to the
incompressible problem (4.15), (4.16) as £ - 0, with O/ - /E.

Remark. The assumption that jIUt(0)I is bounded is equivalent to

Ilu +vyll = ( (E), 10.I1 = O(), floyll = O'(E) at t = 0 . (4.17)

We next turn to the case where the boundaries are solid

walls. In this case we linearize around U = (0,v,j)T. We

have
Theorem 4.4. Assume that U = 0 in (4.1) and that the

boundary conditions

U0 = U1 = 0 (4.18)

hold. Then the solutions to (4.1) satisfy
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i+ J--_.ai+JU aI + 0)1
II-1- (t01l 5 1 O i, j > 0
i y iat j ; a

IIo (t)ll2 < IlU.(o)ll.

Proof. The proof is analogous to the ones for Theorem 4.1

and Theorem 4.2, and we don't give the details. Since u =

0, all boundary terms disappear when applying the energy

mehtod to U. This is true also for all y- and t-

derivatives. For Ux we need a new condition. This is

obtained from (4.1b), which implies Ox = 0 at the

boundaries. This is sufficient to cancel the only remaining

boundary terms, and the theorem follows.

Convergence to the incompressible problem follows as in

Theorem 4.3.

Estimates of essentially the same type as the ones derived

in this section can be obtained also for the system (4.1)

with variable coefficients U = U(x,yt).
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FREQUENCY DECOMPOSITION MULTI-GRID METHODS
FOR HYPERBOLIC PROBLEMS

Wolfgang Hackbusch
Sigrid Hagemann

Institut fUr Informatik und Praktische Mathematik
Christian-Albrechts-Universitgt zu Kiel

OlshausenstraBe 40
2300 Kiel 1

SUMMARY

Constructing solvers for discretised partial differential
equations one can follow two different aims,
- adapting a method to a given class of problems which leads to
very efficient solvers for these particular equations or

- devising a robust method in the sense that the class of
problems the algorithm works for will be as large as
possible.

Multi-grid methods are a well known tool for the treatment of
partial differential equations. Attempts toward robustness have
dealt until now mostly with inventing new elaborate smoothing
iterations. The results are, especially considering the treat-
ment of singularly perturbed problems like anisotropic
equations or the convection diffusion equation, still not
completely satisfactory, at least in case of 3D.
A new approach is the so-called Frequency Decomposition Multi-
Grid Method, being content with a very simple smoothing
procedure and laying emphasis on a multiple coarse grid cor-
rection, every correction dealing with a different part of the
frequency spectrum.
The application of this new method to the anisotropic equation
is described in [4] and (5] whilst we are concerned here with
hyperbolic and parabolic problems.

1. SOLVING SINGULARLY PERTURBED PROBLEMS WITH STANDARD

MULTIGRID TECHNIQUES

1.1. EQUATIONS UNDER CONSIDERATION

Let a,axb,bb,cER, a,axa0 and 9=(0,1)x(0,1) the unit square.
The model prDblem of the two dimensional convection diffusion
equation

-a(a2/ax2u(x,y)+8
2/8y2u(x,y)) +

b.8/axu(x,y) + by8/6yu(x,y) + cu(x,y) - f(x,y) in Q (1.1a)

with periodic boundary conditions

represents for a4O a singularly perturbed problem since its
type changes from elliptic to hyperbolic.
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In contrast to this the problem

-a,(82/x 2u(x,y)) - l*(8
2 /8y2u(x,y)) +

bxa/axu(x,y) + by/ayu(x,y) + cu(x,y) = f(x,y) in Q (1.1b)

with periodic boundary conditions

turns into parabolic type with a -0.
To ensure stability we choose ?or the discretisation the "up-
wind differencing scheme" ([1], p. 219), yielding the dif-
ference stars

La = h 2 a-bh 1  4a+lbxlh+l bylhl+chl -a+b hl  (1.2a)

-a-bj l1
and

Lb = h a2 ax-bxhl 2+2ax+lbxlhl+ bylhl+chi -ax+bjhl (1.2b)

-1 -bjh

respectively.
hl=l/Nl, NIEN, is the step size on grid Qi,

b =max(0,bz), b =min(0,bz) for z=x or z=y.

1.2. STANDARD MULTI-GRID METHODS

The application of the standard multi-grid method, consisting
of

(1.3a) coarsening by doubling the meshaize in both directions,
(1.3b) a matrix dependent prolongation p ([1], pp. 212),
(1.3c) the adjoint restriction r=p*,
(1.3d) the Galerkin coarse grid matrix Ll_.=rLlp and
(1.3e) (vj+v 2) smoothing steps performed by a relaxation

operator S

onto the discretized problem LlUl=f I on the finest grid 91 with
meshsize hl can clearly be represented by the flow chart (fig.
1; cf. [3], p. 45).

1.3. APPLICATION OF STANDARD MULTI-GRID METHODS

To analyse the convergence of an iteration treating (1.1a) and
(1.1b) note thateV'P(x'y)=I/2 ei4 x+jpY)'(') 'INS'N'N=/'41)

e3I x)./2 5 iv~i) (x,y)e01 11-Nlsv,jisN11Nl=1/hl, (1.4)

are the complex eigenfunctions of the unsymmetric grid
operators La and Lb of (1.2a) and (1.2b) on the extended domain

8-(-I1)x(I,1) jl=(x,y)eQ: x-vhl, y-phlj ,
considering periodic boundary conditions.

210
4.



old approximation ul

k:= 1 (current level 
number, k=0,1,2,...,)

dl:=fl

Vk:=S'1(Vk'Lk'dk)I
dk- 1 : -r (Lk k-dk)

V k+1 :vk+1-P*vk~fi +

k :=k-1

no

v: new -2I atovdk)

Fig. 1 Flow chart of the standard multi-grid method

Classifying the frequencies a into high and low, where low
means l-NI/2sosN1 /2, one can decomposite the spectrum into four
different regions.

I low in both directions

II high w.r.t, x
~III high w.r.t. y

IV high in both directions

I

I

Fig. 2 Spectrum decomposition
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The simple coarse grid correction only reduces low frequency
error components out of region I, so the success of the multi-
grid iteration strongly depends on the 'right" choice of the
smoothing process.
According to criterion 10.1.1. ([1], p. 302) for singularly
perturbed discrete operators Ll(E) one has to look for a
smoothing iteration solving the limiting equation

Ll(O)ul = lim L1 (E)ul - fl

fast or even directly.
In the case of the convection diffusion equation the
applicability of a simple GauJ-Seidel iteration, e.g. pointwise
lexicographical or linewise depends on the signs of the
gradient coefficients, the chequer-board version is not at all
suited for smoothing (cf. (1], pp. 220; [6], p. 35).
Looking for robust methods one has to choose elaborate
smoothers like symmetric linewise GauB-Seidel or the incomplete
LU-decomposition (ILU), the latter still not suitable for the
parabolic problem (1.1b) (cf. [5]).

2. THE FREQUENCY DECOMPOSITION MULTI-GRID METHOD (FDMGM)

The FDMGM, introduced in [5], is based on
- a modified coarse grid correction, consisting of up to four
auxiliary equations corresponding to the four different
regions in the frequency decomposition (fig. 2) to be solved
on each level instead of the standard one, and

- a very simple smoothing method, e.g.
damped Jacobi or
(damped) chequer-board GauB-Seidel.

2.1. THE MODIFIED COARSE GRID CORRECTION

2.1.1. THE FOUR COARSE GRIDS

Through shifting the standard coarse grid, in this context

distinguished by the index (0,0), 91 0 )of grid size hl_ 1=2hl
by hI in x-, in y- or in both x- and y-direction, we obtain

three further grids 91'10) Qjuji) and 91 ) (fig. 3a-e).
Let J={(0,0),(I,0),(0,I),(1,1)} denote the set of the four
coarse grid indices.
The double index a=(ax, v) indicates a shift by ax*hl in x- and
y*hl in y-direction, whore , ye0,11.
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Fig. 3a Fig. 3b Fig. 3c Fig. 3d Fig. 3e

2.1.2. THE ASSOCIATED PROLONGATIONS AND RESTRICTIONS

The matrix dependent prolongation p0 0 , symbolised by the

difference star

-_,, q0 ,1  q1,1
pO= q-1,0 qO,O qo,1P00 = [

0 0  q,-1-1 qo,- qj,- ]
with entries qi':0' i,jE{-1,0,1} corresponds to the standard

coarse grid 1- (cf. fig. 3a); for the three additional coarse

grids we choose

-ql, q0,1  -q-1,1  with alternating sign

p10 = qi,o q0,0  -q-1, 0  in x-direction,
_ql,-I q0,-1 -q-i,- __

S[q-,-I q01-1  -ql,-- ] with alternating sign in

p0 1 = q 0 q0,0  q1,0 y-direction,
_q- 1 ,1  -qo,1  -q1, 1

[q 1 ,-1  -q 0 ,-1  q-1i,- with alternating sign in

p 1 = 0  q0,0  -q-1: 0] both directions

q1,1 -q0 ,1  q-1,1

The latter three prolongations are no interpolations.

Remark (2.1)s Grid functions which are highly oscillating in
x-direction (connected with region II ip fig. 2)
belong to the range of prolongation p1 0, in the
same way are correlated the prolongation p 1
with region III and pl with region IV.

The restrictions are defined in the usual way as adjoints of
the prolongations, i.e. ra=(pt)*, aeJ.

Remark (2.2): This choice implies r pA=0 if x#j.
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2.1.3. THE COARSE GRID MATRICES

The auxiliary equation on each of the coarse grids is defined
by an operator L -1. As in the standard multi-grid approach
L.I is determined by the fine grid operator L1 as

LI_- = raLipl, aeJ.

This Galerkin product with matrix dependent prolongation and
adjoint restriction preserves stable one-sided differences (cf.
[1], p- 222).

2.1.4. THE MULTIPLE COARSE GRID CORRECTION

Evaluation of the defect equations on up to all four coarse
grids produces the new multiple coarse grid correction

u 1 - u 1 - 2 p"(L__j)-lrc(Llul-fl), K J.
a4EK

If K={(0,0)} we get back the standard correction. The extra
terms are added to provide a reduction of the high frequency
error components of regions II - IV, which have not been
sufficiently diminished during the smoothing process.

2.2. THE SMOOTHING PROCEDURE

We use in the following examples the pointwise damped Jacobi
iteration and thepointwise Gau-Seidel iteration with chequer-
board ordering of the grid points as smoothers to ensure the
robustness of the FDMGM originating from the multiple coarse
grid correction and not a suitable choice of a sophisticated
smoothing operator.

2.3. THE FREQUENCY DECOMPOSITION TWO-GRID METHOD

The FD-two grid method consisting of v pre-smoothing steps and
the performance of new multiple coarse grid correction can be
analysed by local mode analysis (cf. [3]) to obtain exact two
grid rates of convergence.
In the following tables we contrast the spectral radii of the
standard multi-grid method (S) with the new results (FD).

Table 1: Two-grid rates for (1.1a), two GauB-Seidel steps as
smoother, h=1/8.

bX by log(a)- 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -10

0 0 S 0.062 0.062 0.062 0.061 0.059 0.052 0.035 0.032 0.011 0.001 0000 0.000
FD 0.084 0.083 0.083 0.060 0.074 0.053 0.030 0.007 0.001 0.000 0.000 0.000

1 0 S 0.063 0.063 0.064 0.066 0.074 0.098 0.159 0.259 0.520 0.711 0,789 0.829
FD 0.084 0.064 0.083 0.081 0.077 0.075 0.089 0.131 0.257 0.350 0.389 0.410

1 S 0.062 0.062 0.062 0.061 0.054 0.088 0.188 0.340 0.511 0.586 0.612 0.624
FD 0.084 0.084 0.083 0.061 0.078 0.081 0.110 0.277 0.474 0.571 0.607 0,624

J
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Table 2: Two-grid rates for (1.1b), two GauB-Seidel steps as
smoother, h=1/8.

bx  by log(ax) - 2.0 1.5 1.0 0.5 0.0 -0.5 -1.0 -1.5 -2.0 -2.5 -3.0 -10

0 0 S 0.960 0.880 0.675 0.323 0.059 0.303 0.611 0.784 0.851 0.873 0.881 0.884
FD 0.292 0.277 0.235 0.149 0.074 0.125 0.148 0.104 0.051 0.042 0.042 0.042

1 0 S 0.955 0.865 0.641 0.280 0.074 0.341 0.643 0.805 0.866 0.886 0.893 0.896
FD 0.300 0.283 0.236 0.144 0.077 0.135 0.153 0.107 0.051 0.053 0.053 0.054

0 1 S 0.960 0.880 0.678 0.336 0.074 0.168 0.264 0.293 0.317 0.325 0.327 0.327
FD 0.292 0.277 0.236 0.153 0.077 0.128 0.230 0.377 0.454 0.483 0.493 0.493

1 1 S 0.955 0.865 0.645 0.292 0.054 0.201 0.309 0.338 0.363 0.372 0.374 0.375
FD 0.300 0.283 0.237 0.148 0.078 0.139 0.246 0.399 0.477 0.506 0.516 0.521

2.4. THE FREQUENCY DECOMPOSITION MULTI-GRID METHOD

Replacing the exact solution of the defect equations on the
coarser grids by recursive application of the method itself
generates the frequency decomposition multi-grid method
(FDMGM).

lold approximation ui

Fk=-l; vl'=ul; dl:=fl

rvk:=SVI(vk,Lk,dk)

ig. :- Fo-w k:k- k:-k-1

20 50 1

k  -v(k vk dk J 0

J,
vrk+ 1 --vk+1- 2. Po Vkotk:=k+1 a J

IVk:=S"2 (Vk'Lk,dk)

no

Inew approximation ul-=vI 1

Fig. 4: Flow chart of FDMGM
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To reduce the cost of the algorithm it is sufficient to re-
strict oneself to the execution of the so-called necesssary
coarse grid corrections (cf. (4, 5]) without considerable loss
of accuracy. Instead of quadrupling the number of equations to
be solved on each coarser level we get the calling tree

(00) (10) (01) (11) (00) (10) (00r), (01) (or() 1)

Fig. 5: Calling tree of necessary coarse grid corrections

where (a) denotes the performance of the coarse grid correction
of index ceJ.

3. NUMERICAL RESULTS OF THE FREQUENCE DECOMPOSITION MULTI-GRID
METHOD

The observed multi-grid rates are quite similar to the exact
spectral radii given in tables I and 2. Besides the rates of
the standard multi-grid method (S) and the FDMGM (FD) there are
given the values obtained by only executing the necessary
coarse grid corrections (NFD). The mesh width of the finest
grid is 1/8.

Table 3: Multi-grid rates for (1.1a), two GauB-Seidel steps as
smoother.

bx  by log(a) - 2.0 1.0 0.0 -1.0 -2.0 -3.0 -10.0

0 0 S 0.058 0.057 0.056 0.054 0.040 0.002 0.000

FD 0.084 0.083 0.081 0.061 0.010 0.000 0.000

NFD 0.084 0.084 0.081 0.061 0.010 0.000 0.000

1 0 S 0.058 0.058 0.067 0.129 0.425 0.722 0.650
FD 0.084 0.083 0.082 0.098 0.309 0.701 0.776

NFD 0.084 0.084 0.083 0.099 0.297 0.657 0.713

1 1 S 0.058 0.058 0.056 0.098 0.473 0.725 0.784

FD 0.084 0.083 0.082 0.094 0.613 0.743 0.750
lFD 0.084 0.083 0.083 0.094 0.612 0.739 0.747
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Table 4t Multi-grid rates for (1.1b), two GauB-Seidel steps as
smoother.

bx by log(ax) -2.0 1.0 0.0 -1.0 -2.0 -3.0 -10.0

0 0 S 0.960 0.672 0.056 0.661 0.924 0.967 0.967
F) 0.303 0.247 0.081 0.210 0.112 0.048 0.048

NFO 0.303 0.247 0.081 0.210 0.113 0.051 0.051

1 0 S 0.957 0.655 0.067 0.676 0.928 0.964 0.969

FD 0.300 0.249 0.082 0.213 0.112 0.051 0.051

NFO 0.308 0.249 0.083 0.217 0.114 0.050 0.050

0 1 S 0.960 0.673 0.063 0.462 0.561 0.583 0.586
FO 0.303 0.246 0.082 0.253 0.589 0.683 0.695

RFO 0.303 0.246 0.082 0.252 0.588 0.682 0.694

1 1 S 0.957 0.657 0.056 0.482 0.581 0.602 0.604

FD 0.300 0.250 0.082 0.261 0.600 0.692 0.695

NFl 0.308 0.250 0.083 0.261 0.600 0.691 0.702
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We consider formally hyperbolic linear systems with unbounded

propagation speeds .

Existence, uniqueness and continuous dependence on the data g,

h, e are proved for the Cauchy problem

utt - AiI(x,t) uJ + B(x,t) ut + C'(x,t) ui + D(x,t) u + e(x,t)

for (x,t) e (0,T) x 2 ,
u(x,O) - h(x) , ut(x,O) - g(x) , x C 2
and either 2 - RI or 2 bounded and homogeneous Neumann

conditions :

A1 1 (x,t) ni u - 0.

It is assumed that the mxm coefficient matrices All are

integrable :

A J e L1 (D) if 9 is bounded , All e L2 (D,p) if Q - R'

P is a weight possibly decaying at )

and satisfy a pseudo-Lipschitz condition with respect to t:
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O0,Ai j (Z' t) V 4 vi-['J(,tA-'J(,t ~ 4 cv AL J(Xc,t)Vj

for arbitrary sets of vectors vi C R', i -1,. ..,n and a suffi-

ciently small A. The axa matrix B(x,t) is assumed to be

bounded by tvo continuous functions:

b1(t)v 
2 4 v.B(x,t) v 4 b 2 (t)v2 for every v e Ra and a.a. (x,t).
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A NUMERICAL METHOD FOR COMPUTING
VISCOUS SHOCK LAYERS

Eduar d Harabetian
Department of Mathematics
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ABSTRACT

We introduce a high resolution numerical scheme for the
computation of viscous shock layers. The novel feature
consists in the use of travelling wave solutions as
approximating tools. This is a departure from previous
methods which are based on splitting the viscous part from
the hyperbolic part of the equation. We present stability
results as well as numerical tests for one dimensional
models.

1. INTRODUCTION

In this paper we consider the numerical approximation of
viscous perturbations of nonlinear hyperbolic conservation
laws.

Let us consider the scalar equation:

ut + f(u) = (a(u)u ) , a(u) a >0, f convex (1.1)Sx xx o

and define the (nondimensional) quantities:

R =- , (Cell Reynolds Number),

= , (CFL Number),

where If°I - suplf'(u)J, and h and &t are the spatial and
temporal mesh widths of some discrete approximation.

Equations such as (1.1) are considered as one
dimensional scalar models for the equations governing the
flow of fluids with small viscosity.

In order to understand the significance of R, consider a
travelling wave solution of (1.1), that is a solution of the
form u(xt)-w((x-st)/), and for simplicity assume If' 1=1.
The existence of a monotone decreasing profile w, with w
tending to w+ as x tends to ±o is discussed for example in

E]4. Projecting on a grid of size h, &t=Xh, we obtain the
discrete profile:

w. = w(jh/c - skh/c) = w(R'(j-sX)).

We now point out that the larger the R the fewer the points
w. in the transition layer between w and w+ (see Pig.4 ).

Our goal is a stable numerical method that resolves such
viscous profiles very accurately even when they have but two
or three points in the transition layer. The interest in such
methods arises, for example, when computing reactive flows
where the layer itself plays a major role.

The standard approach for approximating equatiu"s like
(1.1) has been a centered difference approximation to the
viscous term,
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c(a(u)uxix n (eh 2)A (a(u )u
u Xj112 j u/-u_

AU -1/2 U j -i

and either a centered difference or an upwind difference

approximation to the hyperbolic term 133, [63. The

characteristic feature of this approach is to separate the

viscous part from the hyperbolic part in the equation. We

performed numerical experiments on the viscous Burger

equation, using both Richtmeyer's second order centered

difference scheme and then the second order upwind (MUSCL

(7]) scheme for the hyperbolic part. We computed a travelling

wave moving with speed one for which we had the exact

solution. The results are shown in Figs.1 and 2 below.

Centered Difference Scheme
2 .5 - - , , , , , ' , , • ", - ,. .

0

2 a 2

1.5 
X

0

0.5

0a

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75

R= 6,DtDx=.245,Time-120,Exact=" e'

Fig.1
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Second Order Upwind
2.

0

1.8

0
1.6

1.4

1.2

0.8 0

0.6 X

0.4

0.2

0

1 1.05 1.1 1.15 1.2 1.25 1.3 1.35 1.4 1.45 1.5

R=6,Dt/Dx=.28,Tiine=120,Error=. 172,Exact="'x"
Fig. 2

We point out that the centered difference scheme is
oscillatory since, when R is not small there is not
sufficient viscosity to stabilize it. The upwind scheme, on
the other hand, is total variation stable for all values of
R, but suffers from loss of accuracy inside the transition
layer. The numerical results indicate roughly a 10% error
(pointwise). This can be explained by the fact that, near
shocks, upwind schemes create a significan* amount of
artificial viscosity of their own and this overshadows the
effect of the real viscosity in the equation. We believe that
any algorithm which is simply based on splitting the equation
into its viscous and hyperbolic parts will have such
problems. In this paper we will construct an unsplit scheme
which uses the travelling wave solutions of (1.1) as
approximating tools between grid points. The key idea is to
interpolate a piece of a travelling wave between grid points
and then let the exact solution operator to (1.1) act on it.
Then, we evaluate the flux ca(u)u - f(u) at cell boundaries.x
As we will see this scheme borrows from both the centered
difference and upwind methodologies. As a consequence it has
both the high resolution property of centered differencing
and the total variation diminishing property of the upwind
approach.

In what follows we will describe the travelling wave
scheme in detail and prove it is TVD stable for a fairly
large set of values of (X,R), that includes, for example,
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cases where the other schemes fail to perform. We also
present numerical evidence that supports the theoretical
results. A more complete account, including accuracy and
optimal stability results, can be found in [2].

2. THE TRAVELLING WAVE SCHEME
We will only consider the case u,+ <U. to derive the

numerical flux h . This is the case of a shock for the

hyperbolic part where the dissipation plays the most
important role. In case of rarefactions, u <u , we advocate3 j+l

the use of any of the two schemes mentioned above.
As we mentioned in the introduction we wish to

interpolate a travelling wave solution between u. and uj+ 1 '
3

that is find w such that w(x-st) is a solution to (1.1), and
w(xj)=u., w(xj+l)=u +1" For simplicity we let x =0, x j+l=h,

and rescale time and space so that t goes to t/h, x goes to
x/h. Then, (1.1) becomes

ut + f(u) x = p(a(u)ux) x , p=If'I/R. (2.0)

The travelling wave solution will satisfy the ODE

p(a(w)°)' = -sw' + f(w)P (2.1)

We consider this with boundary conditions

w(O)=u., w(l)=u i +V (2.2)

Since the speed s remains yet undetermined, we have the
freedom of prescribing one more boundary condition. For
instance we let w'(O)=w'.

j
Using the convexity of f, one easily proves:

PROPOSITION 2.1
Suppose u* .> u '+ 1 and w'CO.) = '. <0. Then there exists

a unique s and x-) that solves C2.f.) and C2.2).
Moreover, one has the foLlowing estimates:
AfJ+/ W .u aj w

a) Au+1/2 - P Au a(u.) g- a..... 5 s (2.3)
j+1/2 j+1/2 a1j+1/2

s < f'(u.) - j a(u.) g-1 I
j+1/2 0 a 2j+1/2

Af w l * a(ujlWjl

b) 3fj+1/2 + 1 Au a(uj+l g a +1 s
b u j+1/2/ j+l/ + al j+1/2

s : f' (u .) + / 
+ Ij + l 

Au g- . l) g- a u j +1 )
3 Au +1/2 j a0 Au +1/2

where w' = w'(i), g(z) = (1/z)log(l+z), and

a0 = inf a(u), a1 = sup a(u).
REMARKS. The function zg-"(z) is defined on (O,M),

decreasing and tending to +o at 0 and to -a at +a. Therefore,
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r-

s becomes large when w '/Au +l/, is near 0 or near m. Also,

since g-(1) = 0, one obtains maximum control on s when
w./AU is chosen to be 1 (assuming a0 = a I = 1).

Given u.i ,U,+l and w.' we define the numerical flux for3 3 3
the travelling wave scheme by

hTV pa(w(1/2 - sAt/2h))w'(1/2 - sAt/2h) - (2.6)j+1/2
- f(w(1/2 - sAt/2h)), /j = 5/h.

REMARK. The numerical flux h TV is obtained by first using

3+1/2
the exact solution to (1.1) with initial data given by the
travelling wave w(x), that is w(x-st), and then evaluating
the flux ca(w)w x - f(w) at x = xj+ 1 /2, t = At/2.

3. TVD STABILITY

In this section we analyze the travelling wave scheme
when w. /Au+/2 = 1. This choice, even though makes the

scheme second order accurate only, yields optimal stability
results.

For simplicity, we will assume a0 =al=l, so that from

(2.3a)

Af +l/2/Auj+l/2_ : s : f (u.), since g-(1)=O. (3.0)

For TVD stability we use the framework introduced by
Harten [11, in which one writes the scheme in incremental
form
n+1 nu/u.+C Au - whur
3 U i +1/2 u+1/2 jD-1,2.&u-1/2' where

Cj+1/2 = -(hj+1/2-flu )) Auj+1/2,

D j_1/2 = (h j -l/2-f(u i))/AU j-1/2

and then shows that

C- >0, D > 0, 1-C +D >:0. (3.1)C+1/2 3 j+1/2 - j+1/2 j+1/2 O

The inequalities (3.1) imply the scheme is TVD. In our
case one easily verifies that

C T = (At/h)(0 - s w - (3.2)
j+1/2 AU +/

TVJU Iu -wD+I mUAth)+l -+w.j+
+TV 1/2 ( t ) u +1/2A+1 /2

where w. = w(x.), x. = 1/2 - sAt/2h.

THEOREM 3.1. If

a) R o Sup 5 - 2 LoS(1/z). (3.3)
o:S:S Cf XZ.)C1 -a.)

b) XC2/R + f.) : f

then the travetting zv e scheme is TVD, i.e. the coefficients

23.2) satisfy (3.1).

224



REMARKS. The inequality (3.3b) is a CFL-like condition.
The values of the quantity which appears an the right of
(3.3a) were computed as a function of X below

X 1 0 .25 .5 .6 .65 .75 .8 1
R.(X)l 2 2.6 3.6 3.9 4.1 4.3 4.5 4.9

From (3.3) 2/(1-X) S R S R(X) so, for example, we have TVD

stability if X=.65 and R=4.1. Let us also mention that the
results of Theorem 3.1 are not optimal, meaning that we were
able to compute at higher values of R and X (see Fig.4 for
numerical results). One could explain the good stability
properties of this scheme as follows. To have Cj+I/2 ? 0 in

(3.2) for example, we need s(w, - U.)/Au + p when s0.

The quantity on the left of the inequality never gets too
large since whenever s is getting large positive, w. = w(1/2

- sAt/2h) is getting closer to u. This property appears to

be specific to this scheme.
Proof of Theorem 3.1. From (3.1) and (3.2) we need to show

a) s PAU j+1 /2 /(w - u) = iwj'/(w. - u) (3.4)

b) -s : ,iwj 1/(U. 1 - w.)
+ fj+i/ U+ s ( .l<1

c) (At/h)(2m + Af 2 + ( u
since = w - sAu+ A

s j+ j+1/2 +fj+1/2.

We proceed by showing (3.4a) and (3.4b).

CASE 1: s2O.
Here (3.4b) is immediate, since the right hand side is

always positive. To show (3.4a) we use the estimate

s u ) - f - u. gU p u. x , where (3.5)

X. = 1/2 - sAt/2h - 0 if sAt/h : 1.

The estimate above is obtained easily from (2.5) with x = x,,

the same way (2.3a) was obtained from (2.4) in Prop.2.1.

From (3.5) one gets

x sII w Ui9 W

As we remarked before, the function zg- (z) is decreasing on
(Om). Let K(z) be its inverse. Then,

Klx-s + x*wjl

* pw. - u

Now, (3.4a) follow from
s 5 (AJ/X.)K(x.(-s+lf')/, WW

which, after some algebrais equivalent to

g((-s+If'l)/s) 2 sx./P, or
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+ If' I) log(jf /s).

Let z = s/If' I. Then 0 5 z :5 1 (from (3.0)) and

S I I (-z+l)x./If log(IfI/s).

Substituting for x. from (3.2) we see that (3.3a) implies

(3.4a).

CASE 2:s5O.
Here (3.4a) is trivial and (3.4b) follows as in Case 1,

only, now, we use the estimate

0 > - I f ' I + p u j + 1  - gj ( 1 - x ) u -

u + **uj+l *

instead. This estimate, again, can be obtained from (2.5) the
same way (2.3b) was obtained from (2.4).

We now turn to (3.4c), the CFL condition. Since , from
(3.4a) and (3.4b) the quantity on the left of (3.4c) is
positive, it suffices to show

(At/h)(2p + Af j+/2/Auj+1/2 - 2s) 5 1 whenever s 5 O,

since -1 5 (u j-w.)/Auj+l/2 : 0.

From (3.0) we get

Afj+I/2 /Auj+/2 -2s : -Afj+l/2 /Auj+l/2

so it suffices to have

(At/h)(2p + If' ) :5 1,

which follows from (3.3b).

4. NUMERICAL EXPERIMENTS

We now turn to the numerical experiments. We have
computed a moving profile for Burger's equation

ut + (u /2) = suxx
u + 2 at x=-w , u + 0 at x=+w

The exact solution is given by
1

u(t,x) =
1 + exp((x-t)/x)

We started with initial data given by the exact solution and
cmputed with different values of R ranging from 4 to 6.6. At
R=4, X=.65, all schemes were numerically stable. We know this
to be theoretically true for the upwind scheme and for the
travelling wave scheme. However, the travelling wave scheme
was about 10 times more accurate then the other two (Figs.3
and 4). At higher values of R the centered scheme starts to
oscillate (Fig.l) and the travelling wave scheme remains

superior in accuracy to the upwind scheme (Figs.2 and 4).
An interesting feature of the travelling wave scheme,

which is not shared by the other two schemes is, that to be
stable for larger values of R it needs a larger CFL number
(Thm. 3.1). One can therefore compute in the large R regime
by taking relatively large time steps (Compare Figs.2 and 4).
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Travelling Wave Scheme
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SOLUTION OF THE EULER EQUATIONS FOR UNSTEADY, TWO-DIKENSIONAL,

TRANSONIC FLOW

H. H. Henke
Messerschmitt-BUlkow-Blohm GmbH

2800 Bremen, FRG
HUnefeldstrae 1-5

INTRODUCTION

The numerical simulation of the aerodynamic forces acting on an

oscillating wing-section in transonic flow by solving the Euler
equations is described. The method of solution is the approxi-
mate-factorization method of Beam and Warming /1/. Since time-
dependent calculations are the primary concern, an implicit
algorithm was developed because it allows considerably larger
time-steps than for explicit schemes, and calculation must be
carried out over several periods of oscillation on wing-secti-
ons. In this paper several calculations for steady and unstea-
dy transonic flow cases were carried out.

GOVERNING EQUATIONS

For the present investigation the Euler equations are written
in curvilinear coordinates ((,PT):

UT + Fg + G = 
- 0 (1)

where P pU "PV

1 pu _ 1 puU+9xp 1 puV+nxp
F=- - G= - -

J pv J pvU+Eyp J pvV+nyp

a (e+p)U-ttp (e+p)V-ntp

In the above relations U and V are the contravariant velocities

U = tt+txu+tyv ; v = 1nte~nxu+1Iyv (2)

and J is the Jacobian of the coordinate transformation

J-1= xiYn-x1fl l/(x 1y-_y nx). (3)
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METHOD OF SOLUTION

The method of approximate factorization of Beam and Warming /1/
was used for solving the Euler equations:

_a aF aG
(I+A'--An+Dz)(I+AT-Bn+Dl 1)AUn=-At((---)"+DE = RHS n  (4)

a t aj at an

AU"n = U" 41 
- Un

The flux-vectors are locally linearized in time

Fni= Fn + An( Un*i - U") + 0(AM2 )

Gfl,1 = 6 fl + Bn( U"'i - U") + 0(ATZ) (5)

3F aG
with the Jacobian matrices A = , B = -_ .

au au

The terms D! and DE are implicit and explicit nonlinear dam-
ping terms defined in /2/.

The spatial derivatives were approximated by central differen-
ces of second order accuracy, so that 4x4 blocktridiagonal sy-
stems results. The solution of these systems of equations re-
quires relatively long computational time.

A substantial reduction of the computational time is obtained
by diagonalizing the matrices 1 and I with the similarity
transformation of the form /3,4/1

A= TA 1T
- 1  ; B =TnAnTn-I

- (6)
U V

where 0 - 0
U V

Ag=- , AT=
U+ktc V+k~c

0 - 0 -

U-kgc V-knc

with k:(=x 2+yZ)l / Z, k:(TxZ+nyZ)l/Z and c is the
speed of sound# yielding systems of 4 scalar equations /4,5/

a a
Tgn( I+Ar-AI+D t)N"( I+-AA+D )(T- I- )nAUn=RHS n

all (7)

with N n =(Tt)
n T n .

The matrices Tg n, (Tg-1 )np ... are taken outside of the spatial
derivatives and outside of the brackets, so that the block
matrices are diagpnalizedt whereby a decoupling is achieved.

231



The latter method is nonconservative in unsteady transonic flow
and was therefore only used for the calculation of steady flow
with embedded shocks. For unsteady flow calculations scheme (4)
was used.

The boundary conditions for the correction variable (in the im-
plicit part of the difference equations) is assumed to be Aan=o
and the physical values on the boundary are formulated expli-
citly. This formulation being first order in time is easy to
implement for all types of boundary conditions.

The boundary condition at the body surface is given for q=O
by the condition of impermeability

V = 0. (8)

The tangential component of the velocity is obtained by linear
extrapolation. Then the Cartesian velocity components on the
body (for an orthogonal grid) are given by

The value of the density on the profile is found likewise by
linear extrapolation. A relation for the pressure along the
surface is obtained from the normal momentum relation by combi-
ning the two transformed momentum equations in nonconservative
formt

pV(T1X+ny2) = (Qxx+tyqy)p1 + (x 2+Ay 2 )Pn +

+ P(1tt+qxt'U+qyt) - pU(qxut+qyvg) (10)

where n is the normal direction to the contour n=const. The de-
rivatives tangential to the body are approximated by central
differences and the normal derivatives by one-sided differences.

In the far-field characteristic compatibility relations based on
the one-dimensional characteristics similar to that given in /6/
are employed. The local linearized characteristic variables are

J p J
w.. - [nxp - -)] , wN2 = ([yu-nyv

J 1 Iv l (11)

w9 = - -- *(nxu+nyv)1
IVTl 42 poco

with the corresponding *igenvalues

h 7 ,i. V S hAi = V*knc
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Additionally a vortex-correction formulation /7,8/ must be ta-
ken into account, so that there is no or little change in lift
due to the extend of the computational domain.

The linear stability analysis shows unconditional stability for
the approximate-factorization method, but the amplification
factor approaches unity for large Courant numbers, as a result
of the factorization error. The consequence is a decreasing ra-
te of convergence with increasing time step, and in practice
the Courant number is restricted to 0(10). This restriction is
not so weighty for unsteady flow computation because physical
aspects (wave motion) must be taken into account.

RESULTS

For all calculations carried out a C-type grid, given for tran-
sonic test problems in /9/ with 141x21 or 11x3l points was
used. The response characteristics of the airfoil surface pres-
sure to the airfoil motions can be depicted using Fourier re-
presentation. If the unsteady angle of attack is expressed as
Q(t)=am+Im(aoei"J), the Fourier series representation of
the pressure coefficient can be written as cp(x,t)=cpm(x)
*Um(c (x)aoe~" w().

In Fig. 1 the pressure distribution for several time points for
a harmonically oscillating profile at a Mach-number of 0.80 is
given. For the same profile the steady pressure distribution
for M==0.85 is given in Fig. 2a, and in Fig. 2b the first mode
harmonic components of the pressure on the lower and upper si-
de of the profile are shown. The unsteady pressure distributi-
ons, as can be seen here, are symmetric. For the same case the
lift coeeficient as function of the angle of attack for the un-
steady motion is given in Fig. 3, and in Fig. 4 the LZ-Norm
in the change of the density (Ap/At) as a function of the
time steps for steady and unsteady flow is presented.

For the steady flow computation the influence of the vortex-
correction formulation on the pressure distribution is shown
in Fig. 5. As can be seen here, this formulation leads to near-
ly l0 more lift in comparison to the formulation without a
correction. The extend of the computational domain is nearly
12 chord lengths in each direction.

In Fig. 6 the steady pressure distribution and the lines of
constant Mach-number for a MBD A3 profile in transonic flow is
shown. In Fig. 7a the corresponding unsteady pressure distri-
bution for the oscillating wing section, and in Fig. 7b the
number of supersonic points as function of the time-steps is
used as a crude indication of convergence (for the steady flow
case), for the time-step n>400 the change of supersonic points
for the oscillating airfoil can be seen. For all unsteady flow
calculations 200 time-steps for a period of oscillation were
used.
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CONCLUSION

In this paper a method has been developed for calculating aero-
dynamic forces on a wing-section oscillating harmonically in
transonic inviscid flow. The Euler equations are taken as go-
verning flow equations. They are solved by the approximate-fac-
torization method of Beam and Warming. Results have been pre-
sented for steady flow cases and for unsteady flow around an
oscillating airfoil.
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SUMMARY

In this paper we analyze the solution of the Riemann problem for the
following one-dimensional conservation law

arul 2 2  .

rt LVJ u(v,-p) I=

This differential equation is hyperbolic when u21v 2 _ 16p2 and elliptic

when u2+16v 2 < 16P2. and has been studied for p = 0 by Isaacson and
Temple (f]. It corresponds to a symmetric case II in the classification
of Schaeffer and Shearer (2].

INTRODLCTION

The recent interest in the analysis of the initialvalue problem

" V a g(u V) ] ,(1)

with

UL ,x < 0 {V L ,x < 0

u(x,) v(x,)= (2)
uR , x>a vR x> a

the so-called Riemenn problem, has revealed many interesting new
phenomena.

Part of the motivation to study the problem (1). (2) has been the
need to understand the behavior of three-phase flow in a porous medium.
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see [2 - 6). In particular a numerical investigation [6] with realistic
data in the context of three-phase flow showed that one should expect
regions in phase-space (i.e. (uv)-space) where (1) is not hyperbolic,

but elliptic (hyperbolic/elliptic meaning that [u(u.v) f(u.v) has two

real/non-real eigenvalues). Indeed more recent theoretical work has
proved that one cannot in general rule out the existence of elliptic
regions for three-phase flow in porous media [7], [9]. The solution of
the Riemann problem was shown numerically to be quite stable even with
initial data quite close to the elliptic region [6]. The starting point
for the renewed interest in (1), (2) was the surprising complexity which
showed up in the solution of a prototype problem with a umilic point,
i.e. an isolated point where the (real) eigenvalues are degenerate. This
resulted in a very detailed analysis of the case where f and g both are
homogeneous 2nd degree polynomials in u and v with one umbilic point, and
it was shown [2] that the problem could be classified in four distinct
classes in this case. A perturbation of a umbilic point will in general
lead to the existence of an elliptic region.

In order to obtain rigorous results for a model problem in the mixed
type case, one of us analyzed a Riemann problem in detail in the
symmetric case I [9]. The solution of the Riemann problem was found to
be quite wellbehaved except for a loss of uniqueness close to the
elliptic region.

Recently we have extended the analysis to the symmetric case II
which we want to report on here [I@]. Cases I and II are believed to be
most relevant for three-phase flow in porous media [7].

The solution in the case at hand is more complex. There are regions
where there is no solution when one essentially only allows Lax-shocks
and so-called compressive shocks. The analytical results are
supplemented by numerical simulations using a Lax-Friedrichs difference
scheme. The detailed results of this analysis will appear in [II].

RAREFACTIONS AND HUGONIOT LOCI

Consider the conservation law

Fu2 + v2)v

t v ax1  u(v-p)

with p > 0. The fundamental property of this equation is contained in

Proposition 1. The system (3) is hyperbolic when u 2+16v2 > 16p 2

strictly hyperbolic when u
2 +16v2 > 16p 2 and elliptic when u

2 +16v2 < 16p 2.

The two basic "atoms" which build up the general solution of the Riemann
problem are the shock solutions and the rarefaction waves. A shock
solution of (2) and (3) is a solution of the form
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zL x <st

x(Xst (4)

with z v j] The shock speed s satisfies the Rank ine-Hugonilot
relation

s(zR-zL) =F(zR)-F(zL)()

with F [ I The Hugoniot locus relative to a point z L e IR2 is by

definition

H(zL) {z G R213s e R s(z-ZL) = F(z)-F(zL)}. (6)

The Hugoniot locus mayj have quite complicated behavior.

V

Fig. I. H(-4p,p). Slow Lax-shocks resp.
compressive shocks indicated byj 1 resp. C.
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A rarefaction wave is a solution of (2) and (3) on the form

z x < A(zL)t

z(x.t) = . < x < (zR)t (7)

! zR  , x > A(zR)t

where A(z) is an eigenvalue of the matrix dF(z) and Y7(t) satisfies

d- ) rq( ) (A(zk)) = zk  , k e {L,R} (8)

where r(z) is the eigenvector corresponding to the eigenvalue A(z)
normalized such that

vA(z),r(z) = 1 (9)

The where (9) is not possible. i.e. where

vA(z),r(z) = 0 (10)

is called the inflection locus and plays an important role in the
solution of the Riemann problem.

Allowing for weak solutions of the conservation law one has to face
uniqueness problem. The so-called entrop condition is supposed to
single out the correct solution. We will here allow essentially for Lax-
shocks satisfying either (12) or (13) and compressive shocks satisfying

A2 (zR) < s < A1(zL) . (11)

trying to follow the Liu-construction (12] using the Liu-Oleinik entropy
condition.

THE SOLUTION OF THE RIEMANN PROBLEM

The general solution of the equations (2) and (3) Is very
comlicated indeed. Therefore we will here concentrate on an explicit
characterization of the solution for one particular left state, which
however will be representative of the solution for a set of left states.

In addition we will give examples of simulations using a Lax-
Friedrichs difference scheme.

The solution will be given in zR space.
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Let

ZL -4p (12)

The slow waves consist of slow shocks and slow rarefactions. The slow
rarefact ions curve terminates at the boundary of the elipse. For points

Zon this curve the solution Is a simple rarefaction connecting ZL and

z R. denoted R. The slow Lax-shocks, satisfying

s < A 1 (zL) , A(2R) < s < A2 (z R) '(13)

constitute two branches, one connected to z L and one branch in 3rd

quadrant. From each of these slow waves we can continue with fast shocks
and fast rarefactions as shown in F~ig. 2.

V

SR RRR

Fi.2 hSouinofReanpolmi

the- zRpln foWZS I
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The fast rarefaction wave follows the line v = p to u = 0 where it
bifurcates into one fast branch leaving v = p and a slow branch along v =
p. We will write the solution as RR for zR = (uR,p), uR > 0. The fast

Lax-shocks. satisfying

s > 2(zR) A1(zU) " s < 2(zL) (14)

lie on the line v = p, u < uL = - 4 p.

From each point on the slow rarefaction we can jump with a shock
with speed equal to the fastest speed in the rarefaction wave. Such a
wave is called a composite and is denoted by (RS). From the composite
one can continue with fast waves. The solution close to the slow
rarefaction is complicated. To the left of this curve we use fast
shocks. However. as the slow rarefaction crosses the inflection locus.
we have to use a fast rarefaction followed by a fast composite and
eventually a fast shock. To the right of the slow rarefaction we use
fast rarefactions which however terminate on the inflection locus. From
here we use a fast composite which eventually turn into a shock looping
back to the slow rarefaction. In the area marked 0 there is no solution
if we only allow Lax and compressive shocks.

We now turn to the line v = p, u > 0. For each such point on this

line with u . (.2.r~p) we can jump with a speed equal to the fastest
speed in the rarefaction, i.e. a slow composite. With this curve as a

starting point we continue with fast waves. As u a (2tA.4.'7p) there are
detached fast shocks, see Fig. 2.

In this way we have constructed the solution of the Riemann problem
where it exists for a particular left state. For the general statement
we refer to [10]. Finally we would like to report on some preliminary
numerical result for this model. Using the Lax-Friedrichs difference
scheme

n+1 1I n n - At n n
zi  1((zin+i_l) - gF(zi+1)-F(zi_)) (15)

with z = zL when i < 0 and z i = zR when i > 0 and zn. approximates

z(nAt,iAx). Where (3) and (4) has one solution, the difference scheme is
found to converge numerically to that solution, see Fig. 3. even with
initial states close to or inside the elliptic region.
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Fig. 3. The solution with zR = [ 21
R -4p

described by R(RS)R.

In the cases where we have stated that there is no solution, one finds
numerically solutions with crossing shocks. However, by allowing for all
crossing shocks, there is a continuum of solutions, and it is not
possible to select a unique solution by comparing only shock speeds and
the eigenvalue of the left and right state. For further details we refer
to [11].
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Qualitative behavior of solutions for Riemann problems of
conservation laws of mixed type
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1. Introduction.

It is known that the system of conservation equations of describing the time evolution
of unsteady flows is typically of hyperbolic type when dissipative effects are neglected.
However, for complex materials there may be open regions where the linearized system is
elliptic. This occurs in various models in applications which has caused a lot of attention
and there have been some mathematical analysis performed on it to extend the theory of
hyperbolic conservation laws, especially Riemann problem and admissibility condition to
include equations of mixed type, such as [BNJ on traffic flow; [J] [M] [Sh][SI] [ls], [Ha] on
vibrations of elastic bars and Van der Waal fluids; and recent results in [K] [Ho] and [fM].

In the first case the elliptic region is ellipsoidal, however the Riemann problem is only
discussed in special cases when the states are not in the elliptic region. In the second case
the elliptic region is a strip and the Riemann problem is solved with different considerations
about the admissible discontinuity by different authors. In [Ho] the system is elliptic inside
a circle and it is claimed that the Riemann problem always has a weak solution which
however is not necessarily unique.

The following system arising in modelling certain nonlinear advection process in ecol-
ogy is discussed in [ttM] for which the elliptic region is unbounded with boundary curve
(v- u+a- 1)2 + 4(a- 1)u = 0

u, + [ufI - V%] = 0 (1.1),vt + [va+ u).= 0

where a > 1.

The Hugoniot locus of (1.1) can be at most three disconnected branches for each
family and can be parametrized by u for the first family and by v for the second family.

Combining and generalizing Lax-admissibility criterion and Lin-Oleinick criterion for
admissible discontinuity used to strictly hyperbolic system of conservation laws, the authors
in [HM] introduced the generalized entropy condition by which it was shown that the
Riemann problem always has a weak solution, however, certain regions exhibit multiple
solutions.

In order to have uniqueness, a minimum principle was introduced in the definition of
an admissible weak solution in [HM]. The existence and uniqueness of the admissible weak
solution is proved then for any given Riemann data.

The purpose of this paper is to investigate the structure and the qualitative behavior
of the admissible weak solution defined in [HM]. Referring to the Lax-criterion, a shock
satisfying the generalized entropy condition may agree with or violate it at different level.

Research supported by the Science Fund of the Chinese Academy of Sciences and
the National Science Foundation under Grant.No. DMS-8657319
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We give a complete classification concerning the relation between the speed of the ad-
missible shock and the characteristics associated in Secion 2. Continuous dependence is
discussed in Section 3 then. It is to be expected in general in problem of mixed type
that the solution is not continuously dependent on the initial data. However, some kind
of stable behavior can still be expected for the admissible weak solution. It is shown in
Theorm 3.2 that the entire U-plane (U = (u, v)) is divided into ten regions such that the
topological structure of admissible wave curves keep the same as U_ = (u-, v-) varies in
each one of the regions. The topology may vary only when U_ across the boundaries in
the U-plane. In other words, for fixed U_ = (u-, v-), the admissible weak solution of
the Riemann problem may divide the U+-plane into different regions representing different
combinations of shocks, rarefaction waves and composite waves, the qualitative structure
of the U+-regions changes only as U_ across the U_-boundary curves in the U.-plane.

2. Classification of admissible shocks.

The i-characteristic speed of (1.1) is defined as
:1

A,1 = I{u - v --a - 1 - [(v - u - a - 1)' -t 4(a - 1)u]112}
2 (2.1)

A2 = 2 fu -v +a +1+ [( -u +a -1) + 4(a - ),

at any point (u, 'v) where A~u , v) = (v - u + a _ 1 2 + 4(a - 1)u > 0. The elliptic region

where A(u, v) < 0 is shown in Fig.2.1. A, is equ to A2 on the curve A(u, v) = 0. The
system is strictly hyperbolic at any (u, v) where A(u, v) > 0. Moreover, the system is
genuinely nonlinear when it is hyperbolic except the set of the fognals, i.e. the curves
where genuine nonlinearity fails, which is made up of four rays:V =0 U =0V=0U=0at > -( - 1) w < -( - 1) T h -(a - 1) t >r -(a - 1)

On the first group of the rays, the first family of characteristics is linearly degenerate and
Al = I and A, = a respectively; on the second group of the rays, the second family of
characteristics is linearly degenerate and A2 = 1 and A2 = a respectively. The distribution
of rarefaction wave curves is shown in Fig.2.1 where the curves R ending at the point
{u = -(a - 1), v = 0}; R1 ending at the point {u = 0, v = -(a - 1)} and rays v = 0 with
U > -(a - 1); u = 0 with v < -(a - 1) will play important roles as the boundary curves
in the dividing of the U-plane.

A discontinuity is determined by Rankine-Hugoniot con dition, namely
0r[tl = (I - V)u] (2.2)

.[ul = [(a + u)vJ

where [wJ = w, - wt denotes the jump of the quantity w across the discontinuity with
speed a.
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For any given (UO, vO), (2.2) defines the Hugoniot locus H, (uO, vo) and H2 (uO, VO). It
is shown in [HM] that H1 (1 ) is a single-valued function of u(v) along which it holds

ol = Iu - vo + a+ ('0 - u + a - 1)2 + 4(a - 1)'1/2)

(U, - a - u)(,J - vo) - ,o( - ,o) (23)
a{2 =  {(u° - v + a + I + J(v' - uo° + a- _ 1 + 4(a - 1) U0°11/ 21 )
(a2 - I + V)(U - UO) + UO(V - V0) = 0 . 2.

For handling the elliptic region in the system (1.1), a generalized entropy condition was
introduced in [HM]. For any given (u-, v-) = U_, a discontinuity (a, U+, U-) is called
admissible according to the generalized entropy condition if U+ E HJ(U-) (similar to
U+ E H2 (U_), taking v as the variable) such that either

I. For any u between u- and u where a, is defined, it holds

dr o(U; ,_, V_) >_ 0', (U+; U_, ,_)

or
II. o(u; u-, v-) is non-increasing with respect to Iu - u-.I for all u E "+,- for which it is
defined, where

=(U+, u_] if U+ < u_.

Denote the set of states, belonging to H,(1) and satisfying the above generalized entropy
condition (G.E.C.) by S (U.) which has different distributions corresponding to different
location of (u-, v_-) = U_ as shown in [HM]. We discuss the relation between the speed of
the admissible shock and the characteristics associated next respectively.

Case 1. u_ > 0, v_ > 0 "1 V iS 2
It can be easily shown by using the S1  ( )

formulae (2.1), (2.3) that 01 is decreas- (U'Q
ing along S1 (u-, v-) as u decreasing and
o is decreasing along S2(u-, v-) as v in-
creasing (see Fig. 2.2), satisfying Lax- Fig. 2.2
condition as follows

A 1(U+) <O'1 (U+; U_) < A(U)

al(1+; U-) < A2(U+)

for any U+ = (u+,v+) E S1(u-, v-);

A2(U+) < C2 (U+; U-) < A2 (U_)

Al(U-) < 02 (U+; U). (2.42

for any U+ = (u+, v+) E S2(u-, v-).

Case 2. u- > 0,v- <0
The distribution of the set S,(u-, v-) is shown in Fig. 2.3 and 2.4 corresponding to

v_ > -(a - 1) or v- < -(a - 1) respectively where the arrows indicate the direction of
decrease of the corresponding shock speeds, the same as in figure 2.2.
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(u-v) S1  S

Fig. 2.3 v- > -(a- i) Fig. 2.4 v- < -(a- i)

For any U+ = (u+, v+) E S,(u-, v-) which is connected branch to (u-, v-), (2.4) can
be obtained in the same way as in case 1. As far as the branch S disconnected to (u_, V_)
is concerned, we consider a,(c, U-) first, where c is defined by (see [HM])

U C = (V -a -+ -r/ _ )2

{ _= + /(a - 1)(-v_)

and aI(c;; U-) = i - (a- l)(- v-) by (2.3)1,

Due to u_ - u_ - (a - 1) < 0, it is easy to see that uj(c; U) < Ai (U-) which implies
that for any U+ belonging to the same branch S, as c does, it holds

-1 (U+; U_) < A1(U_) < A2 (U-) (2.5)

we show al(c; U-) < A2 (C) next which is equivalent to

ye- , - (a - 1) < 2f(a - 1)(-v) + ,I(vc -u +a - 1)2 + 4(a - i)u,

This is equivalent, since vC - uc - (a - 1) > 0, to

(a - l)(v, - v-) + /(a - 1)(-v_) • V(vc - u. + a - 1)2 + 4(a - 1)u, > 0

which is true because v, - V_ = v { + (Vqa---I + -f/'"i' )) > 0

We prove that fur any U&+ belonging to the same branch S1 as c does, it holds

oI(U+; -_) <A2(U+) -(2.6)

It is shown that (2.6) holds when U+ = c. Suppose (1+ = U* is the first point on the same
branch where u" < ut, (so that v" > vc> 0), a(U*; U) = A2(UJ). It is easy to check that

A2(U) > 1 since v* > 0, namely orU ;UU) > 1. However, ai(U*, U-) < a,(c;U-) < 1.

This contradiction implies (2.6).

(2.7) can be verified by a straightforward calculation, we omit it.

In summary, for any U+ E Si(u-, v-), disconnected branch starting from c, (2.4),
still holds.
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Remark. It is clear that the distribution of the set Si is not necessary to be varying con-
tinuously when (u-, v-) across the fognals. Moreover, the inequalities (2.4) may become
into equalities when (u-, v-) is located on the fognals.

Case 3. u- <0, v- > 0.
The distribution of the set S,(u_, v-) is shown in figure 2.6 and 2.7 corresponding to

u_ < -(a - 1) or u- > -(a - 1) respectively.

SIV V
u.,v.) ,T

(UxS2 ~(u_.,v.)

Bg S2 geS2

Fig. 2.5u_ _-(a- 1) Fig 2.6 u- > -(a -1)

For any U+ = (u+,v+) E S,(u-_,v-) which is connected branch to (u-_,v-), (2.4) can
be obtained in the same way as before. Furthermore it is not difficult to show that

02(B; U-) > A2(U_) (2.8)

92(B; U-) > Ai (B) (2.9)

and
0'2(B; U-) < A2(B) (2.10)

where B is defined by (see [HMI)

B= (_+ -)2  (2.11)

UB = __V_ + /(a. - 1)(-u_) (2.12)
-_ + V_ 1

Divide the region {u < 0, v < 0} into subregions I-IV, as shown in Fig. 2.7. The
discussion in case 4: (u-,v-) E I or case 5: (u-,v-) E II is the same as before, we omit
it.
Case 6. (u-, v-.) E III.

The distribution of the set S,(u-, v-) is shown in Figure 2.8 and 2.9 corresponding
to u_ < -(a - 1) or u- > -(a - 1) respectively.

II BE C S ( uv.)

IV S2

Fig. 2.7 Fig. 2.8 Fig. 2.9
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For any U+ = (u+, v+) E Si(u-, v-) which is connected branch to (u-, v-), (2.4) can
be obtained in the same way as before.

For any U+ E Si(u-, v-), disconnected branch starting from c, the similar argument

shows (2.5) and (2.7). As far as (2.6) is concerned, the difference is the case when v* < 0.
Suppose U+ = U* is the first point on the same branch where v* < 0, ai(U*; U-)-- A2(U*),
then v, < 0 and c is located on a R2 curve along which A2 is decreasing untill the point

U' where this R2 curve intersects to the curve A(u, v) = 0. Clearly, v' > v_. On the

other hand, or,(c;U-) = I - /(a - 1)(-v-) > al(U*;U-) = A2(U*) > A2(U') = 1-

0(a - l)(-v') which implies v- > v'. This contradiction implies Ol (U+; U-) < A2(U+).

For any U+ E S (u.-, v-), disconnected branch starting from B, we show that

ul(U+; U.) < A1 (U-) (2.14)

ai(U+;U_) > Ai(U+) (2.15)

l(U+; U.) < A2 (U+) (2.16)

where
VB= _(Va VU)2 (2.17)

= V__-_ - V(a - i)(-u-) (2.18)

ux(B; U-) = a - V(a - )(-u-) . (2.19)

(2.14) and (2.15) can be verified by a argument similar to case 3 for (2.8) and (2.10)
except we have to distinguish now the different cases corresponding to different sign of
VB - UB + a - 1.

As far as (2.16) is concerned, we show a'(b; U) < A2(F3) first which is equivalent to

- UB + a - I < 2V(a - 1)(-u-) + VB - UB + a - 1)2 + 4(a - 1U B

which is true when vB - UB + a - 1 < 0; otherwise which is equivalent to G(u_, v-) < 0

where
G (u_-, v-) = v-_(-V-u- + Vfa--1) + I j '-1- + 2 V- -- (vf- -- V- -)'

-,f- u)(- u -) + I-J u(Vfa -i2 -

Investigate the distribution of the set G(u_, v-) = 0, we can verify that (u-, v-) is located
in the region G(u_,v-) < 0 as shown in Fig. 2.10 in the case 6.

V_.

G'0 =0 (-)__

G <0 U -1-1)

Fig. 2.10
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Therefore, orl(B;U-) < A2(B), which means (2.16) holds when U+ = B. We show
next (2.16) holds for any U+ on the same branch. Suppose not, U* is the first point
where o,(U*; U-) = A,2(U'), u* > UB, then U* must be on a R2-curve along which A2 is

decreasing to a as u increasing. Namely, Orl(U*; U-) = A2(U*) > a. On the other hand,
ui(U'; U-) < Al(B; U-) = a - /(a - 1)(-u-) < a. This contradiction inplies (2.16).

For the isolated point B E S2 (u_, v-), it holds that

r(2(B; U-) < A,(U-) (2.21)

-2(F; U-) > Al(h) (2.22)

62 (b; uf) < A20() (2.23)

where or2(B; U-) = a - V/(a - l)(-u-)

The proof is similar, we omit it.

In summary, when both U+ and U_ are in the hyperbolic region.
1. Any state U+ located on S (U...) connected to the state U_ supplies an admissible

shock satisfying the Lax condition (2.4)1.

2. Any state U+ located on S,(U_) with ending point c or B, disconnected to U, supplies
an admissible shock satisfying the Lax condition (2.4)1

3. When the state U+ takes the isolated state B E S 2(U-), the admissible shock agrees
with the Lax cowdition on the number of characteristics which enter or leave the shock
but violates th,; Lax condition on the style, namely

a2 (T9; U-) < A I(U-)

A,(B) <0'2(B; U-_) < 2(B).

4. When the state U+ takes the isolated state B E S2 (U_), the admissible shock violates
the Lax condition on both the numbers and the style. Namely

AlI(B) <a(13; U) < A(B) .

3. Continuous dependence of admissible weak solution

Consider (1.1) with initial data

/(U_,,,_), X < o (3.1)
(-,v)I,=o = P U+,v+),X > (

where U- = (u-, v-) and U+ = (u+, v+) are arbitrary states in the (u, v)-plane. Since both
the system and the initial data are invariant under the transformation 8 --, ax, t -, att,
at > 0, we look for self-similar solution u. = u( ), v = v(e), C = 7.

It is shown in [HMI that there is no uniqueness if we use the same definition as for
a purely hyperbolic system of conservation laws for an admissible weak solution and a
minimum principle is introduced in the definition then.

Definition 3.1. An single-valued function is called an admissible weak solution of the
Riemann problem (1.1) (3.1) if
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1. It satisfies the boundary conditions (U, v) - (u:F, vT) as T- woo.
II. It is either a rarefaction wave or a constant state whenever it is smooth.

III. Any discontinuity satisfies the Rankine-Hugoniot condition (2.2) and the above gen-
eralized entropy condition (G.E.C.)

IV. The sum of the strength of all of the jumps takes the minimum value among all
possible single-valued function (u( ), v( )) satisfying I-llI.

It is to be expected in general in problem of mixed type that the solution is not
continuously dependent on the initial data. However, some kind of stable behavior can be
expected for our admissible weak solution which will be described in theorem 3.2.

It is shown in [HMJ that for any fixed U_ = (u-, v-), the admissible weak solution of
the Riemann problem may divide the U+-plane into as many as 12 regions, representing
different combinations of shocks, rarefaction waves and composite waves.

Now we show that the (h-plane is divided by certain boundary curves into different
regions such that the qualitative structure of the U+-regions changes only as U_ across
the U_-boundary curves in the U_-plane. Denote the points {u = -(a - 1), v = 0} and
fu = 0, = -(a - 1)} by P and Q respectively.

The R, curve starting from P; the ray v = 0, u > -(a - 1); the R, curve starting from
Q; the ray u = 0, v < -(a- 1) and the rays v < 0 u = -(a- 1); u < 0, v = -(a - 1) play
essential roles which divide the 17-plane into different regions, as shown in Figure 3.1.

Where the hyperbolic region is divided into six subdomains, numbered by I-VI. Now
we discuss each of them.

R I

-~U

X 11I

F ig .3 .1 S I _ R2 V

Case 1. U_ E I in the U_-plane. *rR

It is shown in [HM] that P R

the structure of the (1+-regions B U
in shown in Fig. 3.2 when -(a-
1) < u- < 0. The wave pat-
tern for the solution of Riemann - S2f8") B*
problem is S1 -S2 when U+ E 1; ~
S, - R 2 when U+ ElI; Rt - R2
when U+ E IlIor III*; R,-S 2  / R
when U+ E IV or IV*; S1 - F 3.
2- 2 -S 2 when U+ E V; C(B) V

S1 - S2 - $2 - R 2 when U+ E VI; R, - S2 - S2 - S2 when U+ E VII; Rj - S2 - S2 - R 2

when U+ E VIII.

When u- --- -(a - 1) (v- > 0 is fixed), u - 0 and uP --+ -oo which implies
V -. -o and uB. - +oo, therefore, the regions V and VI disappear. When u- - 0

(v- > 0 is fixed ), B -. Q and B* - Q, the regions If*,IV*, VII and VIII disappear.

When u. varies from u- < 0 to u- > 0, the qualitative structure of the U.+-regions keeps
the same.
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S-R2(- S2(-

11 CO

Case 2. u- E II in the U-plane.
It can be proved that the structure R

of the U+-regions is shown in Fig. 3.3,
when u- > 0. Where R, (u-, v-_) inter-
sects to the curve A(u, v) = 0 at N. When
(ul, vi) varies on Ri (u , v ) from ul =-0 Fig. 3.3

to U1 = UN, the corresponding point b
(see the formula (2.17) and (2.18), replac-
ing (ul, vi) for (u-, v-) there) forms

the curve c(B3), connecting N and Q. Corresponding to each point (u*, v*) on this curve

c(B), there is the point B(u*, v*) (see the formula (2.11), (2.12), replacing (u*,v*) for

(u-, v_-) there) which forms the curve F(B), connecting Q and M. Corresponding to each

point (u., v.) on the curve S2(c) U R 2(c), the state B(u., v.) is defined which forms the

curve c.(B). It can be shown that c.(B) tends to infinity (u --* oo, v--+ -oo) as u. -+ -00,

v. -* 0; tends to
v-+-.(a-1) as .
U- +0 f V. - +00

The wave pattern for the solution of Riemann problem is the same as in case 1 correspond-
ing to the subregions f--VIII respectively. The wave pattern is S, - R2 - $2 - S 2 when
U+ e IX; S1 - R2 - S2 - R2 when U+ E X. Where the region confined by the curves

c(B), u = 0 and RI(u-, v-) belongs to IV, the region confined by the curves F(B), C(B)

and S2 (M) is the subregion VII. It is easy to show that the structure of the U+-regions
is similar for u- < 0.

Case 3. U_ E III and Case. 4 U_ E IV can be discussed in a similar way to Case 5, we
omit the detail.

Case 5. u- E V.
The structure of the U+-re$ions is shown

in Fig. 3.4 where the curves cQ is made up
of the point F(ul, vi) when (ul, v) varies along
the curve Sj(u-,v-) U R,(u-, v-) and c.(B) is

defined in the same way as in Case 2. B E
S2(u,v-). The curve S 2(B) will end up at
(u-, v-) which intersect to the curve A(u, v) = 0
at the point T. Corresponding to each point on
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S , 2c)I

52(-) R

Fig. 3.4

R2 (B) U S2(B) with u <_ UT, there is a point B which forms the curve C(B) starting from

the point T.
The wave pattern is the same as before when U+ belongs to the corresponding sub-

regions. I - V, IX and X respectively. The wave pattern is S2 - S2 - S 2 - S2 when
u+ E XI; S2 - R 2 - S2 - S2 when U+ E XII.

Case 6. u- E VI. SI -) Ir R _ _

P/ U

R2 " \ \

The structure of the U -regions is shown in R2
Fig. 3.5. Where the curve Rj (u-., v-.) intersects
to the curve A(u, v) = 0 at L. Ccrresponding to
each point on R, (u-, v_)USI (u-, v_-) with v- < R2
0, there is a point c which forms the curve c(c),

connecting the points L and P. Corresponding - R2
to each point on R2(L) U c(c) U R 2(P), there is Fig. 3.5

a point B which forms the curve c*(B).

The wave pattern is the same as before when U+ belongs to the corresponding sub-
regions 1-VI, IX and X respectively. The wave pattern is R, - R2 - S2 - S2 when
u+ E XIII; R, - R 2 - S2 - R 2 when u+ E XIV. When the state (u-,v-) varies from
v- < 0 to v- > 0, the qualitative structure of the U+-regions keeps the same.

We end up with the theorem.

Theorem 3.2. The U_-plane is divided by certain boundary curves into ten regions (see
Fig. 3.1) such that the topological structure of admissible wave curves keep the same as
U_ = (u-, v-) varies in each one of the regions. The topology may vary only when U_
across the boundaries in the U_-plane.
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STRONGLY NONLINEAR HYPERBOLIC WAVES

John K. Hunter
Colorado State University

Fort Collins, Colorado 80523 USA

SUMMARY

We describe geometrical optics theories for nonlinear waves and derive a
theory for hyperbolic waves with large-amplitude, rapidly varying initial data.
We consider initial data which is either compactly supported or periodic in a
phase variable. We also analyze the decay of periodic solutions of hyperbolic
conservation laws and the resonant interaction of weakly nonlinear sawtooth
waves.

1. GEOMETRICAL OPTICS

Geometrical optics is an asymptotic theory for short waves. Let A be a
typical lengthscale of the wave e.g. the width of a pulse, or the wavelength of a
periodic wave. Let L be a lengthscale of modulations in the wave. That is,
significant changes in the wave occur as it propagates over distances of the order
L. Geometrical optics provides an asymptotic approximation for the wave in the
limit

= .- 0+.

Let us give two examples. Suppose that a finite source of sound waves
generates a spherical pulse of waves whose width is of the order A. The wave
will decay as it spreads out from the source and a characteristic lengthscale of
this effect is the distance lxi of the wave from the source. Geometrical optics
describes the far field, where I x ) A. Second, suppose that a periodic
soundwave of wavelength A propagates through a stratified fluid. The scale
height, L, is the distance over which the fluid density changes by a factor of e.
Geometrical optics applies when the wavelength is much less than the scale
height. For example, this condition is usually satisfied in the atmosphere, where
L - 7 km.

The behaviour of a wave in the geometrical optics limit depends on whether
the wave is hyperbolic or dispersive, and on the strength of the wave. Linear
wave equations are usually obtained by linearizing the original, nonlinear
equations. Linearization fails if: (a) the wave amplitude is too large; or (b) the
propagation distance is too long. In case (a), we say that the wave is strongly
nonlinear, and in case (b) we say that the wave is weakly nonlinear. The basic
equations of nonlinear geometrical optics are summarized in Table 1.

Table 1. Nonlinear geometrical optics theories

HYPERBOLIC DISPERSIVE

weakly Inviscid Burgers' eq. Nonlinear Schrodinger eq.
nonlinear at + aax = 0 iat + axx + alaI 2 = 0

strongly Averaged Lagrangian eqs.
nonlinear w= w(k, a), kt + wx = 0

Z9 L (w,k,a) - aLk(w,k,a)=0
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It is not known what theory, if any, is appropriate for strongly nonlinear
hyperbolic waves. We shall describe one such theory in Sections 2 and 3,
developed through joint work with J. B. Keller [1].

The most successful approximate theory for large-amplitude, hyperbolic
waves is Whitham's shock dynamics [2], which describes the propagation of strong
shocks in gas dynamics. Although shock dynamics involves rays and wavefronts,
which are often associated with geometrical optics, it is not a geometrical optics
theory in the sense defined above. This is because shock dynamics does not use
a short wrve assumption.

2. NONLINEAR HYPERBOLIC WAVES

We shall derive a formal asymptotic approximation for the solution
u(x, t; c) E Rm of the initial value problem

n

Ut + Oxifi(x, u) = 0 (2.1)

i=1 0<

u(x, 0; c)= u0 [x, (X (2.2)

We assume tnat (2.1) is strictly hyperbolic and genuinely nonlinear. In this

section we suppose that !0 (x, q}) is compactly supported in 71 for each x E Rn.
The case when u0 is periodic in q is discussed in Section 3.

We shall show that for short times, of the order f, the solution is described
asymptotically by a constant coefficient system of conservation laws in one space
dimension. Shocks form and the solution decays rapidly. For large times, of the
order one, the solution is described by weakly nonlinear theory. Initi&j data for
the weakly nonlinear solution is obtained by matching with the large time
behaviour of the solution of the one-dimension system. In the matching region,
c ( t ( 1, the solution is both approximately one dimensional and of small
amplitude.

It is interesting to note that no coupling between the ray geometry and the
wave amplitude is necessary in this theory. When the wave is strong,
one-dimensional theory suffices. When the wave is weak, the rays are the same
as in the linearized theory. This differs from a number of heuristic theories (e.g.
[3], [4]) for strongly nonlinear hyperbolic waves, which do propose such a coupling.

An example is illustrated in Figure 1. The initial data is supported in a
region of width order c about the unit sphere. The geometrical optics assumption
is that this width is much less than the radius of the sphere i.e. r( 1. We
show schematically the decay of the initial data to N-waves. This decy is
described by a one-dimensional equation, with radial distance as the space
variable. For larger times, the weak N-waves focus or defocus, because they are
nonplanar. This is described by the usual weakly nonlinear inviscid Burger's
equation.
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v(x, i , 0) = Uo(x, , ) (2.5)
where

n
g(x, v) = Cxi(X)fi(x , v).

i-1

Equation (2.4) is a system in one space variable r/. The slow space variable x
occurs in (2.4) as a parameter.
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Next, we consider the matching region, C ( t < 1. For large values of T, a
solution of (2.4) approaches a superposition of N-waves [51. We denote the
N-wave function with invariants p < 0 and q < 0 by N(, p, q),

N(0; p, q) = 0 / Z-< 0 < /p0<

Then,
In

.T 1/2N [T1/(11-A~r)]r, (2.6)

j=l

In (2.6), Aj(x) and r.(x) are the eigenvalues and eigenvectors of Vug(x, 0)

(normalized so that V uAj. r = 1). Also,
Nij( ) - N ( , p , qj),

where pj(x) and qj(x) are the N-wave invariants of the j asymptotic N-wave.

Use of (2.6) in (2.3) shows that

~ t t;l/2NC /2t t- /2 ,2x - x-tr

j=l C(2.7)

as C-. 0+, t -4 0+, ( t.

Finally for times of the order one, we use the weakly nonlinear expansion
described in [6]:

mn Oi(x, t)l

u(x,t;E) = 1/2 aj x, t, 1/2 rj + 0(j=l (2.8)

as C -# 0+, t = 0(1).
The phase Oj in (2.8) is a solution of the eikonal equation

n

dettOtI + i. V f.(x, 0)] 0, (2.9)

and R. is a normalized null vector of the matrix in (2.9). The amplitudes

{aj(x, t, 0): j = 1, ..., m} satisfy decoupled inviscid Burgers' equations,

Oai + 86[.2a j3 + ~JJ.=0. (2.10)

In (2.10), 8sj is a derivative along the rays associated with Oil
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n
0 = Ot + Lj.Vufi(x, 0)Rjxi,

-1 i

and )j(x, t) is a known coefficient [6], with 7j(x, 0) = 1.

Use of (2.8) in the matching condition (2.7) shows that

Oj(x, 0) = (x),

Ojt(x, 0) = AjW,

aj(x, t, 9) _ t-1/2Nj(t-1/20), t -4 0+. (2.11)

The solution of (2.10) and (2.11) is

aj(x, t, 0)= tl/2a0jl/2Nj(ajl/2

where aj(x, t) is the solution of

asj0 = 71/2 ,  aj(x, 0) = 0.

Thus, each wave remains an N-wave. The amplitude and widths of each
N-wave are affected by focusing and nonuniformities in the wave medium, which
are described by the function -. (x, t).

3. PERIODIC INITIAL DATA

In this section we consider (2.1) and (2.2) when u0 (x, 9) is 2r-periodic in
q/. For short times, t = O(c), we obtain (2.4) and (2.5) just as before.
However, two possible difficulties arise in extending the theory to longer times.
First, to determine the solution in the matching region, f < t ( 1, we need to
know the large time behaviour of periodic solutions of (2.4). No general result is
known at present and we consider this question further in Section 4. Matching
with a weakly nonlinear solution is only possible if the solution of (2.4) and (2.5)
decays like r- 1 as r -. ®. The weakly nonlinear solution then has the form

di

u(x, t; C) = C aj [ X, R jR + 0(f
j=l

as c --, 0, t = 0(1).

Here, aj(x, t, 9) is 2r-periodic in 0 and satisfies matching conditions of the form

aj(x, t 0) - t-l0j(x, 0), t -4 0+.

The second possible difficulty comes from the fact that the periodic waves
do not decouple, unlike the N-waves. The available theory for resonantly
interacting, weakly nonlinear periodic waves [7] requires certain assumptions on
the phases {}, which may not be satisfied here.
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For scalar equations and systems in two independent variables, these
difficulties do not arise. Glimm and Lax [8] proved that solutions of 2 x 2

systems decay iike 7- 1 . Also, weakly nonlinear periodic waves decouple (at
leading order in the wave amplitude) for systems in two independent variables.
Thus, for times t of the order one, 'e 'la ve aa-nplitudes are 2r-periodic solutions
of (2.-0). A simple scalar example is worked out it, detail in [1].

Finally, we remark that if (2.1) has linearly degenerate characteristics, then
only minor modifications are required when u0 has compact support. The
genuinely nonlinear waves still decay to N-waves (of course, the linearly
degenerate waves do not). However, when u0 is periodic in q], the analysis is
different, ana much harder, if there are linearly degenerate characteristics.

A. LARGE TIME BEHAVIOUR OF PERIODIC SOLUTIONS

We shall use formal asymptotics to determine possible large time behaviours
of periodic solutions of hyperbolic conservation laws which decay like t 1 as
t -4 +w. This question arises in Section 3 and is also of independent interest.
To fix notation, we consider the initial value problem for u(x, t),

ut + f(u)x = 0, (4.1)

u(x, 0) = un0(x). (4.2)

Here, u: R2 , Rm and f: Rm -, Rm. We assume that (4.1) is strictly hyperbolic
and genuinely nonlinear and that u0 is a 2r-periodic function of x with zero

mean. We let A = Vf(0) and denote the jth eigenvalue, left eigenvector and
right eigenvector of A by AP tj and r.. The eigenvectors are normalized so that

VAj(u).rj(u) I=0 = 1, .r = 1.

Suppose that u(x, t) is a solution of (4.1) which decays like t- 1 as t -4 +
(in the L -norm). Then, for times of the order c, 0 ( c < 1, the solution has
amplitude of the order c. The evolution of such a solution may be described
using the asymptotic equations for weakly nonlinear waves which are aecived by
Majda and Rosales [9]. The result is that

m

u - t- 1  oj(x - Ajt)rj + O(t - 2) as t - +, (4.3)

j=1
where {j(#): j = 1, ..., m} are 2ir-periodic functions satisfying

{ 3aj(e)+ YJ Ijpqap, aq](#)} = uj(G), j=l ... ,m. (4.4)

p<q

In (4.4), J stands for the sum over all 1 < p < q < m, with p and q distinct

p<q
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from j. The equations are coupled through the integral averages

mjpqk[ q jpq Tim 0 ap(s)o'q(-Ppjq PjpqS)dS, (4.5)

where

rjpq = t.V2 f(0)'(rp, rq), (4.6)

A -A.
Pjpq = A -p.

3 p

If only one wave is present,

u = t- 1 a(% - At)r + 0(t 2)

where o(O) is a solution of

d [21 = a, o(O + 27r) a(#). (4.7)

We shall call such a solution a generalized saotooth wave. If a is piecewise
smooth, then it is equal either to zero or to 0 - 00 on intervals where it is

smooth. At a jump discontinuity, the jump and entropy conditions imply that

a(0-) = -a(O+) > 0 (see Figure 2). More generally, one can consider weak

solutions of (4.7) which are of bounded variation.

1T 7T

Figure 2. A generalized sawtooth wave.

The next proposition gives a condition for (4.4) to have decoupled sawtooth

wave solutions. An analogous proposition is proved in [9] for smooth, periodic
waves.

PROPOSITION 4.1. Suppose that Ppq is irrational and ap, q are piecewise

smooth, generalized sawtooth waves. ThenaVI-pi p, a 0)= 0.

We omit the details of the proof. To see the main idea, suppose that aq is

a sawtooth wave
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oq(0) = S(0),

where

S(o) = 0, 01 < r,

S(8 + 27r) = S(P). (48)
Then,

d-aq(0) = 1 -27r 0 -(2n + 1)7r].

fl=--w~

Using this equation and (4.5), together with the fact that ap has zero mean,
implies that 0 Ijpq is proportional to

N

lim1 laP[- (2n + 1) 'r
N-4 0 N= [ Pj pq Pjpqo]

Since the points I(2n + 1) : n = 1, 2, 3, ... } are distributed uniformly over a[ Pjpq "

period of ap when pjpq is irrational, this limit equals the mean of op and and

therefore it is zero.

Thus, when Pjpq is irrational for all distinct (j, p, q), one possibility for the
large time behavior of u is a superposition of decoupled generalized sawtooth
waves. This suggests the following conjecture.

CONJECTURE 4.2. Suppose that (4.1) is strictly hyperbolic and genuinely
nonlinear and that

- is irrational for all distinct (jp,q). (4.9)
3 q

Then a periodic solution of (4.1) of bounded variation and zero mean decays like

t - 1 (in the sup and total variation norms) as t -4 -f% and it approaches a
superposition of generalized sawtooth waves.

In the next section we show what can happen if (4.9) does not hold.

5. RESONANTLY INTERACTING SAWTOOTH WAVES

Let us assume that (4.1) is a 3 x 3 system of strictly hyperbolic
conservation laws. Then (4.1) has the following weakly nonlinear asymptotic
solution [9]:

3

u = aj(kjx - wit, (t)rj + 0((2 C -0+, ft = 0(1). 1)

j=1
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v T "

Here, w i = Ajk. and {a.(O, T)} satisfy

OTa j + doMa? + Ij[a, aq](0)} 0, (5.2)

where (j, p, q) is a cyclic permutation of (1, 2, 3) and
1T

I[ap, all(&) = D m Ifap(s)aq(-Ppjq - pjpqS)ds.
~ p q -~ T- +w j® qp

The coefficieats are

Mj = kjVuAj.r j

1. ) kjlj.V 2f• (rp rq (5.3)

k(q - A.)
Pjpq =k(A q Ap)"

Solutions of (5.2) of the form

al = T-lo(O)

lead to equations (4.4) considered in the last section.

Instead, let us consider sawtooth wave solutions of (5.2),

aj(O, T) = aj(T)S(O - 9.). (5.4)

Here, j is a constant and S(O) is defined in (4.8). When {Pl, P2, P3} are

irrational, the sawtooth waves decouple and one obtains

with the solution (M. # 0) aj = M i(T - To)-'. The other extreme is p, = P2

= P3 = 1. This is a resonance condition because, from (5.3), if {t.} are such
that

/il + /P2w2 + 33= ,

Plkl + #2k2 + P3k3 = 0,

wj = Akj,

then /p /q = Pjpq. Thus, when p, = P2 = P3 = 1, the frequencies and

wavenumbers of the sawtooth waves sum to zero. (We shall not discuss rational
pi's here, when the interaction is more complicated.)
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PROPOSITION 5.1. Suppose that p, = P2 = P3 = 1. Then (5.2) has solutions

of the form (5.4) iff the phase shifts satisfy

C1 + C + CS r (mod 21r),

and the wave amplitudes satisfy the following system of ODE's:
02
a1 = r 1 a2a3 - MIal)

ao ~e ~ 21= r - 2 (55)

a 3 ,ala2 - M3 a"

The proof is a straightforward calculation, using (5.4) in (5.2).

Majda, Rosales and Schonbek [101 derive (5.5) in the special case of Lhe gas
dynamics equations, when it reduces to a second-order system of ODE's (because
M2 = r 2 = 0).

For simplicity we now assume that (4.1) is genuinely nonlinear and we let

M I-- M2 = M3 = 1 (5.6)

without loss of generality. The shocks in the sawtooth waves are admissible if
a > 0. One can prove that if rj > 0 and aj(0) > 0, for j 1, 2, 3, then

a.(T) > 0 for all T > 0, and the solution remains admissible. However, if one

or rmore of the rj's is negative, then numerical integration of (5.5) shows that one

of -he aj'r typically changes sign after a finite time and the sawtooth wave

solution becomes inadmissible. It seems likely that a "cusped rarefaction wave"
appears [10].

A particular solution of (5.5) is

K.
aj(T) = -(5.7)

where T0 is an arbitrary constant and {K1 , K2, K3} satisfy the algebraic

equations

K 2 
-K 1 r=

S 1 = 1K 2K 3,

K2 -K r KK1, (5.8)
2 K2  2 r2 3K

K 2 
-K 3 r=3 = 3 K 1K 2.

There are three possibilities, depending on the signs of the Kj's:

(a) If K 1, K2 , K 3 > 0, then (5.7) decays as T -' +®;

(b) If K 1, K2 , K3 < 0, then (5.7) blows up as T - T0-;

(c) If K 1, K2 , K3 have mixed signs, then (5.7) is inadmissible.

266



A special case occurs when r 1r 2 r 3 = 1 and rj > 0. Then (5.5) has
constant admissible solutions

= r1 /3 K.

Perturbing off this solution, we find that for r1 r2r 3 close to one, there are
solutions of the form (5.7) with

K r!l/3K,K. - j.

_l/3 + ri! 3 +
K 1 2 1 3

1 - FfI2 F 3

Thus, if 1 ), 1 - r1r 2 r 3 > 0, the solution decays to zero as T -4 +®, bat for

1 > rlr 2r 3 - I > .0 it blows up in finite time.

This simultaneous blow-up of all the sawtooth waves is rather peculiar. We
note one possible consequence. When blow-up occurs, the weakly nonlinear
solution becomes inconsistent. However, taking T0 = 1, suppose that the solution
remains valid in a matching region, 1 - T = O(b(c)), where E < b < I as
f -4 0+. (Asymptotic solutions usually have this kind of property.) Then, the
sup and total variation (per period) of the asymptotic solution (5.1), 5.4), (5.7)
at T = 0 are of the order c. However, when 1-T = 0(b), they are of the order
Of. Since 6 -4 0 as c -4 0, this would imply that the sup or total variation at
time T of periodic solutions of general conservation laws is not bounded by the
sup and total variation of the initial data.
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SUMMARY

We describe the full Riemann solution for a system of two
equations which possesses an umbilic point where the charac-
teristic speeds coincide. The solution contains many nontri-
vial topological features to be expected in non-strictly hyper-
bolic problems. The model we sol.e describes the flow of three
immiscible fluids in porous media. Despite simplifying assump.
tions on physical properties of the fluids, the model captures
the essential global features of the flow.

The solution is too complicated to be obtained analytical-
ly. Rather, we used a program designed for the numerical so-
lution of 2X2 Riemann problems. The program has modules which
(1) construct local wave curves by a continuation algorithm,
(2) construct non-local wave curves using a global search al-
gorithm, (3) construct boundaries across which the nature of
the wave curves change, and (4) verify whether shocks are li-
mits of parabolic viscous profiles.

The difficulties in the solution arise because the Hugoniot
curves contain disconnected branches of non-contractible shocks,
because the clasF cal coordinate system of Lax for the cons-
truction of Riemann solutions does not exist near the umbilic
point and because there are shocks with viscous profiles which
do not obey Lax's entropy condition. These non classical shocks
nave to be considered to insure the existence of the solution.
The solution depends continuously on the initial data; numer-
ical evidence indicates that it is unique.

I. THE MODEL

For several years we have been studying the Riemann problem
for a system of two conservation laws that models the flow of
oil, water, and gas in porous media. The importance of such
problems was emphasized in 1941 by Leverett and Lewis [10]
The two-phase scalar problem was solved in 1942 in the classi-
cal work of Buckley and Leverett [2] who established the for-
mation of saturation shocks, or oil banks, as the mechanism
responsible for oil recovery in petroleum reservoirs. The sim-
plified model represents the conservation of mass of oilwater,
and gas combined with Darcy's force law. Compressibility, ca-
pillarity, and gravity effects are neglected. In one spatial
dimension with appropriate boundary conditions, this model is
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represented by the system

+ f(u,V)x = o

+ g(u,V)x = 0

with f = U/D, g = V/D, and D = U+V+W. Here U, V, and W are

the permeabilities of oil, water, and gas, respectively; they

depend on the saturations u, v, w of these three fluids. The

saturations are non-negative and sum to 1; hence, we take w =

= 1-u-v. We denote the viscosities of the fluids by a, b, and

c. Laboratory measurements are consistent with V = V(v) =

= v2 /b, W = W(w) = w 2 /c, and U = U(u,v) where U depends only

weakly on v [4]. Thus, in our simplified model we take U =

= U(u) = u2 /a. In this work we present the Riemann solution
for the fully symmetric case where a = b = c = 1.

The novel feature of this model is that interior to the do-
main of physical interest, there is a unique point at which
the characteristic speeds coincide. This is called an umbilic
point. For our model, this point is determined by the equality
of the derivatives U'= V'= W'. The Jacobian matrix of the
system becomes a multiple of the identity at the umbilic, and
the characteristic directions are undetermined. As a result,
the usual construction of the solution of the Riemann problem
for stricly hyperbolic problems, which relies on a local coor-
dinate system of characteristic directions, cannot be used at
this point.

The failure of strict hyperbolicity occurs in Stone's model,
which possesses a region with complex characteristic speeds
(or elliptic region) [1]. This is a model commonly used in
Petroleum Engineering, with a special functional dependence of

U on u and v [4]. Surprisingly, even though general perturba-

tions of isolated umbilic points produce compact elliptic re-
gions, gravity effects in our model preserve the isolated um-
bilic point E12]. Therefore we believe that solving this prob-

lem is an important step towards obtaining the general solu-

tion of realistic multiphase flow problems.
Our purpose is to solve the Riemann problem for the model,

i.e. to find the solution of the Cauchy problem for the system
above with initial data at t=O (uLvL) for x < 0 and (u,,v R
for x > 0.

2. RAREFACTIONS AND SHOCKS

Except at the umbilic point, the Jacobian derivative matrix
of the flux f = (f,g) has distinct real eigenvalues X % i
corresponding to right eigenvectors r1 and r2" The inlegraI

curves of the fields of eigenvectors give rise to rarefaction
waves, which are smooth solutions u = (u,v) that depend only
on the ratio x/t and satisfy X(u(x,t)) = x/t. A shock wave

consists of two constant states u and u separated by a dis-
continuity traveling with speed s; the 7tates are related by
the Rankine-Hugoniot jump condition s(u +-u ) = f(u ) - f(u ).

For a given state u , the set of states u satisfying the jump
conditions forms the Hugoniot curve h(_ T, which parametrizes
shock waves. The Hugoniot curve consists of two branches that
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emanate from u in the directioas of the eigenvectors.

For the model described in §i, the rarefaction curves are
depicted in Fig. 2.1. Rarefactions corresponding to the smal-
ler characteristic speed are drawn as double lines, while those
for the larger speed are single lines. The arrows on the curves
indicate the direction of increasing characteristic speed. It
is clear that there is no longer a coordinate system in a
neighborhood of the umbilic point, although there is one in a
neighborhood of any other point.

Another new feature is that the Hugoniot curve has detached
branches, as indicated in Fig. 2.3. The origin of the Hugoniot
curve is the point where two branches cross. Points on the
curve where the shock speed coincides with a characteristic
speed for either side of the discontinuity are marked; these
marks are important for constructing wave curves and viscous
profiles. For our model it is easy to express the Hugoniot
curve in polar coordinates as u+ = u_+ R(u_,e), where R is a
quotient which vanishes for certain angles. Using this ex-
pression it is easy to find the bifurcation loci - in our case
coinciding with the straight linesthrough the umbilic shown
in Fig. 2.2. In general, a Hugoniot curve changes topology as
its origin u crosses certain curves, called the bifurcation
loci [7,8]. This behavior, which has no analogue in scalar

Fig. 2.1 Rarefaction curves Fig. 2.2 Inflection locus

conservation laws, makes it even more difficult to find a co-
ordinate system in which to determine the Riemann problem so-
lution. The Hugoniot curve for a point u on the bifurcation
loci is shown in Fig. 2.4. It consists of the dashed curves
plus the bifurcation segment through u1.

On the rarefaction curves the speed Xk() = x/t must be mo-

notone increasing as x increases from left (U = iL) to right
(u = uR). Therefore these curves have to stop at points where

the speed has an extreme. These points constitute the inflec-
tion loci; their nomenclature arises from analogy with scalar
conservation laws. These loci are generically given by
Vk(u).rk(I) = 0, k=l,2 8]. For our model, the 1-inflection
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locus consists of three segments from the vertices to the um-
bilic point in Fig. 2.2. Remarkably, the 2 inflection locus
consists not only of the opposite segments but also of the
small closed curve near the umbilic. This indicates that the
behavior of the solution near and far from the umbilic point
is substantially different.

-L

Fig. 2.3 A Hugoniot curve Fig. 2.4 Bifurcating Hugoniot
curve

3. SHOCKS WITH VISCOUS PROFILES

To insure that the Riemann problem does not possessmultiple
weak solutions, it is necessary to restrict the set of admis-
sible shocks. This is done for multiphase models by adding a
small diffusive term g(D(u) ) to the right hand side of the

xi

system of conservation laws. We admit only shocks which are
limits as t'.O of traveling waves of a parabolic equation with
u -4 u- as x 4 -~ and u 4 u +as x -+ 4 . The traveling wave is
a smooth function of T = (x-st)/c; therefore the equation can
be integrated once yielding the dynamical system

I= L(11) - f(u _) - su-)

Both u- and u +are singularities of this vector field; a tra-

+I

veling ye solution is an orbit connecting these states.
For crictly hyperbolic, genuinely nonlinear systems there

are connecting orbits for weak Lax shocks [3]1: 1-Lax shocks
are repeller-saddle connections, 2-Lax shocks saddle-attractor
connections. In our model, we verified numerically that even
strong Lax shocks have the appropriate connections. However,
even including limiting cases, Lax shocks are not sufficient
to complete the solution of the Riemann problems. We have to
introduce a new kind of discontinuity whose profile is the orbit
between two saddle points of the vector field [13,63 . Since for
this new discontinuity we have X 2 (11) > s > %1_)and%11+<

< s < (+ it can be preceded by a 2-wave and succeeded by a
1-wave. Therefore, it is not associated with any family: we
call it a transitional shock.

Using symmetry considerations it is easy to prove that there
are crossing shocks on the bifurcation loci such as in C13] for
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the viscosity matrix D = I that we employ. For this viscosity

matrix, one can prove that for certain models which approximate

ours near the umbilic, all pairs u, u+ connected by saddle-
to-saddle orbits lie on opposite sides of the bifurcation loci

relative to the umbilic point [6]. This fact was verified nu-

merically for our model.
Using profilable shocks (Lax's shocks and transitional

shocks) we were able to find the complete solution of the
Riemann problem.

4. ADMISSIBLE WAVE CURVE BOUNDARIES

In physical space, the solution of the Riemann problem con-
sists of a sequence of rarefaction fans, discontinuities and
constant states; these elementary curves are grouped into
waves that belong to the first family (1-waves), to the secand
family (2-waves), or constitute transitional waves. The solu-
tions obey the geometrical constraint that wave speeds in
physical space increase from left to right.

Wave curves are represented in state space by sequences of
three types of elementary segments: shocks, rarefactions and
composite waves. These are shock waves adjacent to rarefac-
tion waves; the shock speed coincides with the characteristic
speed at the adjacency state. They appear when the problem is
genuinely nonlinear [11]. Each elementary segment must stop
wherever its speed attains an extreme, and the type of ele-
mentary segment that follows is determined by certain rules

[8,7] based on the Bethe-Wendroff theorem [14]. Finally,
since the Hugoniot curves possess disconnected branches, wave
curves also have detached branches.

Using Bethe-Wendroff theorem it can be shown that certain
loci play a crucial role in determining the nature of wave
curves: they are the bifurcation locus, the inflection locus,
the hysteresis locus and the double contact locus [8,7] . Ra-
refaction curves stop at the inflection locus, shock curves
change topology when its base point crosses the bifurcation
locus. The double contact locus consists of states u for
which there is u' such that

j!' E 34(1) , X.i(u) = s-~'

Composite segments end at points u' . In our model, only the
2-family double contact locus in Fig. 4.1 plays a role (i=j=2
The correspondence between u and u' points is established by
A,B,C -+ A',B',C'and symmetry considerations. We remark that
the curves in Fig. 4.1 have been considerably blown up; the
trefoil and the curvilinear triangle are actually tangent to
the small closed curve in Fig. 2.2.

There are other less basic loci; the only one that plays a

role here is the interior boundary contact, which satisfies

Xk(!) = s(li' ), U E 9(u'), u'lies oni the boundary.

The relevant part of these loci are shown in Fig. 4.2; the
part A, B, with corresponding points A', B', belongs to
family 1 while the part F, G, with corresponding points F',
G', belongs to family 2. In this section we only show the
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G

C B A

ZB-B
AB'
A

C D' A' F G

Fig. 4.1 The 2 double contact Fig. 4.2 One and two interior
boundary contact

parts of any locus which correspond to shocks with viscous pro-
files (§3); the admissibility was verified numerically. Be-
cause of lack of admissibility, the hysteresis is irrelevant
in our model, and we omit it. Parts of other loci were eli-
minated for the same reason.

We draw the uL boundaries for the 1-wave curves and 2-wave
curves in Fig. 4.3 and 4.4 respectively, in one-sixth of the
domain triangle. The wave curves with uL in each of the re-
gions shown in the figures have the some topology and consist
of the same sequence of segments. In Fig. 4.3 the curves AB
and CD are sections of the 1-boundary contact from Fig. 4.2.
The curve CD is a rarefaction ending at C; it plays a role be-
cause 1-wave curves for UL to the left of CD have only a local
branch while for uL to the right of CD have albo a nonlocal
branch (Fig. 5.1). In Fig. 4.4 for the uL boundaries for fa-
mily 2, EF is a 2-boundary contact, BC is a 2-double contact,
BD is an inflection locus and AB is a 2-rarefaction ending at
B. Therefore, there are 5 different types of 1-wave curves
for uL in each region of Fig. 4.3 and 6 types of 2-wave curves
for UL in each region of Fig. 4.4.

C D 0

C B
B E

A D A F

Fig. 4.3 Boundaries for 1-wave Fig.4.4 Boundaries for 2-wave
curves curves
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5. WAVE CURVES
Wave curves of the first family for and uL, in two of

the regions of Fig. 4.3 are shown in Fig. 5.1. One wave

curves are the set of right states which can be constructed

with a succession of 1-waves for the fixed state uL. Only
wave curves whose shocks have viscous profiles are shown.
Solid lines represent rarefp.tions, with arrows indicating
the direction of increasing speed. Shocks and composites are
represented by dashed lines or crossed lines, respectively.
The wave curve for uL/ consists of a rarefaction (L'a),a shock

(L'c) and a composite (ab). Each point of (ab) is a shock
starting at a point in (L'a) where it is characteristic. If
we move L' above (AB), a new shock appears such as (gh) for
!L (g lies on the boundary if L is on (AB)). If we move L'
to the left of (CD), a nonlocal branch shows up. Thus for 1L
the 1-wave curve is (dLfgh) and (ijk). The curve (ij) is a
composite based on (Lf) and (jk) is a shock based on L. If
we lower L below (CB) the shock segment (jk): disappears for L
on (CB) j lies on the boundary.

h

D h
b... B EC # -

ft d

d___ Ae ---- L ck...

Fig. 5.1 One wave curves Fig. 5.2 Two wave curves

In Fig. 5.2 we show 2-wave curves for L and L, in two of

the regions of Fig. 4.4. The two wave curves displayed are
the set of right states which can be constructed with a suc-
cession of 2-waves for the fixed state u , using only admis-
sible shocks. In the wave curve for uLk'aLbcd), if L is moved

to the left of (EF), the point c reaches the boundary and the
shock segment (cd) disappears. The 2-wave curve for UL,
(eL'fghijkt.) for uL i above (AB) has the same general shape but
other segments arise near the umbilic region above (DBG). The
curves (eL') and (kt) are shocks; (L'fg) is a rarefaction,
(i) is a composite based on (fi) and (jk) is a composite based
on (L'f). The point f lies on the double contact locus (EB);
it corresponds to the point h on the trefoil (Fig. 4.1).

Because of the existence of crossing shocks for u points

on the bifurcation locus, it is necessary to take into account
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the 2-wave curves for points on each of the segments (AE),
(EC), (CC'), (C'D), (DO) in Fig. 5.3. The boundaries shown

in this figure are those of Fig. 4.4, except for the addition

of (C'B') which corresponds to (CB) of Fig. 4.3, a 1-interior

boundary contact. In Fig. 5.3 we show the 2-wave curve for

on (EC); the (eLfghijkt) parts of this wave curve may be

obtained as limits of the corresponding parts of the wave

curve in Fig. 5.2, when we allow 2L to lie on (EC). There are

two new segments; (mn) consists of crossing shocks based on L

and (km) consists of crossing composites based on (Lf).

If the point L crosses C' so it lies on (C'O), the segment

of crossing shocks (rn) ceases to reach the boundary. Rather,
n becomes an interior point on the bifurcation locus, coinci-

ding with point i in Fig. 5.1, where a non local 1-wave curve
branch starts.

In the next section, the 1-, 2- and transitional wave curves
will be used to construct the Riemann solution. Each of these

wave curves uses only admissible shocks and satisfies the geo-

metric constraint of increasing speeds from left to right.

E

Fe.~ d

EL B' L

Dn a........"

Fig. 5.3 Transitional wave Fig. 6.1 Solution of Riemann
curve problem

6. THE SOLUTION OF THE RIEMANN PROBLEM AND CONCLUSIONS

We will follow as much as possible the classical construc-
tion of the Riemann solution-a 1-wave curve from state L to M
and a 2-wave curve from state M to R; as we will see, transi-

tional waves will play a role to complete the solution for all

possible pairs of states (L,R). We show an example of the

construction in Fig. 6.1, for L at the right of(CD) in Fig.
4.3. (If L lies at the left of (CD), the segment (ed) in
Fig. 6.1 disappears while (fe) extends all the way to the
boundary.

Given L, we construct the local 1-wave curve (abc) through
L. For any state M on (abc) we construct the 2-wave curve

through M, defining points R which can be reached by a local

1-wave curve from L to M followed by a 2-wave curve from M to

R. It is necessary to verify that the wave speed from M to R
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is larger than thewave seed from L to M. This restriction eli-
minates the ending portion of the 2-wave curves. Thus the
allowed 2-wave curves end on the dashed lines (Db), (EF) and
(FB). In this way we find tbh solution for the given L to
any R to the left of curve (EFB). To obtain the solution for

states R to the right of (EFB), we have to use the nonlocal
part (ed) of the 1-wave curve based on L as well as the tran-
sitional wave (Fe) based on b. We then construct the 2-wave
curves through points on (Fed) as shown in Fig. 6.1. Numer-
ical experiments and the triple shock theorem [6] show that
the geometric consistence requirements force these 2-wave
curves to stop precisely on (EFB).

The solution for the given u is now complete. In general,
it consists in physical space 7 one of the following sequen-
ces: (i) the left state, 1-waves, a constant state, 2-waves,
the right state or (ii) the left state, l-waves,a constant
state, possibly 2-waves, a transitional shock, a constant

state, 2-waves and the right state. For other states u , the

solution may be obtained by symmetry considerations. -his so-

lution is Lloc continuous in the Cauchy data 
1 L' tuR; the con-

tinuity may be verified by inspection.
The largest shocks in the solution seem to be the nonlocal

1-wave shocks and the non classical crossing shocks. Since
oil recovery is optimized by large shocks, it is important
that numerical methods used in oil reservoir simulation be
accurate on these shocks. However, the theory of standard
numerical methods indicates that they are accurate only for
small or contractible shocks. This is an indication that im-

proved numerical methods are needed.
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DETONATION INITIATION DUE TO SHOCK WAVE-BOUNDARY INTERACTIONS
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Abstract

Shock induced ignition and the subsequent development of reactive-gasdynamic waves in two-
dimensional confined ducts are investigated by means of numerical simulations. The inhomo.
geneous Euler equations are employed to describe the gasdynamic-chemical interactions. A
second order accurate two-step Godunov-type scheme, which directly accounts for the source
terms, is proposed. Its performance is demonstrated by solving a test problem, whose exact
solution is available. Two examples of flows within L-shaped configurations reveal interesting
mechanisms, which support the formation of reactive Mach-stems, and thus trigger the onset
of multidimensional detonation waves. A relation of the present idealized model problems to
knock damage in internal combustion engines is pointed out.

1. Introduction and discussion of the model problem

The present studies are aimed to explain a mechanism, which can lead to the typical patterns of knock
damage in internal combustion engines. Erosive surface destructions appear within the narrow gap
between piston and cylinder wall as is sketched in Fig. la. We believe that shock waves, which may
be driven by local autoignition within the unburnt endgas, can penetrate into the gap and give rise
to a flow field, which is dominated by gasdynamic wave propagation. Sudden temperature increases,
induced by shock reflections at the boundary walls, should be fast enough to overcome any heat loss and
to ignite the mixture within the gap. Subsequent violent shock-reaction waves may be responsible for
the observed destructions. In order to support this point of view, the Reynolds number Re = p, ul h/q,
is estimated by Re P, 5000,..., 10000. Here we used a width h - 0.05mm of the gap, and evaluated
density Pi, velocity ul and viscosity ih behind an inert shock with strength Ap/po ; 0.5,..., 1.0 running
over precompressed gases of p0 a 40bar and To s 1200K. The precompression of the unburnt gases is
due to the piston motion as well as due to thermal expansions of the gas, that is already burnt. The
shock strength is estimated from measurements of Pischinger et al. [1], who experimentally investigate
several aspects of knocking combustion. The above range of Reynolds' number justifies the assumption
that wave phenomena play an important role for the onset of combustion even within the narrow slabs
considered above. In order to reveal the basic gasdynamic-chemical interactions and to show the crucial
influence of the geometry, the following simplified model is employed. An L-shaped two-dimensional
duct, as depicted in Fig. 1b, replaces the according part of the combustion chamber in Fig. Ia. An
initially plane inert shock enters the configuration from the open side, thereby passing precompressed
unburnt gases. Molecular transport and real gas effects are neglected and the gasdynamic properties
of the system are described by means of Euler's equations for an ideal gas with constant specific heats.
The chemical heat release is taken into account by supplying a source term to the conservation equation
for thermal and kinetic energy (see also the remarks following (2)), and finally two additional quasi-
conservation laws model the progress of chemical reactions. Thus we are left with the following set of
governing equations

M, + POO (1)
Here m = (p, m, n, e, pa, p,6) is the vector of (quasi-)conserved variables, which are the densities of mass
(p), momentum (m,n), thermal and kinetic energy (e), and of two density weighted reaction progress
variables (a,,6). L1 = (m, m2 /p + p, ran/p, m(e + p)/p, am, 9m) and L2 = (n, mn/p, n 2/p + p, n(e +
p)/p, an, On) are the flux densities of the conserved quantities in x- and y-direction, respectively. The
source vector is I = (0, 0,0, Qprp,-pr., -prp), with Q the chemical heat per unit mass of the unburnt
gas and r., rp the reaction rates.
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Figure 1: A critical region of knock damage in internal combustion engines
(a), and its idealized two-dimensional counterpart (b).

The equations of state, relating pressure and temperature to the quasi-conserved quantities are

p = (Y - 1)(e - (in 2 + n2 )/2p), T = PIP, (2)

respectively. It should be mentioned that by replacing e with the total energy i = e + p#Q one obtains
a homogenous conservation equation for E. In principle this seems to be desirable, since a lot of the
recent theoretical results regarding numerical algorithms for hyperbolic systems rely on the conservation
property. However, a lengthy but straight-forward calculation shows that the equivalence of the energy
balances in both formulations is mirrored exactly by the related difference equations of our numerical
scheme, provided that E is linear in/i as it is assumed here. The advantage of using e instead of is that
the eigenvectors of the Jacobian matrices 8&4/9, which are used extensively in the scheme, simplify
considerably, and thus lead to a more efficient formulation.

The reaction rates obey the Arrhenius-type laws

ef1ra = BQT2 exp(-E,/T)H(a) 'L-, rp = Bj3exp(-E/T)(1 - H(a)). (3)

Here the frequency factors B., B and activation energies E., E are constants, H is the heavyside
step function and T denotes the temperature. These rate laws, together with the definition of the
source term Qprp of the energy balance equation imply that the first, energetically neutral reaction
has to be completed before the exothermal second reaction can start. The approach is similar to
that of Korobieinikov et al. [2] and to the induction time model of Oran et al. [3]. It allows to model
independently the typical two phases of explosive gaseous reactions. These are a rather temperature
sensitive but energetically almost neutral induction period, and a subsequent highly exothermal phase,
in which all the chemical heat is released. Note, that with a zero initial condition for a one obtains
a simple one-step irreversible Arrhenius reaction. It is well known (see e.g. Williams [4]), that for
sufficiently large activation energy E and a correspondingly large frequency factor B - exp(E)/E
this one-step model also shows the above mentioned two-phase behaviour. However, in this case the
temperature dependences of the two stages of combustion are strongly related, since they are both
determined by the parameters B and E of only one Arrhenius rate law. Therefore, we prefer the two-
step model (3) but construct the rate law r. such that r exactly mimics the temperature behaviour of
the ignition delay time of the one-step, large activation energy model. In this way we could in [5] directly
compare the results obtained with the one- and two-step reaction schemes and show the deficiencies
of an oversimplified kinetic modelling. In turn the simple two-step reaction assumed here also seems
to be incapable of representing all important features of explosive hydrocarbon reactions. Thus for
quaatitative predictions one should employ more sophisticated reduced kinetic mechanisms, derived
from detailed chemistry. Such systematic reductions, valid for flame combustion are already devised by
Peters [6], [7], whereas reduced schemes, which reliably describe the properties of ignition processes are
work in progress and have so far been obtained only for the hydrogen-oxygen system [7]. As regards the
particular choice of the model parameters in (3), the data of Schmidt [8] as well as curve fits for ignition
delay times of CH4-air-mixtures of Oran et al. (3] provide estimates of the overall activation energy
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Eind 7,...,20, which are valid in the ranges of pressure and temperature considered here. (We let
Ejnd = E. for the two-step mechanism and Ei,0 = E for the one-step Arrhenius-model.) In order to
obtain appropriate values of the frequency factors B, B. it is useful to consider first the characteristic
time scales imposed by the several physical effects, that are included in our model. The induction phase
of the chemical reaction is characterized by the ignition delay time t4,3, referred to state "3", which
occurs at a fixed wall after the incident shock wave has suffered a head on reflection (see Fig. lb for
the related position in the model configuration). The rate of chemical heat release during the stage of
exothermal reaction provides the time scale tq = 1/r#,zND, where rp,ZND is the maximum rate of the
second reaction in a Chapman-Jouguet (CJ)-detonation-wave described by means of the Zeldovich-von
Neumann-D6ring (ZND)-model (see e.g. Fickett and Davis [9] for details of the theory). Finally, one
has to account for pressure wave propagation with its characteristic time t, = h/c, where h is the
width of the gap, and c is a representative speed of sound propagation. In explosive gases at ambient
conditions and in systems with spatial extensions of a centimeter or more one usually has the estimates
ti >> tQ, to >> tQ and often ti >> t,. But for the present application the estimates of time scales
have to be revisited, because we are dealing with precompressed gases at high temperatures and with
systems of very small extensions. Generally the induction time t, goes down rapidly with increasing
temperature and also t, becomes small with decreasing size of the system and increasing temperatures.
A rough estimate of ignition delay times at higher temperatures and pressures, derived from data of
Schmidt [9] shows, that ignition delay times of the order of t1,3 % 0.5ps may occure. This is just the
range of the acoustic timescale, which is 4,3 - 0.1ps, when an initial temperature of 1 = 1200K and
a strength of the incident shock of Ap/p, -_ 1.0 is assumed. Thus it is reasonable to consider a regime,
in which at least two of the physical effects act on the same time scale and therefi.re can be expected
to show interesting mutual interactions. Since in addition the exothermal reactions in general are much
less sensitive to temperature variations than the induction phase, a crossover with tq = 0(t1 ) will occur
under sufficient precompression. For the results presented below we actually assumed the regime

tls = t, 1 /ts, 3 = 0(1) and t = tQ/t,,ZND = 0(1). (4)

Now, instead of choosing the preexponentials B, B. directly, we rather prescribe tl 3 and t4, which can
uniquely be related to the former, once E, E. are fixed (cf. [5]). The a priori estimates (4) are also
crucial for numerical simulations, since in the usual regime, stated previously, the chemical reactions
give rise to very stiff source terms on the r.h.s. of (1). In this case one can hardly obtain reasonable
numerical approximations using shock capturing schemes on equally spaced grids. Instead sophisticated
automatic adaptive gridding or front tracking methods would have to be employed in order to resolve
the thin shock-reaction structures, which in general emerge under such conditions. Fortunately, these
problems are less dominating, when the estimates (4) hold.

For the present application the nondimensional chemical heat Q = (-Ah)/RT is of the order
0(10). Although Q is thus not a very large quantity, we follow an advise by Oran and Boris [10], who
propose to restrict the time step in an explicite numerical algorithm such that the heat released per
time step in a cell cannot exceed a fixed percentage (e.g. 30%) of its internal energy.

2. The numerical scheme for Euler's equations with source terms

In order to perform numerical integrations of the system (1) on domains with piecewise straight, right
angled boundaries (see Fig. lb), we use a cartesian numerical grid, which is equally spaced in each
direction. The directional operator splitting technique of Strang [11] is employed to extend a discrete
second order accurate one-dimensional solution operator to two dimensions. Thereby half the source
density is assigned to each of the one-dimensional splitted equations

x-, + f i(l_)x = q(i)/2, 1k, + L (_)v = 1(w_)/
2

. (5)

The one-dimensional scheme used to solve (5) reads as

+1 + 1 /2  
12 + 12 /2 +1/2

1 =1~ [L,i+112 411-12+A [(41/2)n+' (41/2)+ + at (
2- i+1/2 +- 1)2
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Here m? approximates the average of the quasi-conserved quantities u at time level t" within the i-th
cell [z- 1l 2 < Z < z+1/2] and

-L-2 _ LLEI(a. t/2 .on-l-/2)"

fh,+i+/ -/2 = Eu+ ,+I)-" (7)

is the numerical flux of a second order MUSCL-type scheme for the homogeneous version of (5). It is
obtained by means of the approximate Riemann solver of Einfeldt [12], which is based on a proposition
of Harten, Lax and vanLeer [13]. In the version used here for a 7-law gas it is equivalent to Roe's [14]
linearized solver, except that it is much more efficient and can be extended to more general equations of
state in a straight forward way (see Einfeldt [15]). The preliminary states Un+ '/' at the cell interfaces
within the i'th cell are obtained by means of a first order characteristic method. E.g. for u?++1/2 we

have
,++. = 1, + i , (8)

where
2 f(Az - a()At)6,7') 'n, if a(V) >0
2 = (Az6i" ) " -a(v)At minmod [° (i", (,)j) if a( < 0

and, dropping the superscripts (v), n for the moment

bi+ = 2 bji+1/2 - 617i, 6'7i+1/2 =L.(u 4+1 -ti)/Az, L-(4 = Sk(6.h_1/ 2 , 
6 7+I/2). (10)

_ n+1/2 is obtained by replacing i+ with i- and reversing the ordering signs in (8) to (10). The limiters

used in (9) and (10)3 are

minmod(a, b) = sgn(a) max(0, min(sgn(a)a, sgn(a)b))
Sk (a, b) = sgn(a) max( minmod(ka, b)1, I minmod(a, kb)j). (11)

The slope limiter Sk corresponds to a class of flux limiters given by Sweby [16], as is shown by Munz [17].
The corresponding flux correction schemes are second order accurate and TVD for 1 < k < 2. Following
Munz (17] we use k = 1.4,...,1.6 on the genuinely nonlinear and k = 1.8,...,2.0 on the linearly
degenerate characteristic fields. In eqs. (8) to (10) B,),n, _ (P),n are the right and left eigenvectors of
the Jacobian matrix (OL0,u)P, a(') are the corresponding eigenvalues and the several 6bi's represent
wave amplitudes on the different characteristic fields. They are projections of corresponding differences

of the conserved quantities _u onto the right eigenvectors R(v). Especially 6y7()') is the limited slope of
the v-th local characteristic variable within cell i. While the relation for a( ) > 0 is a straight forward

evaluation of the characteristic equations, based on the linear distribution 7,) = 7i,)' + (z- z.)6 ),n

for zi-112 <_ z _ Xi+12, the case a(') < 0 requires an explanation. Characteristics with (8z/Dt)(v)
a(v) < 0 reach the i-th cell from outside at the right cell interface X+/2. Since we are dealing with
weak solutions of (quasi-)conservation laws, there may be a discontinuity within cells i, i+1 in the exact
solution. Accross it the characteristic equations may not be applied. Colella and Gla [18] circumvent
this difficulty by replacing the characteristics coming from outside by a pseudo-characteristic with the
speed a* = max.(0, a(v)). Thus their updating procedure t _- t"+1/2 only uses information from inside
the cell under consideration. Obviously in that way an unphysical transport of information is buildt
into the halftime-step. However, Colella and Glaz point out, that this does not restrict the performance
of the scheme, since the numerical fluxes, used in the final timestep (6) (with j - 0), are obtained from
the exact (or approximate) solutions of a Riemann problem and the Riemann solver automatically drops
out all information that approaches from the wrong side. In several tests for the homogeneous equations
we could verify these considerations. But in (6) with j Q, evaluations of the source terms at the cell

interfaces +/ are required (see (12)). For this purpose it is a self-suggesting choice to employ theUJ n-+/2 n+/2 +/ r acltd

Roe-average uLs(+ ,1 2 +1)-), which is obtained anyway when the fluxes ec1lca

Since u1LR is symmetric in both arguments (see Roe [14]), it does not select the right information with
respect to the characteristic directions. This explains, why it was necessary to construct more elaborate
approximations of the interfacial states in order to obtain satisfactory results, e.g. for the test problem
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of section 3.1. The essential idea, leading to (9)2 for a( ') < 0 is to choose reasonable distributions of
the local characteristic variables outside a cell, such that an evaluation of the compatibility relations
does not amount to an application of a characteristic scheme across a discontinuity. Fig. 2 shows the
several situations, which were taken into account in the construction of (9)2. Let us consider the case
of nondecreasing v7 as in Fig. 2a. In order to avoid uncontrolled extrapolations of the linear distribution
within cell i, we use as a basis the outer interpolation between (zi+1 /2 , If'+) and (zi+l, #+1) with slope
6r1+ outside the cell. Here r'i+ = 77i + Az6,i /2. Since Ia( )IAt/2 < Az/2 for all p, due to the CFL-
condition, this Ansatz ensures, that no value of v outside [qi+, Yri+] can be selected. Furthermore, by
means of the limitation (10)3 q/"+ obeys f/p :_ qi"+ ! nr+1 and therefore stays within the range of the cell
averages. Nevertheless, if there is a large gradient between cells i and i+1, then one has to be careful in
employing the outer interpolation. As is shown in Figs. 2b,c there may be a discontinuity of either the
local characteristic variable q itself (Fig. 2b) or of its first derivative (Fig. 2c). In the first case the slope
of i? outside the cell must be limited in order to avoid application of a characteristic scheme across a
shock, whereas in the second case the use of the outer interpolation is allowed, since discontinuities of
slopes move with characteristic speed and do not imply special jump conditions. We account for this
requirement by means of the minmod-function in (9), which employs the limited slope of cell i+1 as
soon as the slope bih+ of the outer interpolation becomes large. Comparing Figs. 2b and 2c we note
further, that 6Th+ >> byi -_ &ii+l in 2b, while bii+1 - 6%+ >> 6%/i in 2c. Therefore the use of 6 'ii+

in (9) instead of the more apparent choice yli allows to distinguish between the two cases of Figs. 2b,
2c.

The terms (At/2)()+112 in (6) are second order corrections to the numerical fluxes, which

account for the influence of the sources on the wave interactions between adjacent cells. This aspect
is discussed in some detail in [19], where a formulation of these expressions in terms of eigenvectors of

!A" + /2 is given. To evaluate the source wave corrections we employ the Roe-averaged state ULR, which

is obtained, when the homogeneous fluxes n+1/ 2 are calculated by means of the HLLE-Riemann!-h,i+1/2
solver. Thus we have

,)n+1/2 =. _u (L)(LR) ,+112 ALR- + ,LR(14+ UAi+l)-. (12)

It should be noted that we do not apply the slope limiting procedure to the sources directly as proposed
by Roe [20]. Instead the limiting enters the evaluations of sources only via the update (8) to (11).

The cell centered source terms .+1/2 are calculated by means of the following iterative method.
For 0 <j < J - 1 we let

u + tj+l t l-_ai+ + 1 At Uq. +lj + .,(13)
h 222,(3

where
hi n+1/2 +I/2 _ , n 1,0 . ,ii ,
_Is, u.++ ~ u &, M4 -U4 ~i24 ,

and finally
2+1/2 1 [jn+iJ + ,]. (14)

As usual r denotes 1(u!). The results given in section 3 are obtained with J = 2. This completes the
description of scheme (6).

Additional complications are imposed by the sharp convex corner of the duct. In [19] special
boundary conditions are proposed, which are based on asymptotic considerations of Euler's equations
in the vicinity of the corner. The procedure reduces numerical dissipation next to the edge and also the
undesired sensitive dependence of the results on details of the numerical scheme, which was observed
by Woodward and Colella [21] in a comparison of several shock capturing algorithms.

3. Results

3.1 Clarke's Testproblem

The performance of scheme (6) will be demonstrated in this subsection by means of a one-dimensional
test problem, given by Clarke and Toro [22). The sources of mass, x-momentum and energy are set to

= H(2 -z)(G/c)(p, m, e+p)T. Here H is again the heavyside step-function. This choice amounts to an
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duction of new extrema; (b) discontinuous distribution of 77; (c) discontinuous
slope 87/49x; different outer slopes:
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isentropic addition of mass in the region x < I at a rate G/c. Using homogeneous quiescent gas initial
conditions, the flow is also homentropic and one can introduce characteristic coordinates, corresponding
to the paths of pressure waves in the x-t-plane. With the present choice of 1 the compatibility relations
along the characteristic curves have a constant r.h.s., which allows an analytic integration.

Up to the time when shocks or centered expansions form, the exact solution can be constructed from
these characteristic results. Fig. 3 shows results based on the data (p = latm, c = 330.4ns, rn 0) at
t = 0 and G = 1294301m/s 2 (see Clarke and Toro [22]). Exact and approximate distributions of the
density at times 0.1, 0.4, 0.7ms are given together with the related relative errors Ap = (P-p' ',t)lPeracf
on the last time level. In these calculations we employed the limiters S1.6 and S1.8 on the soundwave
and particle path characteristics, respectively. The results obviously are well within the range of second
order accuracy except at z = 0.5 and -ze 0.75, where singularities in the characteristic solutions
develop. There no higher accuracy can be expected from a shock capturing scheme, applied on an
equally spaced grid. (Extended calculations can be found in [5], where different updating formulae
tn _ tn+ 1/ 2 and different limiters are tested and where a comparison with time operator splitting for
the source terms is performed.)
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Figure 3: Distribution of the density p and its relative error Ap for Clarke's
test problem.

3.2 Shock induced ignition in an L-shaped duct

Here we present two examples of the development of reacting waves after shock diffraction and reflec-
tion within the idealized geometry of Fig. lb. The evolution of the flow is discussed mainly in terms
of sequences of density distributions represented by plots of contour lines. When interpreting the dia-
grams it should be kept in mind, that steep density gradients may occur at shock fronts, at contact
discontinuities and across thin zones of chemical heat release. The latter gradients are due to thermal
expansions of the burning gas and can be identified easily by comparison with related distributions of
the reaction progress variables. Due to lack of space we will not display these distributions throughout.

Consider now the sequence of Figs. 4. In this first example the induction and reaction time scales
are t, s 0.42 and t= 0.38, respectively. We further impose a high temperature sensitivity letting
E = 20.0. Fig. 4a shows contour lines of the density at a time, when the reflected shock front has
already removed from the reflecting wall a considerable distance. It interacts with the vortex, which
has formed downstream of the edge when the incident shock diffracted there. In the present case, the
shock is not yet supported and enhanced by chemical reactions and the vortex is able to break up
the front. On the right of the vortex core, the shock is accelerated towards the wall, whereas on the
left it is decelerated. Consequently the shock is stretched and weakened substantially in the center
of the vortical region. At the opposite concave corner, the highly sensitive induction reaction selects
those mass particles, which rested at high temperatures for the longest time. The induction period is
finished locally and chemical heat is released. Approaching the concave corner from inside of the flow
field, the contour lines first show an increase of the density in a pressure wave which is driven by the
local explosion, and then a decrease of p towards the corner, which is due to corresponding thermal
expansions. In Fig. 4b the reaction driven pressure wave has steepened and is catching up the initially
reflected shock on its way back to the entrance of the duct. Ahead of the convex corner the part of the
shock front, that was previously accelerated by the vortex, is now reflected and begins to traverse the
duct again in opnosite direction. A short time later in Fig. 4c, the wave system facing the oncoming
flow from the entrance has developed into a slightly curved detonation wave. It now merely consists of
a strong precursor shock and a subsequent expansion due to combustion. The small front enclosing the
tip of the convex corner indicates a previous reflection of this precursor shock. The transverse wave,
which has emerged in Fig. 4b, now interacts with the reactive pressure wave, that spreads out from
the concave corner. It can be read from Fig. 4c2, which depicts the corresponding distribution of the
reaction progress variable f, that a wedge of unburnt material has formed in front of the wall. It should
be emphasized, that the transverse wave here results from multiple reflections of an essentially inert
shock front and that it is not driven by chemical heat release. Nevertheless it leads to a substantial
temperature increase in front of the wall and accelerates the induction reactions within the wedge of
unburnt. Fig. 4d shows the result of a subsequent explosion of this amount of end gas. The inert
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Shock induced ignition in an L-duct
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Figure 4: Two-step chemical model Figure 5: One-step chemical model
E. = 20.0, t*j 3 = 0.43, M~h =1.6, E =10.0, j*,3  0.23, Moh= 1.6,

5.0, t* = 0.38. t* =0.21.
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transverse wave has already passed the duct as is indicated by the weak, nearly horizontal gradient at
the top right corner of the diagram. At the same time the explosion in front of the corner wall has
led to high peaks of pressure and density connected with a new secondary transverse shock. This wave
is now directly coupled to the chemical reactions and may be considered as part of a weak detonative
triple shock, although in the present case the width of the duct would most likely be too small to allow
the establishment of a (quasi-)steadily propagating reactive Mach-stem if the whole structure would be
allowed to propagate down a continued straight channel. However, the following example will show, how
some changes of the model parameters, which do not touch the orders of magnitude of the characteristic
time scales, can substantially support the onset of typical patterns of multidimensional detonations.

We decrease the temperature sensitivity of the induction time to End = 10 and consider slightly
faster chemical reactions according to t 3,3 = 0.23 and t4 = 0.21. In contrary to the constellation of
the first example the present regime can be and actually is simulated by means of the one-step model.
Fig. 5a gives the situation just before the reflected shock begins to interact with the vortex. The density
gradient behind the shock indicates that there is already a substantial progress of the chemical reaction.
No well bounded, localized explosion takes place here due to the decreased temperature sensitivity of
the induction phase and due to the fact that there is no sharp threshold between the induction period
and the phase of heat release. In Fig. 5b, the shock-reaction front just passes the vortical separation
flow ahead of the corner. It is seen that the vortex is no longer able to break the front, but only turns it
around slightly such that a part of it is now nearly parallel to the wall. Fig. 5b 2 shows the distribution
of the reaction progress variable. Obviously there is again a wedge of unburnt material. But it should
be noted that the time of the present situation corresponds to that of Fig. 4a of the previous example,
where the reflected shock is seen just before it hits the corner wall, while Fig. 4c 2, which also shows an
enclosure of unburnt, corresponds to a later time. Also in the present case an already developed shock
reaction wave reflects at the wall instead of an inert shock as in Fig. 4b. In consequence the resulting
transverse wave is much stronger than that of the first example. In Fig. 5c the subsequent complicated
wave interactions in front of the corner wall are depicted. As before a sharp peak of pressure and density
builds up at a point, where the reflected transverse wave meets the leading front and the wall. Later
on this peak, together with the transverse wave departs from the wall and passes the duct, thereby
interacting with the lead shock. The result is a typical (Mach-stem) configuration, which in the present
case seems to be strong enough to survive multiple reflections between the opposite walls of the duct.
Fig. 5d shows the triple point after it has developed a very clear and presumably stable structure.

4. Conclusions

The shock induced reactive-gasdynamic flow within a two-dimensional L-shaped configuration is ex-
amined by means of numerical simulations. A regime is considered, where ignition delay, chemical heat
release and also pressure wave propagation all occur on comparable time scales and thus show inte-
resting mutual effects. Some order of magnitude estimates suggest that this regime may be particularly
relevant for the problem of knock damage in internal combustion engines. The calculations are based
on the balance equations of an inviscid perfect gas, supplied by a two-stage chemical model. The re-
sults reveal different iaherently multidimensiona! mechanisms, which provoke the formation of reacting
Mach-stems. Violent reflections of these triple shocks at the bounding walls may well be responsible
for erosive damages, which are typically observed within engines running under knocking conditions.

Discrete approximations are obtained using a MUSCL-type shock capturing scheme, designed for
direct integration of the inhomogeneous Euler equations. Although the construction of the scheme
was stimulated by considerations of Roe [20], no upwind weighting of the sourceterms in the sense
of his suggestions is performed. instead second order source corrections to the numerical fluxes are
obtained by straight forward expansions about the fluxes of a second order scheme for the homogeneous
equations. Special attention is paid to the determination of cell interface states, which are employed in
the according source evaluations. Results for Clarke's [.2] test problem are in satisfactory agreement
with the exact solutions and the approximations do not show any source induced oscillations.
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1. Introduction

Consider the initial value problem for a scalar conservation law
ut+ V. f(u) =0, t_>0, ieRe (1.1)

u(x,0) = u0 (x).
For the nonlinear flux function even smooth initial data in general may not prevent the
development of jumps in the solution to (1.1). Thus we consider (1.1) in the sense of
distributions.

When trying to understand the qualitative behaviour of solutions to conservation laws
in more than one space dimension, as a first step one may consider selfsimilar solutions.
This way the problem becomes more tractable, because the number of independent variables
is reduced by one. In particular one has considered Riemann problems.

Definition: If (1.1) is invariant under the transformation
(c-Xct0 - (R' 0),c >0,

then it is called a Riemann problem.
Thus in two space dimensions initial data in (1.1) which is piecewise constant in

sectors meeting at the origin is an example of a two dimensional Riemann problem (2-d
R.P.).

These arise naturally in front tracking, a numerical scheme for conservation laws, see
e.g. [GKI. The essential feature of this method is that a lower dimensional grid is fitted to
and follows the "*-mp surfaces. At the intersection points of these discontinuities 2-d R.P.
occur. We mention in passing that one can give a short list of these generic types of such
intersection points for two dimensional gas dynamics, which presumably constitutes the
pieces that the solution to a 2-d R.P. for the Euler equations is made up of, [GKI.

Recently some progress was made in understanding the 2-d R.P. for the scalar
conservation law:

ut + f(u)" + g(u)y = 0. (1.2)
One knows existence [CS] and uniqueness [K) of the weak solution satisfying the entropy
condition. It was natural to ask next what these solutions for the case of a Riemann problem
look like. Wagner [W] constructed the solution for a convex f very close to a convex g. In
[HK] this was extended to a generic case with f = g, where f is a quadratic and g a cubic
polynomial, see section 2. For general flux functions, for the case f = g, the solution was
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constructed in [CK], see section 3. There something reminiscent of a large time Godunov
method for the scalar equation in one space dimension was used. This method inspired two
results for the one dimensional scalar equation, which are reported in section 4. We close
with some examples in section 5.

2. The Riemann problem for the scalar conservation law
in two space dimensions with unequal flux functions

The selfsimilar solution may be described completely by giving the solution in the
plane, say t = 1. Far away from the origin, the solution is given by solving a 1-d R.P.
across the jumps given in the initial data. [HK] proceeded to describe the interaction of these
waves for the two flux functions being a cubic and a quadratic polynomial.

We shall give an illustrative example on what may happen. Suppose we consider the
equation

ut + (U2), + (U3)y = 0.

Say across the positive x-axis there was an initial jump that gave rise to a jump followed by
a rarefaction wave, see Fig. 2.1.

y

- - -- )- x

u= u < u

R t

Fig. 2.1 Part of the solution of a particular two dimensional Riemann problem with
initial discontinuities across the x-axis and the y-axis.

The jump J interacts with the rarefaction wave R to form a

surface S which is a smooth continuation of J that bends into R. To the left of S a new
rarefaction appears which is tangential to s, see Fig. 2. 1. We may now define an ordinary

differential equation for S, show that it is well defined on the interval [(u2 + ii)/2, u2] and

satisfies the entropy condition.
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Depending on the location of u, relative to u2 and ii we have two possibilities:

a) (u2 + ii)/2 < u1 .
This gives rise to a onesided contact discintinuity (c.d.) with the constant state u1 on

one side and u2 + i - u1 on the other side.

b) u1 < (u2 + u-)/2.

At Z-- (f((u + u2)/2), g'((i + u2)/2)) the shock strength of S has decayed to zero.
Then S continues on smoothly into a curve F given by (f (u), g'(u)), u1 < u < (i + u2)/2,
where the two rarefaction waves meet.

In this way we could construct the solution to our 2-d R.P., see Fig. 2.2 for an
example of a solution.

V

U = U= U3

U 
3

UU U,

t1=U 1

t=1

Fig. 2.2 An example of a solution to

with particular initial data constant in each of the four quadrants. Notice how
this example contains the piece shown above and mentioned in a) of section 2.

3. The Riemann problem for the scalar conservation law in
two space dimensions with equal flux functions

The solution for the 2-d R.P. to (1.2) with f =g is constructed by considering an
equivalent prblem in one space dimension. Under the coordinate transformation
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= (x + y)/2 and fl = (x - y)/ 2 the equation (2.1) for f = g becomes

u, +f(u)k = 0 (3.1)

with "1 a parameter. The initial data for Ti = const. is piecewise constant with a finite number

of jumps. It is easy to see that the 2-d R.P. is now reduced to constructing the solution to
(3. 1) for il > 0 and for Tl < 0.

For small t, near each jump we may construct the solution to the 1-d R.P. by the

method of convex hull (see Fig. 3.1). After some finite time an interaction between two

adjacent waves is possible. This interaction may be described qualitatively by using the a
timedependent version of the convex hull, see Fig. 3.2. For details see [CK]. One finds that

the union of convex hulls given initially gets deformed in a unique way towards the final

convex hull, which consists of the solution to 1-d R.P. with the two constant states being
the left most state in the initial data for "1 = const. and the right most state there. This

construction is reminiscent of a Godunov scheme which is taken past the time of interaction

of the waves.
Using this construction, for the solution of the 2-d R.P. with f = g one may deduce

many qualitative features of the solution. One finds that there are no compression waves and

thus no shock generation points. Thus jumps may only appear through the bifurcation of

jumps and the interaction of jumps. Also for a fixed time t, the number of jumps is bounded
uniformly if f has a finite number of inflection points. It seems that for many generic cases,
such as polynomial flux functions f, the solution is piecewise smooth.

X, U=C

ffrom

b to c

u=b

t

c b U=a

Fig. 3.1 The solution for small time to u, + f(u), = 0 and initial data consisting of two
jumps is found by solving the individual Riemann problems. To the left is the
graph of f together with the convex hull between the jumps. To the right is the
solution plane tilted, so that the slopes of the jumps in the convex hull CHf(u)
and in the solution plane are parallel.
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X

f 1

:>t

c , a

Fig. 3.2 The complete solution to the problem in Fig. 3.1 after the interaction of the
waves. This is constructed using a time dependent version of the method of
convex hull. The convex hull drawn to the left gives the solution for large time.

4. The scalar conservation law in one space dimension without convexity

Consider

ut+f(U), = 0 , fr C2  (4.1)
with the initial condition

u(x,O) = u0 (x).
A classical method for approximating the solution is due to Godunov (G]. There the

initial data is approximated by piecewise constant data on intervals of length Ax. At every
jump discontinuity in the new initial data this leads to a Riemann problem. The Riemann
problem resolves into a well known fan solution, as mentioned in the previous section. For
Godunov's method one solves all the Riemann problems found by the constant states

exactly. One takes this exact solution of the piecewise constant initial data up to time At,

such that two neighbouring fans solations don't interact. At this time level At the solution u
is again approximated by a piecewise constant function, obtained by averaging over each
cell x:

U- ] u x~dx.

Now we may proceed as before.
The inability to determine the interaction between waves propagating from the points
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of discontinuity in the Riemann solution leads to small time steps At. In [CK], as mentioned
in the previous section, a method for determining these interactions at least qualitatively was
given. In this section we shall try to combine these ideas with those in [0] to get some
estimates, which might play a role in improving large time step Godunov methods.

4.1 A large time flux written as Godunov's flux

By integrating (4.1) over Ax X [O,t] we obtain

0 -- ut + f(u)x dx dt

= f u(x,t) -u(x,O) dx + J f(u(x 1,s)) -f(u(xs)) ds.

Take the mean value of u at time t in Ax to be U and at time t = 0 to uo . Then we obtain
=u0- 1 r f(u(x 1,s)) - f(u(xos)) ds. (4.2)

Now suppose the initial data is piecewise constant with jumps at the points xi, i e Z,
and x, < xi +1, and values

U(XO) = ui ,  x C [Xi , x i + 1] , i A,..- ..... -1,0,1, ..... k,..

For t small enough, the fans emanating from two neighbouring Riemann problems in this
initial value problem don't intersect. The solution of a Riemann problem is a function of
(x - xi)/t alone. Thus for t small u is constant along x = xi, say ui, and ui is only a function

of ui - I and ui, the initial constant states to the left and right of xi. Thus we may define hG
as (now for convenience we set i = 0)

hG (u-1,u0 ) = f(iu0) = I Jf(u(x0,t)) dt , t small

and (4.2) becomes

= u 0 -- (h (u_ 1,uo) - hG(u, u1)), t small. (4.3)

Now let t become larger. Then u along x = xi becomes a function of several initial
cells neighbouring xi and we may define

h(u-k,... Uk - 1) = I f'f(u(x,t)) dt, (4.4)

with the property that if the initial constant values in all the cells are equal we obtain
h(u ... , u) = f(u).

Theorem I There exist a Ur in the convex hull of {u- k .... u-1I} and a UL in the

convex hull of u, ...- uk - such that
h(U-k...,. Uk - 1) = hG (UrL) (4.5)

Proof: Using the notaion in (4.4) we may write (4.2) as
U= u0 - t (h(U-k + 1 ..... Uk) - h(U-1, .... Uk - I)

Note that 1 is a nondecreasing function of all its variables since it is the average of the exact
solution. Thus

-- -hk 0 : hk : 0
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rU - hk -I + hk > 0 : hk - I <! hk

in general

h, < h2 :_... hk <- 0 < h0 <...< h!k+2 < hk +.I
We prove the theorem by induction. The case k = 1 is immediate. Suppose the claim

is true for k. Then add a value of Uk + I on the right. Let u E [Uk,Uk + 11. Now consider
g(u) =h(uk+l,uk,.... U-k+I) - h(u,u,uk l .... U-k+1)

=(Uk+l-u)hk+1+(uk-u)hk, byM.V.Th..
We have

g(Uk + 1) = (Uk - Uk + 1) hk
g(Uk) = (Uk+1-Uk)hk+l

Thus g(u) changes sign in (Uk,Uk + 1) or vanishes at the endpoints. Thus there exist Uk such
that

h(Uk + 1, Uk .... U-k + 1) h(Uk, Uk - 1 ,... u-k + 1)
and by induction hypothesis the right hand side

hG(ur,UL)
for some ur and UL.

Next add a value u-k on the left. For u e [uk + 1,U-k] we consider
j(u) = h(uk + 1, Uk, ... U-k +1, U-k) - h(Uk + 1 .... U, U)

by the above result
= h(uk + 1, Uk. u-k +1, u.k) - h(uk, Uk -1.. U, u).

By repeating the above argument we see that j(u) vanishes in [u-k, u-k + i]. Thus
h(uk + 1, Uk,.... u_ ], U =k) h(Uk, k - j ..... 5-k+ 1)

= hG(ur,UL)
some ur and some uL, which proves the induction step, and finishes the proof.

To recapitulate, we have shown the following:
Consider

ut + f(u), = 0
with initial condition

t=O u- 2  u- 1  u° uI x. (4.6)
x_1  X0 xi

Consider the exact solution u(xo,t). Then
J f(u(xt))dt = hGdt=h(u1 (T),u L(T))

with some ur in the convex hull of {u 0 ...., Uk 1)
and some UL in the convex hull of ({uk ...., u-1 },

and where the domain of dependence of u(x 0,t) for 0 < t :5 T is included in [u-k, uk -l].
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4.2. A formula for the solution of the Riemann problem

The following theorem is mentioned in [O], but our proof is different from that given
there. We use the notion of convex hull of a function f between uL and ur as used in section

3, denoted by CH""f(u) and illustrated in Fig. 3.1.
Theorem 2 The solution u to the Riemann problem of u, + f(u) --0 with initial

constant states UL < u, is given by

u=u(t)= I U [UL,Ur]r) Iu:f(u)=CHUlf(u)}I suchthat (4.7)

CHULf(-u) - x U is the minimum)UL t

Proof: Minimizing CHu'f(u) - I u means that the slope of CFif(u) - 1 u is horizontalL t
at the minimum value of U. Hence

d- (CHf(u) I l
du tI u=ti

which implies f (u) =

This is the definition of a characteristic, i.e. the value of u along a ray through the origin

with slope x is U. Notice that in case that there are two such minima in (4.7), then they are
t

the left and right states bounding a contact discontinuity.

5. Some examples

Consider a special case B of flux functions as follows: let f r C2 be such that for all

uL = [-M,-1 and u, [1,M], M > 1, we have that nin (CHu (u) - su, --e < s < e},
U E U1, U,

remains unchanged. For an example of f e B see Fig. 5.1.
As before consider

u, + f(u)" = 0, fix fe B (5.1)
with initial data piecewise constant with jumps as in (4.6), and

ui 6 (-M,-1), i e (-k ... , -1) (5.2)

ui r (1,M), i (0, ... , k}.
Then by theorem 1 one obtains

1 f(u(x0 t)) dt h0 (uu 1 )

for some uL e [-M,-1]

urn [1,M] .

By theorem 2 we find that hG (u,,uL) = f(umin) where Umin e [-1,1] and Umin is the
absolute minimum of f in [-M,M]. Note that by the choice of f, umi, is always the same,
regardless of ui in (5.2).
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Now we make use of the assumption that not only CHf(u) always attains a minimum in
(-1,1), but also CHf(u) - su, --e < s < P. By the change of variable y = x-st equation (5.1)
becomes

Ut + (f(u) - su)y = 0. (5.4)
Consider (5.4) with initial condition (5.2) as before. We may again conclude that

T I {f(u(st,t)) - Su dt = f(Umin) -s Umin

where umin is the absolute minimum in [-M,MI of f-su.
Thus for (5.1) and initial data (5.2) we conclude that a fan wave dominates the

solution for all time, see Fig. 5.1.
We may extend this result to an initial value problem to (5.1) with piecewise

continuous initial data:

uI (x)suchthat--M< f,< 1 , xe [xx 0 ]

u(x,0) (x) suchthatl<f 2 <M, x = fxo,xklf1 (xd x < X-k (5.5)
f(Xk) x >Xk

with ul and u2 continuous functions, for an example see Fig. 5.2.
Now approximate the initial data u0 in (5.5) by piecewise constant data on intervals

of length Ax. For this data the above conclusion holds. Since the flux function is in class B,

regardless of the size of Ax in the approximation of uo we obtain the same value of u along a
fixed ray y = x0 -st, --e < s < e. Thus when passing to the limit Ax -4 0, we find that the
solution u to (5.1), (5.5) is also dominated by a fan wave for all time which depends only
on the choice of f.

Finally we give a two dimensional example. Consider

ut+ f(u), + f(u)y = 0 fE B (5.6)
with initial condition

u(x,y,0) - % y (5.7)
i-8, y<-x

This is a one dimensional Riemann problem with a fan as a solution. By the above examples
we may now give a special perturbation of the constant states (5.7) s.th. the fan wave
remains unchanged, but the rest of the solution changes. Let u(x,y,0) be constant on rays
through the origin, i.e.

u(x,y,0) u0 (0), 0 e [0,2nt]

u0 (0) { f(0) suchthat l<f(0)< M,OE 1-4' 41

u0( ) = f2 (0 such th at -M < f(O ) < - 1I, 0 137 71c

with f, and f2 continuous functions.
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t

Fig. 5.1 An example of a flux function in class ~B together with a convex hull on the left.On the right the fan solution of the corresponding Riemann problem.

X k X 0  X

Fig. 5.2 Initial data for which the solution to
Ut +f(u), =O, f =

will contain the fan drawn in Fig. 5. 1.
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SUMMARY

A discretization method is presented for the full, steady, compressible Navier-Stokes equations. The method
makes use at quadrilateral finite volumes and consists of an upwind discretizaion of the convective part
and a central discretization of the diffusive part. In the present paper, the emphasis lies on the discretization
of the convective part.

The applied solution method directly solves the steady equations by means of a Newton method, which
requires the discretization to be continuously differentiable. For two upwind schemes which satisfy this
requirement (Osher's and van Leer's scheme), results of a quantitative error analysis are presented.
Osher's scheme appears to be more and more accurate than van Leer's scheme with increasing Reynolds
number. A suitable higher-order accurate discretization of convection is chosen. Based on this higher-order
scheme, a new limiter is constructed. Further, for van Leer's scheme, a solid wall - boundary condition
treatment is proposed, which ensures a continuous transition from the Navier-Stokes flow regime to the
Euler flow regime.

Numerical results are presented for a subsonic flat plate flow and a supersonic flat plate flow with
oblique shock wave - boundary layer interaction. The results obtained agree with the predictions made.

Useful properties of the discretizatlion method are that it allows an easy check of false diffusion and that
it needs no tuning of parameters.
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Key Words and Phrases: upwind schemes, Navier-Stokes equations
Note: This work was supported by the European Space Agency (ESA), via Avions Marcel Dassault -
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1. INTRODUCTION

.L Navier-Stokes equations
The equations considered are the ull, steady, 2D, compressible Navier-Stokes equations

a ft) +¢ ka _ _ ar() + ___ -

ax ay Re( x ay (1.1)
with f (q) and g(q) the convective flux vectors, Re the Reynoles number, and r(q) and s(q) the
diffusive flux vectors. As state vector we consider the conservative vector q=(p,pu,pv,pe)T, with for
the total energy e the perfect gas relation e=p/(p(y-l))+ /6(u2 +v 2). The primitive flow quantities
used are density p, pressure p, and the velocity components u and v. The ratio of specific heats -y is
assumed to be constant. The convective flux vectors are defined by

f(q) f g(q)= / (1.2)

I +Pui /p) pv(e +p/p)

and the diffusive flux vectors by

0 0

S= , s(q) = ,yyxy (1.3)

r) 1 (C2) + , . i + .( 2)Y +r ax JL y-l Pr ay

with Pr the Prandtl number, c the speed of sound (for a perfect gas: c = x7yp-) and with rxi, rx and
ryy the viscous stresses. Assuming the diffusion coefficients to be constant and Stokes' hypothesis to
hold, the viscous stresses are
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4 au 2 v (1.4)~Tx=3 ax 3 ay'

au av (l.4b)
y a x'

4 8v 2 au (1.4c)
-YY = 3y 3 x"

Here, we present a discretization method which allows an accurate (and efficient) computation of
(steady) high-Reynolds number flows up to and including the Euler flow regime. The challenge in
developing such a method is to find a discretization of the convective part which is accurate not only
for typical Euler flows, but also for typical Navier-Stokes flows, like boundary layer flows. Finding a
discretization for the diffusive part which satisfies the same requirements, is thought to be easy.

1.2. Discretization method
To still allow Euler flow solutions with discontinuities, the equations are discretized in integral form.
A straightforward and simple discretization of the integral form is obtained by subdividing the
integration region 0 into quadrilateral finite volumes 0,,j and by requiring that the conservation laws
hold for each finite volume separately:

,~jf(q)nx +g(q)n,)ds - - k(r(q)n, +s(q)ny)ds = 0, Vij (1.5)

This discretization requires an evaluation of convective and diffusive fluxes at each volume wall.

1.2.1. Evaluation of convective fluxes. Based on experience with the Euler equations (see [5] for an
overview), for the evaluation of the convective fluxes we prefer an upwind approach, following the
Godunov principle (2]. So, along each finite volume wall, the convective flux is assumed to be con-
stant and to be determined by a uniformly constant left and right state only. For the ID Riemann
problem thus obtained, an approximate Riemann solver is applied. The choice of the left and right
state, to be used as input for the approximate Riemann solver, determines the accuracy of the convec-
tive discretization. First-order accuracy is simply obtained by taking the left and right state equal to
that in the corresponding adjacent volume [6). Higher-order accuracy is obtained by applying low-
degree piecewise polynomial state interpolation (MUSCL-approach), using two or three adjaceit
volume states for the left and right state separately [4]. For this flux evaluation, we make use of tL1e
rotational invariance of the Navier-Stokes equations in order to reduce the number of these evalua-
tions per finite volume wall from two to one. A more detailed discussion of the discretization of the
convective part is given in section 2.

1.2.2. Evahation of dTvive fluxes. For the evaluation of the diffusive fluxes, it is necessary to com-
pute Vu, Vv and Vc at each volume wall. To compute for instance (Vu) + ,, where i + 0 refers to
the volume wall separating Qi and 0, + i,, we use Gauss' theorem

V =+,j = I .uads, (1.6)Aj + y j

with 80+,. the boundary and A, + 4 the area of a shifted quadrilateral finite volume 0, + 4 which
vertices z=X,y)T are defined by

I

zq, = j(Z_+z +.j_), (1.7)

and a similar expression for ,+ ,jt . The line integral in (1.6) is approximated by

und %I + 1+i~j  (7q + I~j +; - 7, + I~j -;j)) -

14 +oj +;I (z, i+-z+ j + %)+
u 4  ,j_ _ + )+(1.8)

9 + ,- (71 +L -t-)

with for + the central expression

,+n "I(ul+uis±,+uI+Is+ui+1,±I (1.9)
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Similar expressions are used for the other gradients and other walls. For sufficiently smooth grids this
central diffusive flux computation is second-order accurate. Notice that by using central expressions,
as (1.9), the directional dependence coming from the cross derivative terms is neglected. No significant
gain in solution quality is expected from a biased approach as proposed in 11]. Given the fact that the
present diffusive flux evaluation is rather cheap, here, use of rotational invariance is hardly advanta-
geous.

1.3. Solution method
For a detailed description of the solution method, we refer to [7]. Here we give a brief summary.

For the nonlinear system of first-order discretized equations, symmetric point Gauss-Seidel relaxa-
tion is used. In here, one or more (exact) Newton steps are used for the collective updates of the four
state vector components in each finite volume. Nonlinear multigrid is applied as an acceleration tech-
nique, the process is started by nested iteration.

For the higher-order accurate operator the same method leads to poor convergence or even diver-
gence. As a remedy, we use iterative defect correction as an outer iteration for nonlinear multigrid
applied, again, to the first-order discretized equations.

The application of the (exact) Newton method requires the convective and diffusive fluxes to be
continuously differentiable (The diffusive fluxes as described in the previous section already fulfil this
requirement.)

2. DISCRETIZATION OF CONVECTIVE PART

2.1, Approximate Aiemann solver
As approximate Riemann solver for the Euler equations, we preferred Osher's scheme 1121. Reasons
for this preference were: (i) its continuous differentiability, and (ii) its consistent treatment of boun-
dary conditions. Here, the question arises whether it is still a good choice to use Osher's scheme when
typical Navier-Stokes features such as shear, separation and heat conduction also have to be resolved.
We should make a choice again.

Since continuous differentiability is an absolute requirement for the success of our solution method,
and since we know no other approximate Riemann solvers with this property than Osher's and van
Leer's [9, our choice is confined to these two only. So far, van Leer's scheme is more widespread in
the field of Navier-Stokes than Osher's scheme (13, 14, 181. Probably, the main reason for this is its
greater conceptual and operational simplicity appealing from its first publications. However, recent
publications on Ocher's scheme, such as [6, 16j, may help to reduce this difference.

With as next requirement the accurate modelling of physical diffusion, in fact, the definite choice
can be made already. In (91, van Leer stated already that his flux ve.tor splitter cannot preserve a
steady contact discontinuity. Since a discrete shear layer may be interpreted as a layer of contact
discontinuities, doubt rose already about the suitability of van Leer's scheme for Navier-Stokes codes.
Recently, this doubt was confirmed in [Ill where van Leer el a made a qualitative analysis (supple-
mented with numerical experiments) for various upwind schemes. There, Osher's scheme turned out to
be better than van Leer's scheme, in particular for the resolution of boundary layer flows.

To shed some light on how large this difference in quality is, here results of a quantitative error
analysis are presented for both Osher's and van Leer's scheme. The analysis is confined to the steady,
2D, isentropic Euler equations for a perfect gas with -y 1:

+ k(q = 0, (2.1)ax 3y

with

(q) = u2+c2)J, g(q) = +cJvu (2.2)

where c is constant (The choice of 2D equations allows us to consider a boundary layer flow in the
analysis.) In [8), for both upwind schemes, the system of modified equations is derived, considering
(i) a first-order accurate, square finite volume discretizatio, and (ii) a subsonic flow with u and v
pouitive, and pab constant. Neglecting the density variation, the systems of modified equations are,
for Osber:

302



18(u 2
) _L (V2 ) -

2ax 2 a

.af(A). + 29( - h -L (u2+c' . + -l vu- -.-+vc u _ O(h 2), (2.3)
ax ay 2c ax ax ay ay ay

.i + LV (2 C2 ) V/ a/ a x ayv

and for van Leer:

L ku) /8(V 2)
2 aX 2 a

aftQ + 9(q - hP- L 2 2 _U_ _2 ± a8(&2+C 2)U) - O(h2  (2.4)
ax ay 2c ax x +y 2 ay

/ 1 ((u2+c2W) 1 /
T ax ay

In both first-order error terms, a typical Navier-Stokes flow solution is substituted, which clearly
shows the differences between both schemes. As flow, we consider an incompressible semi-infinite flat
plate flow. For simplicity, for this we do not use the exact Blasius solution, but Lamb's approximate
solution which reads

P

, Usin(- y) (2.5)
V ._ ., 5 U Y ..

v2x =' R 2exY
with P and U constant. Substituting the solution vector (2.5) into the error vector of both (2.3) and
(2.4), considering the boundary layer edge

= 8(x)--- 5- (2.6)

at x=l, and taking the ratio of absolute values of both error vectors, using ReI (which is our
interest), we find

error Osher - 1) 5 U (2.7)
error van Leer Vi 2.7 C

1/2

where we write c = C. From (2.7) it appears that van Leer's scheme deteriorates compared to Osher's
scheme for increasing Re. Assuming the reliability of (2.7) for rather small Re, it appears that already
for Re>{5(l-2/ir)U/C}2 , where U/C<I, Osher's scheme definitely is to be preferred above van
Leer's scheme.

To ensure a continuous transition along a solid wall boundary from the Navier-Stokes flow regime
to the Euler flow regime, for van Leer's scheme it will be necessary to impose only the Euler boun-
dary condition to the convective part. So, for a non-permeable solid wall this means that one should
only impose a zero normal velocity component to the convective part (though all boundary conditions
to the diffusive part, i.e. a zero normal and tangential velocity component, and some temperature con-
dition). By not imposing the no-slip and temperature boundary condition to the convective part, we
avoid that it 'feels' the severe contact discontinuity in the realistic case of a boundary layer flow on a
very coarse grid and an outer flow with M not small. Such a contact discontinuity will be erroneously
spread by van Laes scheme, and cause that there is some finite, rather low value of Re above which
the solution is insensitive to Re-variation.

Oshees scheme can preserve a steady contact discontinuity as long as it is aligned with the grid.
Application of (commonly used) body-fitted grids guarantees this alignment along solid walls. There-
fore, with a body-fitted grid, Osher's scheme does not need the careful solid wall - boundary condition
treatment as proposed for van Leers scheme.
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2.2. Higher-order accuracy
As mentioned in section 1.2.1, higher-order accuracy is obtained by applying low-degree piecewise
polynomial functions through two or three adjacent volume states. The polynomials are given by van
Leer's x-scheme [10)

.+ ,j 1 + K (qa+I,j-qqj) + 1 (qq - q- ,j), (2.8a)

9+ 6j q, .j + -+--(qq--q+ I.j) + -I--(q+ .j-q+2.j), (2.8b)

with it E-1,11. For sc=-1,0,1, we have the fully one-sided upwind, the Fromm and the central
scheme, respectively.

The aim now is to optimize ic. For this purpose, we consider the scalar model equation
au+ u 8au 2u ' u" _a; +. -- +_j-_ - 0. (2.9)

On a square grid, a finite volume discretization which uses the s-scheme for convection and the cen-
tral scheme for diffusion, yields as modified equation

8u au 8 u 2 u + 82u.

+h2X a-l/3 3u a 83u y 2ru u +2 au +3 4 u O (2.10)+ hIK / 3 3 faU aU e u O(h3
As optimal value for x, we define: the value that gives the highest possible accuracy, i.e. third-order
accuracy in this case. Assuming the reliability of the underlying Taylor series expansion, from (2.10),
we find for this value

= ~ + 4u +2 04  +/(_ M4 ++ u '' 3  a3U-I 8'u +2 2% -2u (2.11)
3a X3ay aXay3 ay4 8X3

Since convection dominated problems, problems with c4-I, are our interest, we assume the above
diffusion-dependence of x to be negligible, which simply leads to sc= 1/3.

2.3. Monotonicity
To preserve monotonicity, we construct a limiter which is based on the K = I/ 3-scheme. For this, we
use the monotonicity theory of Spekreijse [15], an extension of Sweby's theory (171, allowing more
freedom in the limiter construction.

For the limited, higher-order, left and right state components, we write
0,s = q$,) + Rk'X -$ , " q j)) (2.12a)

= 2 q(k., + ,1 , - (2.12b)

with k = 1,2,3,4, (R) the limiter, and

Rj ) I 'j . (2.13)

The limited s= 1/3-scheme can be written in the one-sided form (2.12a-b) as
J(k, - ) + 2 J(R + 3Ri' ) -), (2.14a)

^ jk~ + -L(I(kiXL-I(klj(kij (2.14b)

Notice that for t(R)= I we have the (non-limited) c= 1/3-scheme, and that k(R) defines the limiter
(R) by

3 24(R) = (RXCj+-yR)- (2.15)
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General requirements to be fulfilled by 6(R) are: J(1)= I to preserve higher-order accuracy, and:
(O)=O and bol.dedness for large JRI to preserve monotonicity. For the latter, we require that
im (RXT+-fR)=I. To make the limiter now a x=1/3-limiter, we require that '()=0. (This

last requirement makes the limiter tangential to the =1/3-scheme in the monotonicity region [15].)

Imposing these five requirements to the general form

aiR) " R2 +a2R +a3 (2.16)a() 4 R2 +asR+Il'

we find with (2.15)

2R2 +R

O(R) = _ R +2' (2.17)

3. NUMERICAL RESULTS

3.1. Flow problems

To evaluate the discretization method, the following flow problems are considered: (i) a subsonic flat
plate flow with M =0.5 and Re ranging from 102 up to 100', and (ii) a supersonic flat plate flow with
oblique shock wave - boundary layer interaction at M = 2, Re =2.96 05. The latter problem stems
from [3].

For the subsonic flow problem, the Blasius solution is used as a reference. The grids used for this
flow problem are all composed of square finite volumes. As coarsest grid in all multigrid computa-
tions, we use a 4X2-grid.

For the supersonic flow problem, the experimental results from [3] are used as a reference. Here, in
all multigrid computations a 5X2-grid is applied as coarsest grid. The grid was optimized for convec-
tion by introducing a stretching in flow direction, and in particular by aligning it with the impinging
shock wave. A grid adaptation for diffusion was realized by introducing a stretching in crossflow
direction.

For both flow problems, we use -y= 1.4 and Pr =0.71. For further details about the implementation
of both problems, we refer to [8].

3.2. Osher versus van Leer
To show at first the benefit of the solid wall - boundary condition treatment as proposed for van
Leer's scheme in section 2.1, we consider the subsonic flat plate flow at Re = 1001. For both Osher's
and van Leer's scheme we compute the flow on a 64 X 32-grid, using the first-order accurate discretiza-
tion and imposing to the convective part, successively: (i) non-permeability, no-slip and no-heat-
transfer, and - carefully - (ii) non-permeability only. The numerical results obtained are given in fig.
3.1. For the case with all Navier-Stokes boundary conditions imposed, it appears that van Leer's
scheme severely thickens the thin layer, whereas Osher's scheme preserves it. With the careful
approach, both schemes preserve the layer.

0 0.2 0.4 0. 0.8 1 0 0.2 0. 0.8 d.6

a. u v=0, - =0. b. v=O only.

Fig. 3.1. Velocity profiles at x =0 for the subsonic flat plate flow at Re=lOe and h= /

for two solid wall - boundary condition treatments (0: Osher, 0 . van Leer). 32
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Using the careful boundary condition treatment, for both schemes we perform an experiment with
h- and Re-variation, using again the first-order accurate discretization. Numerical results obtained are
given in fig. 3.2. The results show the superiority of Osher's scheme, in particular for high mesh Rey-
nolds numbers. The deterioration of van Leer's scheme with respect to Osher's scheme which occurs
in fig. 3.2b for increasing Re, is in agreement with the analytical results presented in section 2.1.

All numerical results presented hereafter were obtained with Osher's scheme only.

16 32

/&
u/u - . u/u2 i se/u.

a. h-variation with Re= 10 (0 Osher, 0 : van Leer).

4 

7

GA . 6 .

"/us U/Uf

b. Re-variation with h = 1/32 (left" Osher, right: van Leer).

Fig. 3.2. Velocity profiles at x =0 for the subsonic fiat plate flow (-: Blasius solution).

3.3. Monotone higher-order accuracy
To evaluate our monotone higher-order accurate scheme, we consider the supersonic flat plate flow.
At first, we evaluate monotonicity, and next higher-order accuracy.

For monotonicity, we compute the Euler flow solution on the 80 X 32-grid given in fig. 3.3a, using
the tc= 1/3-scheme with and without limiter. Numerical results obtained are given in fig. 3.3b. The
results clearly show that the limiter does what it is supposed to do: making the solution monotone.

For higher-order accuracy, we compute on the same grid the Navier-Stokes solution, using now the
limited x=1/3-scheme and the first-order scheme. A comparison is made with the experimental
results from [31. The results, given in fig. 3.3c, clearly show the need for higher-order accuracy. The
first-order accurate surface pressure distribution lacks the plateau in the pressure distribution, which
indicates that its solution has no separation bubble (i.e. no separation and no re-attachment). In
agreement with the experimental results, the limited higher-order accurate surface pressure distribu-
tion does have a separation bubble. The quantitative differences still existing between the limited
higher-order and measured surface pressure distribution must be due to uncertain influences in both
the experiment and the computation. (As far as the experiment is concerned, this might be crossflow
influences, non-observed though influential turbulence, some slight heat transfer through the wall, and
so on. Concerning the computation, this might be for instance the neglect of temperature dependence
in the diffusion coefficients.)
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a. Finest grid applied (80 X 32).

b. Inviscid surface pressure distributions
( limited ic-L, 0 non-limited _=-_-).

c. Viscous surface pressure distributions .-

o limited K= , : first-order,
: measured).

Fig. 3.3. Results supersonic flat plate flow on oblique grid.

3.4. False diffusion
It should be noticed that by presenting for the supersonic flat plate flow, besides the viscous solution
(obtained with the limited K= 1/3-scheme) also the corresponding inviscid solution, insight was given
about the amount of false diffusion present in the viscous solution. The fact that the present method
is hybrid in the sense that it can be used for both Navier-Stokes and Euler flows makes it easy to do
this investigation. Omitting this investigation for the supersonic flat plate flow, when applying a com-
monly used rectangular grid, such as for instance the 80 X 32-grid shown in fig. 3.4a, leads to a viscous
surface pressure distribution which seems to be very close to the experimental data (fig. 3.4b). How-
ever, the corresponding inviscid distribution indicates that this good resemblance is absolutely fake
(fig. 3.4c).

3
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a. Finest grid applied (80 X 32).
-4"s 0o.S

b. Viscous surface pressure distribution.,;
(0 : limited icK , 0 : measured).

A. CONCLUSIONSc. Inviscid surface pressure distrihution - .'
(0limited =7 ,: measured). -

Fig. 3.4. Results supersonic flat plate flow on rectangular grid.

4.. CONCLUSIONS

Theory and practice show that Osher's scheme leads to a more accurate resolution of boundary layers
than van Leer's scheme. The difference in accuracy becomes larger with increasing Reynolds number.
Already for rather low Reynolds numbers, the difference is such that, for engineering purposes,
Osher's scheme is to be preferred above van Leer's scheme. An accidental circumstance is that Osher's
scheme needs no special care in the application of solid wall - boundary conditions, whereas van
Leer's scheme does. (To avoid, when still using van Leer's scheme, that there is some rather low Rey-
nolds number above which the flow solutions are insensitive to Reynolds-variation, only the Euler
boundary condition should be imposed to the convective part.)

It is important to investigate the reliability of any computed Navier-Stokes solution with respect to
the numerical errors in the discretization of the convective part. The present code allows an easy
check of false diffusion: the same code can be used for both viscous (l/Re>0) and inviscid
(I/Re 0) flow computations.

The discretization method is parameter-free; it needs no tuning.
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NORMAL REFLECTION TRANSMISSION OF SHOCKS WAVES ON A PLANE INTERFACE
BETWEEN TWO RUBBER-LIKE MEDIA
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Technical University of t6df, Institute of Construction
Engineering 1-32, Al. Politechniki 6, 93-590 ODZ 40,

POLAND

SUMMARY

Using a semi-inverse method proposed by Wright [1] a normal reflection
and transmission of a finite elastic plane shock wave, at a plane interface
of two rigidly coupled rubber-like elastic solids is examined. It is assumed
that the material solids in front of the shock wave are unstrained and at
rest. It is found that, depending on the material properties, the reflected
wave is either a single simple wave or a shock wave; the transmitted wave
is always a shock wave.

INTRODUCTION

The equations expressing balance of momentum for differentiable fields
(stress and velocity) or in the case of the discontinuity surface Z rep-
resenting a shock wave are given by (la,b), respectively.

Tim, = PRu, [Ti ]NC = -PR Vui], (lab)

where T.i - the first Piola-Kirchoff stress tensor, ui - particle veloc-

ity, PR - the density in the reference configuration BR, V - shock wave
speed along the normal, N - material unit normal to the discontinuity sur-
face. The dot and comnma notation signify partial differentiaticn with respect
to the time and coordinates, respectively. The bold square brackets indicate
the jump in the quantity enclosed across Z. {x _ and {x.} are the Cartesian
coordinates of a particle in BR and B, respectively. The jump conditions
on Z for deformation gradient and velocity are given by

[x i] = HiNa, [ui] = -HiV, (2)

where H. - amplitude vector of the jump.1

The strengthof the shock wave is defined by

m =v H-Hi , and Hi 
= mdi, (3)

where d. - vector of polarisation.1

The equation of motion and the compatibility condition in the region
of the simple wave are given by

22
(Q!j - P 6) = 0, Ux 8 + u N8  0 (4)

where Q = n= N N a - de-
e Qij - Qkj k Qij =  iajN a ' iaj8 ax ax '

notes the internal energy per unit mass in B' Q Qi are the components

of the acoustic tensor and the reduced acoustic tensor, respectively, the
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prime indicates differentiation with respect to A - simple wave parameter,

U denotes the normal speed of propagation. For expression (4)1 to have a

non zero solution in u: it is necessary that
3

det (Qj - PR U2 = 0, u' = krj, (5)

where r. is the right proper vector of the reduced acoustic tensor, k -

arbitrary parameter. Assuming k = U in (5) we obtain

U. = Uf(xi )rj, x. = -f(xi )r . N (6)

These are the ordinary differential equations for the deformation gradient

and particle velocity in the region of the simple wave. They can be solved

with the initial conditions taken from the region of constant state. The
right proper vectors can be determined exact to an arbitrary scalar func-

tion of the deformation gradient f(xi).

INCIDENT SHOCK WAVE

Consider an unbounded medium consisting of two elastic half-spaces of
different material properties, joined along the plane x2 = 0. Suppose that

a plane shock wave of strength m0, unit normal N = (0,-i,0) and polar-

isation vector d = (0,0,1) propagates in the half-space x2 > 0 with

speed V (Fig. 1). Such a wave has displacement component in the x3 di-
03

rection only. The material regions 0, 0 ahead of the incident shock wave

are unstrained and at rest and are compatible with the interface conditions.

Pu=O

P _ 0 No ® 0L),U() PM __

Bnp V= n

X2  X2

Fig.l. Incident shock wave Fig.2. Assumed shock reflection-
transmission pattern.

The jump conditions for deformation gradient and particle velocity are
given by

311



[x3 2] = (X32)B= -mo ,  [u3] = (u3) = - m0Vo, (7,8)

where m° = H - incident shock wave strength.

Both material solids are isotropic incompressible and are defined by
the constitutive equations proposed by Zahorski [3].

W(II,12 ) = PRO(III 2 ) = C (I1 - 3) + C2(I2 - 3) + C ( - 9), (9)

where 11,12 - invariants of the left Cauchy-Green strain tensor B and

C11C2,C3 - elastic constants.

Using the momentum conservatioon law (1)1 we obtain an equation for the
shock wave speed 2

v2 = c_ (1 + pmo), (10)

PR

where c2 = 2(C1 + C2 + 6C3) > 0; = 4C3c
- 2 > 0.

For real elastic materials constants n and c are positive. The
squared speed of the shock wave is a quadratic function of the shock wave
strength. If the wave propagates in the medium which is unstrained and at
rest, the results are independent of the direction of propagation and pola-
risation. The state behind the propagating shock wave (region 1) is now
completely specified by the shock strength m . Eqs. (7,8) determine the
deformation gradient and the particle velocity

(x =)B = 1 ; u = (0,0,u).
v

For the convenience we denoted here (x32) = v, (u3) = U.

REFLECTION-TRANSMISSION PATTERNS

When the incident shock wave strikes the irterface x2 = 0, part of
it is reflected and part transmitted across the interfaces, in a form of
reflected and transmitted waves. We assume that both reflected and trans-
mitted waves are simple plane waves, travelling in the direction of the x 2-
- axis away from the interface. In some cases the assumed reflection-trans-
mission pattern may fail the admissibility test, the pattern must be then
modified to include shocks. Both shock and simple waves are given by one
parameter family of functions. It is also assumed that the state I behind
the incident wave and the state 3 at the interface are connected by means
of a sequence of one parameter families of reflected and transmitted waves,
and constant state regions. The analogous connection exists between states
6, 3. The constraint of incompressibility restricts the propagating waves
to transverse waves only. In general, two such simple waves families in
every material are required. This means that there are four free parameters,
with six interfacial continuity conditions for velocity and traction to be
met. However, solution may exist in particular cases as presented here. We
have chosen the coordinate system such that the direction of polarisation
given by unit vector d is parallel to x3 - axis and the motion is re-
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stricted to x3 direction. It appears that for this case the reflected and

transmitted wave are single simple waves (regions 2, 2, Fig.2). The wave-
lets A = const of the reflected wave are parallel planes with normals
N = (0,1,0); the wavelets u = const of the transmitted wave are planes
ith normals N = (0,-l,0). The reflected wave propagates into the just

fixed state (region 1); the transmitted wave propagates into the "zero"
state (region 0). All remain regions indicated in Fig.2 are regions of
constant state. The reflection-transmission problem reduced then to an in-
itial boundary value problem for differential equations governing the vari-
ation of the deformation gradient and velocity in the region of the simple
wave. The problem now is to fit these waves so as to connect the states at
the interface (region 3 and 3) that are compatible with the interfacial
cocditions, with the states of region 1 and 0. The deformation gradient
and velocity in the regions 2, 2 are of similar to (11) form. Since the
components ni  (and ni) of the normals referred to the present configu-

ration B remain the same: ni  N. (n. N.), the acoustic tensor Q .
assumes a simpler form:

Qj = a for i 1,3, Q. 0 for i = 2, (12)

1i Ri2j2 1)

Q = 0 for i * 3 and Q aR3232 (13)
13 33 R 2*

The simple form of the acoustic tensor, leads to the propagation con-
dition (4)1 for simple waves reduced to a single equation for reflected

and transmitted wave
(a3232 U2 )u, 0, (a 3232 2 = 0. (14)

The characteristic root U = is a real single valued function of
3232

v, and its represent the speed of the simple wave

U = c[P_ (1 + 3qv 2 (15)

the corresponding characteristic vector function u' is given by

u" = (0,0,f(X)) (16)

where f is an arbitrary function of the wave parameter A. Any particu-
lar choice of f affects only the parametrisation of the field quantities.
Analogous for the transmitted wave.

The differential equations relating the particle velocity and the de-
formation gradient in the region of the simple wave is obtained form the
compatibility condition (4)2. We have in regions 2, 2, respectively

Uu" + v, = 0, K" -v" = 0 (17)

where U is given by (15). It is convenient to assume f = -U and fU.

From Eqs. (16), (17) it follows that

in region 2: u = -U, v = 1, (18)

in region 2: u = U, v = 1. (19)
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The deformation gradient and velocity are assumed to be continuous through-
out regions 1, 2, 3 and throughout regions 0, 2, 3 (Fig.2). Thus the in-
itial values for differential equations that describe region 2 are the con-
stant values of region 1: u(O) -m0V , v(O) = -m , and the initial values

for these equations in region 2 are the constant values of region 6: u(0)
= v(0) = 0.

Integrating Eqs. (18), (19) we obtain

A
V(A) = A - mO , u(A) = - fU(A)dA - moVo, (20)

0
P

v(P) = P, u(p) = X U(V)dp. (21)
0

There are three conditions for stresses and one for velocity to con-
sider at x2 = 0:

Ti2 = Ti2 for i = 1,2,3, u = u. (22)

On the part of the interface which is situated in front of the incident
shock three sections are satisfied identically. The fourth one gives the
relation between the static pressures of regions 0 and 0 across the in-
terface

T > p -op 2 (C1-Cl) + 2(C2 - c2) + 6(C3 - C3 ). (23)22 2 O

On the interface between regions 3 and 3 the condition T = T12 is sat-

isfied identically, the condition T T22 is equivalent to (23) and in-

dependent of the deformation gradient. Finally, substitution -of ailj (x i)

into Eqs. (22) leads to two nontrivial equations involving A,P.

T3 3 32 2 => c2 (1 + 2- - = n2(l n n v())v(5), (24)

u( =up.

However, for U(A), (U(p)), to represent a simple wave it is necessary
that it is a monotonically decreasing function of thewave parameter A ,
when A changes from zero to its terminal value A = A. Whether the solu-
tion represent a simple wave depends on the sign of the derivative

dU 3c2n v(A), dU if A . (0'm (25)
dv UPR dv 00

which is negative when A belongs to the interval (0,m,). For this reason
according to (20)1 the final value v(A) must be negative. The requirement

that v(A) is negative falls into two cases (26 a), (26 b).

-m < v(A) < v(A) < 0 for 0 < A < A, (26 a)

v(A) < v(A) < -m0  for < A < 0. (26 b)
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The counterpart of (26) for the transmitted wave are

v(i) < v(P) < 0 for < P < 0. (27)

We recall that each of the propagating wavelets is identified by a fixed
value of the wave parameter A changing from 0 to its final value 1. It
follows that a wavelet A precedes the wavelet A + dA. Consequently, if
the wave speed U is a decreasing function of A changing from 0 to A,
the wavelet A + dA propagates at a lower speed than the wavelet A and
the reflected wave is a simple wave (26 a). If U is increasing with A the
wavelet A + dA travels faster than the wavelet A and in due course a
shock is formed (26 b). It may happen that U is not a monotone function-of
A. If such is the case, the reflected wave may be formed by a combination
shock and simple wave.

We modify the solution pattern in case (26 b) assuming now, that the
reflected wave is a shock propagating in direction N (Fig.3)

B_ _ 1_ _ (12 BB '^

UP dV..) 2BB0 A

Fig.3. Shock reflection-transmission patterns

Equations of motion (1)1 are now replaced by jump conditions (2) connecting

the corresponding quantities in region 1 and 3 across the wave. The con-
stant state ahead of the wave is given by (7), (8). We denote the constantBB
values of the region behind the wave by u ,v . Thus the jump of the de-
formation gradient and velocity across the wave are:

[v]= vB + m o, [u] = uB + moV O. (28)

Eliminating the jump of velocity, from equation expressing balance of mom-
entum on the discontinuity surface, we obtain the equation fcr th reflected
shock wave speed: 2

V2 = c (1 + n((vB)2 - v Bm + mo)). (29)PRo

According to Lax [2], for (29) to represent an admissible shock it must al-
so satisfy a stability criterion:

U F 5 (30)

where UB and UF is the characteristic (acoustic) speed (15) in the ma-
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terial region behind and ahead of the shock, respectively. Thus

B 2 2 2. B 3~ 2  F 2 c 2
(U P) (1 3(v ); (U F) - (1 + 3m 0). (31)

03R

From (30) it follows that
3B)2 >(B?2 -Bm 2 2

3(v)+ m2 > 3 2  (32)

and the stability criterion (30) is satisfied for arbitrary positive value
of the incident shock strength m° > 0 if

v B< -m or [v] < 0. (33)

Amplitude vector of the reflected shock is given by (34). The jump of the
deformation gradient component is negative (35). For this reason d3  must
be equal -1. This means that the directions of polarisation for incident
and reflected wave are opposite.

H = md = (0,0,md3 ), (34)

[v] = md 3N2 = md3 < 0 > d3 = -1, (35)

[u] = -md3 V = mV => [U] > 0. (36)

Constant state region behind reflected shock wave is described by
B B

v = -m - m, u = mV - m V . (37)

An analogous analysis for region 2 shows that the transmitted wave cannot
be a simple wave. According to interface compatibility conditions the com-

ponents vB  and vB have the same negative sign. The assumption that- re-
gion 2 is a shock propagating in direction L = (0,-l,0) into region 0 of
"zero" state leads to the following equations:

= ma = (0,0,md3 ), (38)
-B =[v] = md3N2 = -it < 0 if d =1,

u [u] =-Wd3  = -mV < 0 (39)

where V is the shock speed and m is the transmitted shock strength.
-2

2 ( + (vB)2 ). (40)

Since the characteristic speed calculated in region 3 and 6 is

-2 -2
(B2 c (B2 (6F)2 c

( - (1 + 3n( ) ), () = I
PR PR

the stability criterion (30) is always satisfied. The results presenftd here
were obtained under assumption that the system (24) has a- solution. The
question to be considered now is whether a combination of the parameters
defining the two materials and the incident shock is possible for which
such a solution exists.
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REFLECTION-TRANSMISSION SOLUTION

Let Us Consider a case (26 a) when the reflected wave is a simple wave
and transmitted wave is a shock. The terminal values of the simple wave are
given by (41) and the constant values of region 3 behind the transmitted
wave are given by (39)

v(A) m - m, u(A) = -r U(A)dX - moV o. (41)
0

Substituting Eqs. (39), (41) into Eqs. (24) we obtain two equations for two
unknown values of parameters A,m.

2 2
c2(I + n(A - mo)) -m

. 2(i + ^2)

(42)

mV = f U(X)dA + m V •

0

Let us consider the case when both waves are shocks. For convenience
in calculations, we have assumed that d has opposite direction as follows

from (35). The parameter A must be replaced in (42)1 by m -the reflected

shock wave strength and (m - m ) replaces in this equation (A - mo).

mV= mV + m 0 V . (43)

We can use (43) and (42)1 with this modification to obtain unknown values
of the reflected and transmitted shock wave strength m,m.

PARTICULAR CASES

The shock is completely transmitted if m = 0 or A = 0 and m 0.
For equal mass densities in both materials we obtain

V = Vo, m =m (44)

provided the incident shock and the combined materials satisfy the condi-
tion:

.2 2
M C -C (45)

4(C 3 - C3)

Unfortunately, the possible value for mno  is outside of the admissibility

interval. In cases considered here transmission is always associated with
reflection and reflection without transmission is not possible.

NUMERICAL CALCULATIONS

A numerical analysis is conducted for six media composed of two-differ-
ent kinds of rubber. The sets of values for three kinds of rubber are given
in [4], they are: I material C1 = 0.64, C2 = 0.09, C3 = 0.07, 11 ma-

terial C1 = 2.14, C2 = 0.13, C3 = 0.04, III material C, = 3.52, C2 =

= 0.00, C3  0.25. The constants are expressed in KG/cm2 . For each of

the following material combination A,B,C (Fig. 4a) and material combina-
tions: D,E,F (fig. 4b) exist a real positive solutions for (mA) and
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Fig.4. Components of the deformation gradient as function of m:
(a) behind the reflected and transmitted shock, (b) behind
the transmitted shock and reflected simple wave.
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(m,m), respectively, as a function of m . The results are displayed in

Fig. 4. Components vB and B of the deformation gradient in the region

behind the transmitted and reflected shocks are plotted in Fig. 4a as func-

tions on the incident shock parameter m for combinations A,B,C. compo-

nents B and v(A) of the deformation gradient in the regions behind the

transmitted shock and reflected simple wave are plotted in Fig. 4b as func-
tions of m for combinations D,E,F. The graphs on both Figures shows

that the curves intersect for some value of m . Thus different material

combinations are possible for which the transmitted (or reflected) waves are
characterized by the same parameters while the corresponding reflected (or
transmitted) waves have different parameters. The graphs in Fig.4 also show
that m > m when the reflected wave is a shock and m < m when the re-

flected wave is a simple wave. The strength m of the reflected shock is

comparatively small, and the range of variation of the reflected simple-wave
is also small. The type of reflected waves depends on the material proper-
ties of the composite medium, and through which of the two materials the
incident shock propagates. In combinations A,B,C the reflected wave is a

shock. In the reversed combinations D,E,F the reflected wave is a simple
wave.
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SUMMARY

A general system of quasi-linear first order equations written in the
divergence form and constrained by a differential inequality (the second
law of thermodynamics) is analysed. Compatibility conditions are
presented. In the BV-space, which is a subspace of those regular
distributions that are represented by functions of bounded variation, a
weak solution to the system is defined. In the proposed definition,
written as a kind of a variational inequality, the system of equations and
the thermodynamic admissibility condition are accommodated. The
application of this concept in the investigation of uniqueness of an
admissible weak solution to a Cauchy problem in the BV-space is shortly
presented.

INTRODUCTION

In the paper we shall be concerned with a general system of first

order partial differential equations, written in the divergence form

S(U) + Div f(U) = B(U,t,x). (1)

Such systems, called systems of balance laws, are common features of

Individual theories of continuum physics. Particular constitutive

relations characterizing the medium In question hav3 supplied the system

(1) with the explicite function relations between f0 , the flux f, the

source term B and a vector field U. Here we assume that those relations

are expressed by smooth functions. We should add at this stage that in a

number of practical situations It is possible to choose the function fo as

the identity map ; then further calculations simplify. The variables (t,x)

vary in some domain P & (O,T) x Rr, and the vector field U is a map fromP

Into V g Rm, in general m o n > 1.

The operator Div denotes the differantiation with respect to the

spatial variable x. One should notice that in particular problems x may be

the material variable, often denoted by X or y. Of importance Is that t

and x are regarded as independent varalables in the description.

320



In order to make the notation more compact, we may introduce the

(n+l) D divergence operator div acting on F: D -> m. n+ , defined by

F(U): = (o (U),f(U)) (f (U),ff ( .U)... f(U)),

as follows

8'0 (U)  D Iv ff(U) =- + f + . - = div F(U)

Then the balance laws (1) can be written as follows

div F(U) = B(U,x), with x:= (t.x) . (2)

Physical observations show the irreversibility of processes in

nature. Since solutions to the system of balance laws (1) have to describe

real processes, in the sense they may take place in the nature, one needs

a physical criterion which will rule out unrealistic processes. That

criterion is the second law of thermodynamics, commonly written as the

unilateral differential constraint

a
-- 71(U) + Div k(U) r(U,t,x). (3)

It states that within the medium and during any process, i.e. along any

solution of the system (1), the production of the entropy must be

non-negative. Here ??(U) represents the entropy function for the medium

described by (1), k(U) is the entropy flux function (the entropy. efflux,

exactly), while r(U,t,x) represents the entropy supply term within the

medium. Defining the vector function K: D -> R" 1 by

K(U):= (7 (U), k(U)= (7(U) ,k' (U),k 2 (U),...kn(U)),

we write the above constraint as

dlv K(U) a r(U,x). (4)

Before consequences of (3) will be consider, we should point out that

the system of balance laws (1) as well as the inequality (3) are the local

counterparts of integral balance laws and an integral inequality,

respectively, written for the whole material system considered. The local

forms have been obtained by a localization procedure in which the

essential assumptions are: the Lipschitz continuity of the field vector U,

jointly in t and x, and the conjecture, that the integral laws have the

same forms for the whole material system as well as for its every

subsystem.

Hence in the above expressions the differentiation as well as

solutions to the system are understood in the classical sense. In the case

of non-smooth processes, when the Lipschitz continuity of the field U is

lost, the local forms of the laws and the inequality are nonderivable from
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the integral forms. Consequently we are free in choosing their forms, in

particular weak forms are acceptable.

The entropy production inequality is a constraint on particular

constitutive relations appearing in (2) and (4) through the forms of the

functions F and K. Hence to be compatible with the second law we ought to

find conseqences of the constraint.

The following result, obtained with the help of I-Shih Liu's theorem

(101 and Boillat's approach [1] applied to (2) and (4), gives the required

consequences:

LEMMA 0. The system (I) is compatible with the inequality (3), i.e. every

Lipschitz continuous solution U: P -> V of the system (2) satisfies the

constraint (4), iff

a) the constitutive functions 77, k and f'., * 0,1 .. ,n, are such that,

there exist a Lagrange multiplier-valued vector U Fm , as a function of
UI '.U = W(U) and a f unctionK: R->n+ R ( 7 (o() ( .,n(U))

such that

(V U&)Tu = V k , and f& = - V k- , = 0,1... n, (5)
U U U

b) the source term B and the supply term r are such that

U'B(U,' ) - r(U, ) 2 0.t (6)

For the proof of that result consult the more general approach

presented by Ruggeri and Strumia [12], when the case of a covariant vector

field was considered (cf.also [2,11]). In their termonology U is called

the main field.

The both differential relations (5) imply that the potentials k are

related to k by a Legendre transformation

k =k & Tf . (7)

Moreover, the change of variables U W(U) transforms (2), at least

locally (where Vj1W is nonsingular), into a symmteric system of balance

laws in

div (V7-K) - B = 0. (8)

which forms a symmetric hyperbolic system (in the sense of Friedrichs), if

the matrix A := VT V- T is positive definite.

We should notice that for a particular system (1), in which fo is the

identity map, we have from (5)

U 7U (U), (9)

and the strict concavity of the entropy function I?(U), or likewise the
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strict convexity of the potential kDas a function of U, is sufficient for

the positive definiteness of A . We see that in this case thanks to Lemma

0, the compatibility of the system (1) with the thermodynamic inequality

(3) is enough for (1) to be written as a symmetric hyperbolic system in

the new variable U=Vu71, provided the entropy function is strictly concave.

It means that In the class of first order systems of balance laws of the

form (1), with fp(U) = V and with strictly concave entropy functions

appearing in the unilateral constraint (3), the hyperbolicity and the

symmetry are equivalent to the compatibility of (1) with the second law of

thermodynamics.

COROLLARY. Any Lipschitz continuous solution of the system (2) satisfies

automatically an additional balance law

div K(U) = U-B(Ux) .0 (10)

The last result means that the system of balance laws (1) (or

equivalently, (2)) possesses the suplementary balance law in the form of

the balance law for the entropy (10). On the other hand, in the

thermodynamics (6) is called the internal dissipation Inequality. Hence it

is natural to call any thermodynamic system non-dissipative, if the

quantity p , defined by the left-hand side of (6), vanishes identically in

U; for p the name an entropy production density is reserved [9]. Besides

the system of equations of ideal (barotropic) compressible fluid the

system of equations of finite thermoelasticity, both under adiabatic

conditions, serve the examples of a non--dissipative system provided the

absolute (thermodynamic) temperature is Identified with the empirical one.

For example, for the latter system we have

T T
U =(p 0 v, F, E F = (U, -S, -v 0 1 -vS) , K =( . 0),

= (-v, -S, 1) 0 - 1,K =(O n 0 v 2  S" F - E, -vS )

2where E = o (0.5v + e(F,7)) and S = 0oVFC , 0 = ' 00V 17, with E as the

internal energy function. Here v is the particle velocity, F - the

deformation gradient tensor, Po - the reference mass density; I? is the

specific entropy per unit mass and S - the l t Piola-Kirchhoff stress.

We would like to point out that dissipative hyperbolic systems appear

in thermodynamics with internal state variables, where dissipation results

from a nondifferential type of a viscosity. It is manifested by a

nonhomogeneity of the system (1), and may follow from non-elastic

properties of the matter, for example (cf. [7,9]).
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It is wortwhile to point out that in a dissipativeless continuum

medium the entropy production may occure. However, it may only happen in

non-smooth processes and on n-dimensional hypersurfaces of discontinuity

of solutions. In such a case we face with a concentrated entropy

production [1-4,9,11,12], If a concentrated production of entropy appears

in a non-smooth process, it cannot be negative, due to the thermodynamic

principle. This observation prompts us the form of thermodynamic inequality

for the non-smooth vector field U as follows

div K(U) ? UB(U,x). (11)

This form plays the role of an admissibility criterion for non-smooth

solutions, because the second law of thermodynamics has been already

exploited and is not able to rule out all nonrealistic weak solutions of

the system of balance laws. The inequality should be regarded in a

generalized sense, e.g. in the sense of distributions or measures. To

explain what we mean by this we have to characterize the space in which

weak solutions to (2) will be defined.

WEAK SOLUTION IN THE BV-SPACE

Let '(P) be the space of distributions, where P is open in f . In
'(P) we are selecting b'(b)reg the subspace of all regular distributions

and D'(0) [o-the subspace of all zero-order distributions. It is well-
[oil

known that L () aj'(P) Cref o'r each
loc reg (01[O and uo ~ ~ Iforec

compactC-.- there exists K > 0, such that for V 1 r Co (P), supp o c.4

4,1 <u,0>1 s KI J 1. = K sup( VKl

The characterization of BV(9,IR) is as follows: U:5-> IRm belongs to

BVD m ) if each component function Ua , a =1,2 .... m, is an element of

BV(P), where

BV(P):= fu e '() : u (12)

1 e~2 D1 u E >'1(P)[o)

where D u means a first order distributional derivatives of u. Hence the

existence of a matrix-valued Borel regular measure p u of a locally

bounded variation (i.e. locally finite matrix-valued Radon measure)

follows, such that for every 9 E Co()

fu grad 4 d ;n* =_ d p grad u (13)
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We shall write grad u for the measure P gradu If grad u is absolutely

continuous with respect to the Lebesgue measure An+1 , then due to the

Radon-Nikodym theorem we can write grad u = G L n , for some matrix-valued

measurable function G e Lio (P). Of importance is that for u E BV(P), inI oc
general, grad u is not absolutely continuous with respect to A ;n It is

often concentrated on an n D hypersurface, on which u is discontinuous.Hn n is

Hence the concept of the n D (surface) measure H well defined in R n Is

essential. Due to the known properties [5-6,13-14] for any U E BV(P,Rm )

the splitting

.P= c(U) u r(u) u A(U) with Hn(A(U)) . 0 (14)

is possible, where C(U)UF (U) forms the set of regular points of U, i.e.

the union of two sets: C(U) - the set of all points of approximate

continuity of U and r (U) - the set of all points of approximate jump

discontinuity of U, called the jump set, with Ani ( (U) = 0.

Other properties of the class BV can be found for example in 16, Sec.

3.23] together with the evidence of the importance of sets with finite

perimeter, which are characterized by the fact that their characteristic

functions are elements of Bv(In+R ). Since on those sets functions from BV

possess their traces, formulating of a version of the Green-Gauss theorem

is possible.

Now with the help of F and K, we define the main concept; It is a

function of two vector variables given by the formula

S(U,V) : - (K(U) - K(V)) + V (F(U) - F(V)), (15)

where V = W(V) Is associated with F and K by (5), i.e. V V. F(V) = V- K.

Hence we get immediately

S(u,V) =K(V) -I(U) - V FK(U)(V -U) : S(V,U). (16)

The properties of the function S are fundamental in the derivation of

an evolutionary inequality for the stability analysis [2-4,7,8]. From (16)

follows that each component of S(U,V) is of quadratic order in the

difference U - V, Moreover the gradient of V VvF(V) contracted with an

arbitrary vector d E R n+ is a symmetric tensor, and consequently the

tensor V v(V) V vF(V)d is symmetric. Now we introduce the main notion.

DEFINITION. A bounded (H -a.e.) function U = BVO, m ) is said to be a weak

solution to the system (2) if for any vector C E IR and a set i with

finite perimeter, the following inequality holds:

div SIU,C)e) S - (W(U) - W(C))" B(Ix)d A n* L (X). (17)
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We should point out that the left-hand side of (17) Is a scalar Borel

regular measure of the setf_, for the superposition U -> S(U,C) is an

element of BV(P,IRm ). The following results support our definition.

LEMMA 1. If U is a weak solution and the function W is onto Rmthen (2)

and (11) hold in the sense of measures, i.e.

div F (U) (E) =JB(U,x)d .n .~ (18)

div K(U)~ Q) f U B (U, x) d X'()(19)
1

for any set F with finite perimeter.

Proof. In view of (17), we have

0 adiv S(U,C)(f) - J (W (C) - W (U) ),B(U. x) d.n (X)

=-(div K(U) () - W(C)- B(U~x)d .~ n, 12, +

+ W(C) -( div F(U) Q) JB(U~x)d , n+1I (X) )

Now, since the map W is surJective, W(C) may take any value. Consequently

(18) and (19) have to holdxil

COROLLARY. If F'(U) is the jump set of U, then for any C E.

S(U n, C)(i) n :5S S(Un .C)(xi) n, Hn - a. e. on r (U) , (20)

where n is the (Federer) normal vector to r (U) at x, while U_ and U n are

distinct one-sided approximate limits of U, when the point x is approached

from either haifspace determined by the hyperplane with its normal n. This

Inequality splits Into the Rankine- Hugoniot relation

(F(U n F F(U~n )) n = 0, (21)

and the entropy Increase inequality

(K(U n) - K(U_ n))(y)-n ? 0. (22)

Proof. From the known result (cf.[13, Th. 15.2] ) it follows that there

exists Borel setrc Rn I of class r such that r (u) =uwhere H0 n$

0. Since )Ln I (Cnt) =0 for any Borel set, from (17) we get

div S(U,C) F 0.

Using the Green-Gauss theorem, we obtain

dIv S(U,C)PE) = f( S(U nC) -S(U_ n'C) (A)n dHn(, s 0.
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The arbitrariness of 6 and the representation of F (U) imply (21). To con-

clude the proof we substitute S from (15) into the last inequality, to get

(K(U ) - K(Un ))(x). n + W(C)(F(Un) - F(Un )(x). n s 0

Hence (21) and (22) follow.O

If we normalize the normal vector to r (U) at x In the space-time so

that n = (-sN), with N'N = 1 ( with N as the space direction and s as the

speed of propagation of the spatial surface of discontinuity of U, e.g. a

shock wave), then the above Inequality can be rewritten in the form

-s(f (U n) - f (U )) + (f(U ) - f(U n)) N = 0, (23)

s(?(U n) - 7(Un )) - (k(U_n ) - k(U n))'N 0 (24)

The proposed definition Is supported by the following result.

LEMMA 2. If U is a bounded element of BV, then conditions (18) and (19)

imply (17), i.e. a necessary and sufficient condition for a Hn-bounded

function U from BV to satisfy the system (2) in the sense of measures, and

the condition (11), both in the region P, is that (18) and (19) hold.O

(The proof is similar to that pesented in [8].)

To give the concept of a weak solution to the Cauchy problem we use

the notion of symmetric mean value U of U from BV [13,14]. Note that at

regular points 2U = U + Un" We say that U from BV(P,RM) is a solution of

the Cauchy problem

div F(U) = B(U,t,x), U(O,x) = g(x), x ER n, (25)

if U is a weak solution to (25)1 and

lim U(t,x) = g(x), Xn - a.e. onn, t > 0.
t->O,

Note that the initial condition cannot be satisfied as an equality,

for the function U is defined on the open set.ID (0,T) x Rn.

The concept of weak solution to (25) was used in [81, when a

uniqueness result In BV was shown. It has been done by the method of a

parabolic regularization of the initial system (1), i.e. instead of the

function f In (1) into another one, namely f'(U,GradU) = f(U) - r1 GradU,

where 9 is a positive parameter, was substituted. It was show that the

unique weak solution has to be a limit, when C tends to zero, of a

sequence of regular (classical) solutions to the parabolized problem. The

method used in [8] requires that the limit solution has a regularity of a

function from W o. In the next paper the concept of a weak solution to

the Initial boundary-value problem will be discussed.
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Summary

The work deals with the numerical solution of the system of Euler equations

for the case of 2D steady transonic flows in a channel or through a cascade and 3D
steady trangonic flows in a channel.

The 2D weak solution of the problem is computed by the conservative finite

volume formulation of the explicit MacCormack difference scheme with a nonlinear

artificial dissipative term of second order and a linear dissipative term of fourth

order. The steady solution is obtained by a time dependent method by integrating

t to infinity and using appropriate steady boundary and periodical conditions.

The explicit MacCormack difference scheme in conservation form is used for

computing the numerical solution of 3D transonic flows in a channel.

The presented 2D numerical results are compared with numerical results of

Ron-Ho--Ni in the case of channel flows for M, < 1 and with interferometric

measurements of the Institute of Thermomechanics of Czechoslovak Academy of

Sciences in the case of transonic flows through 8% DCA cascade for upstream

Machnumbers M. < 1 as well as M, > 1.

The presented 3D numerical results of transonic flows in a channel are compared

to numerical results computed by 1D theory and 2D theory.
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1. 2D Steady Transonic Flows in a Channel and through a Cascade

Consider the 2D system of Euler equations in conservation form

Wt + F(W). + G(W), = 0 (1.1)

where
W = col lip, pU, pv, ell,

F = col llpu, pu2 + p, puv, (e + P)u ,
G = col lipv, puv, pv 2, (e + p)VII,

p = (I - 1) [e - 2p( + V 2).

We use dimensionless values of density p = / velocity (u, v) = (ii/ 0 , IZ/ ),
energy per unit volume e = Fl(W22) and pressure p = jj/(W ), t = T6 /C,

where W, (ii, V), Z, , , ii are density, velocity vector, ernergy per unit volume,

pressure, time, sonic velocity; ;Y, is the upstream density etc. and c is the length

of the chord of the given profile. Also x = i/c, y = g/c, z = F/c where Y, W, Y are

space coordinates in the physical plane.

A piecewise smooth function W(x, y, t) is called a weak solution of (1.1) if it

satisfies

JWt2dxdy=-{)Fd - Gdz} dt (1.2)

for every suitable Jordan's curve OD C Q, D = Int 9D, Vt1, t 2 > 0. Let the domain

D be sufficiently small, then we can rewrite (1.2) using the mean value theorem in

D on the left hand side of (1.2) and in interval ]tI,t 2[ on the right hand side of (1.2):

[W(,V, t2 ) - MY, V, t 1)I u = - [ F(xY i)dy- G(xYt)d x (t 2 -t 1 ), (1.3)

(YV) E D, t E]t,t2(, p = ff dxdy. We consider the finite volume formulation
D

of the numerical scheme. The difference scheme satisfies relation (1.3) for each

computational cell (see Fig. 1.1)

Dii -D$)D(2)D$()D (4) , D( ) = (xm,y), pd,, = J Jdxdy.
Dij

A I - f (dy -9dx), (1.4)n DPM

where Wm is the mean value of W in the computationial cell Din; .F, 9 are

approximations of F(W), G(W) along ODi, At t2- t tn+l - tn, m =
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' r-- __________________________ ________

f f dxdy. The steady state solution of our problem has to satisfy the integral relation
D-

(1.4) for W-, 1 
- W- = 0 for all D.. C Q.

To obtain the numerical solution we use the time dependent method. Steady
state is reached by letting t tend to infinity and using steady boundary conditions.

MacCormack's explicit difference scheme [71 in finite volume formulation is used.

The predictor step has the form

.12= WSJ - _tj j (Fndy - dx)
aDiq

= wnj- At -, x) - G'Ij(Y2 -

F,j+I(X3 - x 2 ) - Gj+a(y3 - Y2)-

F (X4 -X3) - (Gy4 -Y3)+

Fj(xl -x 4 ) -G ,(yl - y4)]

= W, - AtRes W,, (1.5a),Uij

where FT = F(W +,1 ), F = F(W,,j+I), F3' = F = F(W'j), analogous for Gk;
AXk = X+i- Xk

, Ayk =y Y+l -YT and =x T' , y ' =yT. A similar form is

used for the corrector step

S-I(in ,+ 1 At

*1 2 P ,ij 'xOD.,

1 [Wn+n n

2 + ,1

Fj+2(X3 - X2) - G 1+*(Y - y2)+

Fj"(X 4 - X3) - Gj1 (4 Y3)

(~lx, - x.) - G n+, y, Y4)

1) 1 At n+1
( Wi n ---- ResWi3  , (1.5b)

where Fij n  F(W,'j). The final value Win+ ' is corrected by an artificial dissipative

term.

Wi = w'7t, + DW1j, (1.5c)
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where
heeDW = DW 4 DWj 

(1.6)

and 7n (1) At a (2) At

51) 52) = O(AtAx 2 ). (1.7)

A similar expression is used in conservative finite volume formulation for DYW j.

Boundary conditions along a profile surface (wall) are treated as follows. We

consider a fictitious computational cell e.g. Dij- 1 (inside a profile) with fictitious

values Fij-1, Gi,j-1. Let

Fi,j-i = -(Fij 4- Fi,j-,), ij2 = -(Gij + Gi,j-,).

Then we can express Fi,j-1, Gi,j-1 and use this in (1.5b) together with (v/u = f'(x),

f(x) describes the profile surface) the following relation which is valid along the

boundary

f Fdy - Gdx F4Ay 4 - G4 Ax 4 = col 10, Ay4 , -Ax 4 ,011 - (1.8)
D .4)DM.2)

.f() () isa ie I 4 ,()

if D' 9 D '. is a line. If D is not a line one has to replace (1.8) by the expression

f Fdy-Gdx= j p4 .col1O, dy,-dx, 0I. (1.9)
4 ) D t) D ')D M )

rij iji , ,j

Pressure p is extrapolated by double quadratic extrapolation or computed using the

relation
= pq 2 /R (1.10)

On
in difference form, q2 = u2 + v 2 , R is the radius of curvature of the boundary
streamline, n is the outer normal.

Periodical conditions are considered in the usual way. For steady state

computation of 2D channel flows we use 1D theory to fulfill upstream and

downstream boundary conditions. For 2D cascade flows all components of W are

considered along the upstream boundary; along the downstream boundary the first

three components of W are extrapolated using W,, = 0 (meaning of s-directionis

given below) and e is computed using the given downstream pressure p2 and

extrapolated values P2, (pu)2 , (pv) 2 . The grid directions in the case of channel
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flows are aligned with the y-direction and the s-direction (approximated streamline

direction), in the case of cascade flows with the s-direction and the pitch direction.

In the next part we present several numerical results. A good agreement of our

results and Ron-Ho-Ni's numerical results for 2D channel flows with M., = 0.675

is presented in [3]. The first part of our numerical results dealing with cascade

flows is devoted to a comparison of our results and interferometric measurements

published in [2]. We can compare our numerical results using lines M = const. not

only qualitatively (shape of lines M = const. and shape of black and white stripes

in the interferogram) but also quantitatively because the sonic line is denoted in the

interferogram by a dotted (broken) line and difference 2.5 strips in the interferogram

corresponds to AM = 0.05 in our numerical results. Fig. 1.2a-f show a comparison

of interferometric measurements and computed results for increasing Mo,. The

downstream pressure for numerical results is observed to be approximately the same

as for experimental results. The same is true for the angle of attack a. Constant

difference AM,. in experimental (e) and computational (c) results is considered

AMo. = Mc - M. = 0.06; M. E (0.91; 1.13).

We can observe the behaviour of the first sonic line (near leading edge) for

increasing upstream Mach numbers in the experimental and numerical results as

well as the appearance of a bowed detached shock wave. The reflection of this shock

wave and the behaviour of the strong shock wave near the trailing edge of the upper

profile is also similar for experimental and numerical results.

The next results (Fig. 1.3a) show the back pressure (downstream pressure)

effect in transonic cascade flows for CKD1 compressor cascade [3], M. = 0.87,

a= 22.82*. The back pressure is considered in relation to p. = pi by constant k:

P2 = k pi (k > 1 for compressor cascade). We can observe, that for increasing k

the shock wave is moving in the direction to the leading edge, the jump in the shock

wave is decreasing and the maximal Mach number on the upper profile surface is

also decreasing. Fig. 1.3b shows a comparison of numerical results of transonic flows

through CKD1 compressor cascade for M, = 0.87, a = 22.82*, P2 = 1 .2 85 pl, using

a Mach number distribution along the upper and lower profile surface computed by

the numerical solution of the full potential equation [4] and by the finite volume

solution of the Euler equations. All numerical results were achieved by an ICL-4-

72 computer using 3000 iterations for channel flows and 1200 - 2000 iterations for

cascade flows.

2. Numerical Solution of 3D Transonic Flows in a Channel

Consider the 3D system of Euler equations in conservation form

W, + F(W), + G(W) + H(W), = 0 (2.1)
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where
W col Ujp, pu, p, ell,

F =col jpu, PU2 + p, pu, puw, (e +p)j,

G col fjpv, puv, pv 2 + P, pvw,(e + p)V 11,

H col I(pw, pwu, pwv, pw 2 + p, (e + p)wtI,

p = (,r- ) e - I P ( U 2 + V2+ W 2) .
2!

(u, v, w) is the velocity vector

In this case a finite method is use for the numerical solution. The cross-section of the

considered 3D channel is oblong (see Fig. 2.1). The governing curve of the channel

is given by x = f, (y), z = f 2(y) and the cross-section is considered to be oblong

with the sides a(y) and b(y), where f1 (y),f2(y),a(y), b(y) r C1 (I), I = 0, YO).

The transformation (x, y, z) - (x, s, z) is used. s is the approximated
streamline direction. Then, system (2.1) is transformed to the following form

W, + F(W)z + G(W), + TI(W), = 0 (2.2)

which is used for our numerical computation. We do not consider grid points on

the walls. Fig. 2.2a-b show a grid used in the cross-section y = yi = j • Ay,

z zk = (k + !)Az + f2(yj). A similar grid is used in the cross-section

x = (i + )I)Ax + fi(yj). Similar to the 2D case we use MacCormack's explicit

difference scheme in the following form:

Predictor step

ijk- ij ,ilj - i~ijk)

As ,~~ j

-At (ikl- I) (2.3a)-E; (H;, - Hl

/-

Corrector step

2.+ 1 j+Wn+ 1 k IA ~ ,+

Ait 1 n Rn+
A ,t& 2 -)211)] (2.3b)

Az 33 4m nl



Win is corrected by an artificial dissipative term similar to the 2D case

WMn+l -n+
1

ijk "ijk + DWnk " (2.3c)

Boundary conditions along the walls are satisfied as in the 2D case of the finite volume
form. Extraplolated values of the pressure p along the walls are computed by double

quadratic extrapolation. The upstream and downstream boundary conditions are

similar to the ones in the 2D calculation.

The presented numerical results are computed for a channel given by

=f 1My) =1[1-by]

z = M2Y) = 1 [1 - a(y)],

a~y) = bly) 2.5

~ 1+0.541-0y/5)] ,yE (5; 10).

Because we have no other suitable 3D numerical or experimental results, we
compare our 3D results with our 1D and 2D numerical results. Fig. 2.3 shows a

comparison of our numerical results using Mach number distribution in the midpoints

of the channel and in the points near the wall with numerical results computed by

1D theory for p2 = 0.45- pl. We can only compare our 1D and 2D numerical results
qualitatively with other 3D and 1D results [1]. Fig. 2.4 shows a comparison of 3D

and 2D results. The 2D ones were computed using cross-section A(x) = a(x) 2, not

A(x) = a(x) as it is used in many cases. Fig 2.5 shows 3D and 2D results mapped
by lines M = const., the 3D ones for cross-section z = Z3 (mid-cross-section). We

use an ICL-4-72 computer (with double precission) and 3000 iterations.
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Abstract

We consider a numerical scheme for the nonlinear Euler equations of gasdynamics in 2-D. The
algorithm doesn't use any dimensional splitting. It is a generalization of a scheme, which Vas
developped by Roe for the linear Euler equations. In 1-D perturbations can propagate only
in two directions but in 2-D there are infinite many directions of propagation. Therefore the
algorithm should be able to select the most important directions and to ensure that the scheme
takes this fact into account. In this paper we shall describe some details of this algorithm and
we shall present some numerical results in I-D and 2-D.

Introduction

In this paper we consider numerical schemes for the Euler equation of gasdynamics

atu + & F(U) + &YG(U) = 0, (1)

where
U := (p, u, v. p)t,

F(U) (utzp + pa 2
, 0u. ! 4p + u1% u, ua9 V, p0.iu + U(zp),

G(U) (vi9yp + pa 2
a Vv. VYu, 1-YP + V0Yv, pCV + va9p)

p
Here p denotes the density, u and v the components of the velocity with respect to z and y. e
the energy density and p the pressure. For an ideal gas we have the following equation of state

p = (-/ - )(e - 0.5p(u 2 + V 2 )). (2)

Up to now there is no general existence result in particular no convergence result for a numerical
scheme for the Euler equation in two space dimension . On the contrary to one-dimensinal pro-
blems in two dimensions , perturbations can spread into infinite many directions. The schemes
using dimensional splitting don't take care of this fact and there are examples for which they
do not work (see Roe [91). Recently Roe [6land [7 ]has published some basic ideas for schemes
which use the direction of propagation and which work without dimensional splitting. For other
schemes which do not use dimensional splitting in two dimensions we refer to Hirsch et al. [31,
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Colella (1[, Davis [21, LeVeque [41, [5]. Now let me describe Roe's scheme for the linear Euler
equations.

Roe's scheme for the linear Euler equation:

In the papers [6land [7]Roe has developped a numerical scheme for the linearized Euler equation
in 2-D The algorithm is able to select the most significant directions and to ensure that the
information propagates numerically in the same directions as it would propagate physically. The
basic idea of Roe consists in using the gradients of the last time step to approximate locally the
unknown solution by a modelflow of travelling waves of the form

v(xcos(E) + ysin(O) - St)

where v is some smooth function and ( is related to the direction of propagation. Then Roe
constructs a monotone scheme of first order for scalar equations in two space dimensions and
generalizes it to linear systems. In particular the Roe scheme works as follows for the linear
Euler equation

OtU + Pa2 U + Q85 U = 0, (3)

where U is as above,

U 0 0
~~(4)

p 0u
0V 0 pa 0

O = 0 U 5

0 v 0) (5)
00 p

and a = V is the sound velocity. Since for solutions of the form

v(zcoa(O) + ysin(O) - S(e)t)

it turns out that v' is an eigenvector of Pcos(e) + Qsin(O), let us start to compute the eigen-
vectors of coa(0)P + ain(O)Q. They are

P 2  Pa 20

=~~~~~~ ao01-cs 1 Re) I-aain()

a~inO) = sinE) 0~o) ' acose)(6

and the corresponding eigenvalues

A, = uco8O + vain@ + a,
(7)

A2 = -uco.0 - vin0 + a,
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As = ucosO + vsinO,

A4 = ueosO + vsin0.

The first and the second eigenvector are related to acoustic waves, the third one to an entropy
and the fourth one to a shear wave. Roe chooses the following six eigenvectors

R1(0), R,(1 + ), R2(9 + ), Ri(O -- )I R3( 0))R 4().(
2 2

where 4) is an additional unknown parameter. Now let us assume that we have already an
approximation Wv of U at time t, := nAt at the point A of a given triangulation (see Fig.1).

Then we have to describe how to compute wt +1 . Because of the travelling-wave-Ansatz,

for each neighbour point B of A we have to compute RJ,3 k = 1..., 6, e and 4), such that

0

&=I, (8)
k=1

where

01 = 0. 02 = 0 + jr/2, 03 = 0- ;r/2, 04 = 0 + r,0 =E). 0 = 0,

Ck = co$(E), sk = sin(Ok) and rk are the eigenvectors (8). This is a system of eight equations
for the unknowns /lB k = 1,...,60 and 4). Let us assume that it is solvable. Actually by this
special choice of eigenvectors there is an explicit formular to solve it. Then we set

8

WAB := 1/2(wn + w)- 1/2 sign(nB(c()A c): (:)(A- B)r&, (10)
A B ~k=1 (S: k410

where nB is the inner normalvector to the dual mesh (see Fig.l, cell with dotted line) with
respect to B. Then for w' + we define

,,
+

I := W" - At/(All2) (PAB)

B kQtABI

(10) and (11) define a two-dimensional upwind scheme of first order, which is monotone and in
conservation form for scalar linear equations (see Roe [Gland [7].)
As far as we know there are no numerical experience for this algorithm even in the linear case.
Therefore it remains to test this scheme, to generalize it to nonlinear systems and to compare it
with other existing schemes. Therefore we started tc do this. The most important question is
how to generalize it to nonlinear systems. We have tried two different ideas which we are now
going to describe.

Generalization to nonlinear systems,first version:

Consider a local part of the grid (see Fig.I). In order to update the solution in A for the timestep
t0+1 we have to take into account the points Bi, i = 1, .. ,6. Let me describe the procedure for
BI which we have to repeat successively for Bi, i = 2, ..., 6. In order to get an approximation
for Vton in fornmular (9) we use the values of wn in the neighbour points B 2 , A, BO of B 1 . For
defining the eigenvectors rA(9), k = 1, ... 6 we need u, v,p and p, evaluated at a suitable point or
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some meanvalues of w',, w", , w' -, . In our case we choose the Roe-mean-value (see 181) of
n ' WA which is defined for instance for u as

Uman = V (PB , + V1P2A)

\1APBJ + \N(PA)

We solve (9) in order to get 13B, k = ,...G. 9 and 0 using an explicit forinular. Then we compute
WAD as defined in (10). In the same way we treat the other points B,,i = 2,....G. The new
value w + 1 is then defined as

Wn+j ,,W, _ At/(A.2) D-, (F(A H'
WA A (WAD) (131

Since the eigenvectors change with each B. this scheme applied to a scalar equation is in general

not monotone.

Testproblem 1

Shock-tube problem: As a first testproblem for this version of the 'Roe-scheme' we consider the
flow through a two dimensional tube with one-dimensional Riemann data. The basic domain 0
for our calculations is fQ = (0, 0.3)x(O, 0.1). In particular we choose the following data:

grid : 20z60. Ax = 0.005, Ay - 0.005. At = 0.0025.

Initial conditions:

U0 = 0. V0 = OinD

and

1.0, if !- E (0.0.1), z E (0, 0.015):
o(z Y) - 0.125, ifyE(0.0.1),xE(0.015.0.03);

e(x. y) = 2.5, if 1 E (0,0.1),z E (0.0.015):
e l,= 0.25, if y E (0.0.1). z E (0.015,0.03).

These initial conditions are known as 'Sod's testproblem' (see Sod[111). On the boundary we
use mixed Dirichlet and Neumann boundary conditions.

These data are of I-D structure but we use it as a testproblem for tbh 2-D scheme of Roe. For
the result we expect the functions shown in Fig.2 (see Sod[l1]). The density is plotted against
the length x of the tube. The dotted lines refer to the numerical solution computed with the
Godunov scheme and the solid line to the exact solution. The solution is a shockwave going
to the right-hand side, followed by a contactdiscontinuity and a rarefaction wave going to the
left-hand side.

The results of this scheme are shown in Fig.3, where we have plotted the density p as a function
of z for T=0.15 There arise some problems concerning the stability. After some time iterations
we obtain oscillations near the contactdiscontinuity which increases in time. We believe that

this is due to the fact that the scheme is not monotone (for the scalar equation). Therefore let
us study a second version of this scheme, which avoids this oscillations.
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Generalization to nonlinear systems,second version:

Now let us consider the Euler equations in conservative variables.

BgU + O.F(U) + 8,G(U) = 0, (14)

where
(15)

U := (p, pu, pv. e)', F(U) := (pu, pu 2 + p, puv, u(e + p))', G(U) := (pv, puv, PV2 + p. v(e + p))'.

Again we write the equations in the form (15)

a2 U + P,,U + Q3YU=O ( )

with suitable matrices P and Q.

We consider again a local part of the grid as in Fig.1 . Now in the first step we compute the
local direction of propagation by approximating the discontinuity by travelling waves. Assume
that for instance

p(t, z, y) = po(zcos(O) + ysin(0) - At)

for some unknown function po E C'(R, R) and 0, A c R. Then

8.p = p'cosO, 93,p = posinO

and

tanO = OYp

This gives a condition for 0 if 8ip 5 0. Otherwise we choose 0 = or the solution is smooth
and the approximating solution should not depend on 0.

Now let me explain the local linearization using geometrical arguments. We draw a line g
orthogonal to the direction given by 0 through the point A (see Fig.i). Then on each side of
this line we compute the meanvalues M and M, of the state vectors in all neighbour points and
afterwards we take the Roe-mean-value R of MI and M, (see (12)). Now for evaluating P and
Q in (IG) we use the values of R. Before going to more details of the numerical scheme let us
derive the local equation which we shall approximate later on by the numerical scheme. Define

v(t, .n) := U(t, X, ),

where
=( x) = zcos) + y sin0, t = rt(O) = -zsin0 + y cos 1.

For V we obtain

D9V + D(0)0(V + D(8 + 2),V = 0, (17)2

where D(9) = PcosO + Qain0. While Roe chooses six eigenvectors (see (8)) we take only four
linear independent eigenvectors of D(8):

u + acoaEO u - acoaO
RI(0) (H v + asinO ) R2(0) v -aiO l)

4H + a(u6osO + vain@) H - a(ucoO + vsinO)'



Tu--ain_

Re(8) :=2 ,R 4 (0) (= )asO (18)

(u2  + v') \a(vco.50 - uainO)
where H = (e + p)lp is the enthalpy. The corresponding eigenvalues are the same as in (7).
Then there exists ai(t, , r).j = 1, ...4 such that

4

V = ( 7 %(t, ,,)R. (1)
j=1

Because of (17) we obtain for aj:

-(,9c + D(e)ai4  + D(O + )t qai)Ri 0. (20)
I2/

Now we assume that the derivative of V tangential to the discontinuity vanishes: 0,,V = 0. This
is satisfied for instance, if the states in front and behind of the discontinuity are constant or if the
problem is rotationally symmetric. Therefore we obtain for al, ..., a4 the following equations:

o9 ai + Ajo8 ai = 0 (21)

or in the original coordinate-system

09,o- + Ai cos(O/)Oeai + Ai sin(8
1 )0O ai = 0. (22)

Assume we have already computed V' (this means an approximation of V at time nAt). Then
define _t by solving a system of linear equations. For any j we have

4

Z i.Ari = VA (23)
j=1

for any point A of the grid. Then for any j we compute an approximation a;+' of (22). with
respect to the initial conditions

n--0,.)s n a . (24)

(22) is a scalar equation and we solve it using Roe's scheme. If one applies it to (22),(24) we
get:

Qi'AB := (-' A + 01,B) -stin(nfl (~)iA - a,.B), (25)

Depending on the flow direction, aj.AB is either equal to a% or equal to citB . For a"+ we

obtain

,n+1 ,n At fB (Ci) .

j,A :--j,,A - (AX2 ) B $j %'AB (26)

and therefore

-At/(AX
2 ) B nn(cJ) BR )27)
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This is again a first order upwind scheme for (14). It can be seen very easily that the scheme
(25), (26) is monotone.

Testproblem 2

Shock-tube problem: Again we have tested this scheme with Sod's data as in Testproblem 1 and
obtained the results shown in Fig.4. Now the oscillation obtained by the first version disappeared
and the qualitative behaviour agree with the results computed with the Godunov scheme(see
Fig.2).

Testproblem 3

Comparison with an exact solution: In order to get some informations about the correctness of
the solution we have solved the Euler equation (14) with respect to initial conditions, satisfying
the Rankine-Hugoniot conditions. For the values of the left side we choose p, = 1, P1 = 1,
u1 = 0, u1 = 0, and for the pressure on the right side we choose p, = 5. Then we compute p,, ur.
vr and the shock velocity, such that the Rankine-Hugoniot conditions are satisfied (see Smoller
[10]). It turn out that the exact shock velocity is ff = -2,4899.... The numerical experiments
for At = 0.003, Az 0.01. and T = 0.15 show (see Fig.5,6), that a ; -2.4 and that the error
in the descret L-Norm is equal to 0.05975. For At = 0.006. Az = 0.02. and T = 0.15 we obtain
for this error 0.16160.

Testproblem 4

Interacting blast waves: strong shocks: We have applied our scheme to the problem of two
interacting blast wave in a tube of finite length with strong shocks (see Woodward. Colella
[121), As the input data we have used the same one as in Woodward, Colella [12]. i.e. reflecting
walls and for the initial conditions: p = 1000 in the leftmost tenth of the tube, p = 100 in
the rightmost tenth and in between p = 0.01. The density p is equal to I everywhere, and the
velocities are u = 0, v = 0. The numerical results for At = 0.00002, Az = 0,001, and T = 0.016
and T = 0.026 are shown in Fig.7.8. If one compares the result with those of Woodward, Colella
[12 lit turns out that the shock velocity of the left shock is a little bit too small.

Testproblem 5

Converging cylindrical shockwaves in 2-D: As initial conditions we choose radial symmetric
values:Within an interior circel we prescribe the density and the energy density equal to 1 and
in the exterior domain equal to 4. Initially the velocities are equal to zero everywhere. On the
boundaries of the basic domain we use reflecting boundary conditions. Then we should expect
a radialsyimetric solution. In our experiments we have used a grid of 100xlOD points and we
have chosen At = 0.05, Az = 0.1. The results for the time T = 1.25 are shown in Fig. 9 for
a 3-D-view, in Fig.10 for a cross section through the center, and in Figli for level-lines. We
have plotted the density p as a function of z and y. We should mention that it would be more
convenient to solve this problem in polarcoordinates because of its radial symmetry. But on
the other hand it seems to be a good testproblem for our scheme. The obtained results are of
the same structure as the exact solution. At the moment the algorithm does not compute the

348



angle E automatically. Up to know we compute it explicitly using the radial symmetry of the
problem.

All the computations have been done on au IBM 3090. The CPU-time can be used only for
internal comparisons since the program was not optimized with respect to the CPU-time.
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EQUATIONS IN THE UNBOUNDED DOMAIN
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Summary

Initial-boundary value problems for nonlinear equations,
modelling nonsteady 3-D transonic gas flows near a body, which
differs only sligtly from a slender cylinder, are considered.
Local in time existence and uniqueness of classical solutions
for viscous and inviscous flows are proved.

The Hyperbolic Problem

When studying a transonic flow, model equations governing the
development of perturbations near a known solution are widely
used. These equations are derived under various assumptions
from Navier-Stokes equations for a compressible heatconducting
gas. The Lin-Reissner-Tsieghn equation

Uxt +uxUxx - Ayu = 0 , (1)

where Ay z a2/By2 2a ay, u is a potential of disturbances,

simulates the development of perturbations in nonsteady non-
viscous transonic flow near a body, which differs only slight-
ly from a slender cylinder []. It is easy to verify, that (1)
is hyperbolic for all finite values of u . (1) is considered

in the domain G = D x(O,T), where D = R2- ft. Here y E 0 aR2 ,

x E R1 = R. 0 is a domain with a boundary an , which is suffi-
ciently smooth. Denote S = a3 x R, ST = S x(O,T); n is an
outward normal vector on an , then on ST Neuman's condition
is given

au/anis T a anI5  , (2)

where *(x,y,t) is a known function. We recall, that (2) is
a linear version of the impermeability condition. At t = 0
the initial data are given

u(x,y,O) = uo(x,y) . (3)

At the infinity the decay of perturbations is given
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lim u :0 , lim u 0 O, lim u :0 . (4)
Ixl~lyl-  x _-Y. lylI- y

Theorem 1. Let be f £ W6 (G), uo E W 
5 (D), fXu(ty)dt E2 0 2(D)M,

WS(D). = 0, if Ixl + lyl k r; auo/anI5s=O/anIs(x,y,O).

Then one can find such a T0 E (0,T), that in Go= D x (0,T0 )

there exists a unique solution of (1) -(4): 3i Ux E L.(O,To;

w3-i(D)), aayu E L.(0,To;W2-j(D)); (i z 0,1,2; j = 0,1).

Here and further on W 1 (D), L (0,T;W 1 (D)) denote respectively
P. q p

isotropic and anisotropic spaces of S.L.Sobolev [3] •
Remark. We mean it in all our assertions on uniqueness, that
u xyt) is defined except up to a constant.

In order to prove Theorem I we consider the following
auxiliary problem.

The Viscous Problem

Consider in G the equation

u - u + u U - AyuM = 0 , (5)Uixt 1i i jx

where P is a positive small number. (5) is also a physical
equation. It describes the development of nonstationary per-
turbations in a viscous heatconducting transonic flow (2 .
Unlike (1), it is nonclassical one. We study for (5) the fol-
lowing initial-boundary value problem

au /anjT=tU/aniST I u P (xyO) = u o(x,y),

au /3nj = 39 (xy,0)/anI lim u = 0, lim u y = 0,
110 11+ y1V X-1-

li u

}.lm UPy 0 (6)

Here #, u are smooth approximations of f, uo .

The folloW'ng assertion hQlds.

Theorem 2. Let be 1 1E W7(G), uo C W6(D), fXu (t,y)dt E
1A 11 2 - M10

W• O.D; ijfa lim (Huu0 i 1"'(U o(t.y)-
2oO2 -
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uo(t,y))dtllWS(D)) = 0. Then for any v > 0 such TI E (0,T),
2

T I To, can be found, that there exists in G = D x (,T

the unique solution of (5),(6): ai E L.(,T ;W3-i(D)) (i

0,1,2); aj 3U CL.0,T ;W-j(D)), OA u EL.(O,T, W -j(D))t,x i)11 2 t y Pi '1 2

(j = 0,1), and the iollowing inequality holds

21 1i/210 +3u Ii=o11tUx L(O'T1; W - (D)) +=o , M L-(0,T 1

+ I 3jyu. 'IL (O,T1; 2W-tjD)) : C,
L(,T 1; W2

where a constant C does not depend on V 3ia = ai+j/atiaxj.

It is clear, that existence assertion in Theorem 1 follows from
Theorem 2 and from a *-weak convergence of sequences {u } {jix
y u I if one pass to the limit in (5),(6) as U tends to zero.

A crucial point therefore is to prove Theorem 2. To do it we
investigate at first a linear version of (5),(6) in a sequen-
ce of domains G , bounded in y-variables. We will construct
solutions of the~e problems by Galerkin's method and prove A
priori estimates, which make it possible; 1) to prove conver-
gence of Galerkin's approximations, 2) to prove solvability of
a linear problem in G , 3) to prove Theorem 2 with the help
of the Contracted mapplng theorem and hence Theorem 1.
The linear problem. 1) Define G as follows: Gm = Dme(0,T),

Dm = 0 xR, Um Z Km 1 Kn:= {I , <m , m > r. S = M XRx
m m m m m m

(0,T). We construct in D a sequence of functions vmo(x,y):
vmno W(D), fxv (ty)dt E W6(D), vio 0, if lY J > m

avmo/an1s = 0; lim(lvmo - Vo IJW6(D) + 1f[[vmo(t'y) - vo(tly)]m

dtITW6 (D)) 0. Consider in Gm  the linear problem
2m

L v = vxt - 11vxxx + K(x,y,t)vxx + Q(x,y,t)v x  -

A v = f(x,y,t), (7)

av/an1s = 0, v(x,y,0) Z vmo(X,y), lim v = 0,
SI-3*
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urn v =0. (8)

Here K(x,y,t), a(x,y,t), f(x,y,t) are known functions.
2) We fix m < -and construct approximate solutions of (7),
(8) by Galerkin's method

V N (x,y~t) = V(x ~t)wj(Y), Aywj + Xjj 0 in n M

Bwj/anj =0; (w.,w. z ij (u,v) zf u(x,y,t)v(x,y,t)dy

We find unknown functions g.(x,t) as solutions of the follow-
ing evolution problem

(L 11v N,w.) (f,w.) =f. (j =1,... ,N) (9)

g.(x,0) g. Cx) =(vmo,w.), lim g.x 0,

lim A.g. = 0. (10)

Lemma 1. Let be a iK, D ia EL,,(O , TW 3 iC(D)) a'f E LC(0,T

W3i(D)), i =0,1,2. Then for any fixed ji> 0, m<- , N

there exists the unique solution of (9),(10): a Eg Lin(0,T;
tgjx

W 2CR))fL (0T;W2 (R)), a3 Cgx L CO(,T;L 2(R)), g.E (O

T;L2 (R)). i = 0,1,2; j =1,... ,N.

Proof of Lemma 1. Assume, without a loss of generality, that
in G mthe following inequality is fulfilled

2- SIX XI > a > 0

Indeed, we have after changing in (7) the unknown function
)Lt

as v e u:

L u =ut - PO xu + K(x~y,t)u~ + (a(x,y,t) + A)u -
xt ' x

We obtain the desired inequality choosing X> 0 big enough.
Divide segment [0,T] in L equal parts: h = 0,T] /L. De-

note g 1(x) =g(x,lh), 1 0,.. .,L, and consider the discre-
tization of (9) in t:

31 Nl 1 NI
L hg' z gl - g _1 )/h - jag. + (K u ,w. + (a u ,w.) +

3 xxj xx jx
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)J 3

= g. (x), lur g = 0, l im xjg = 0. (12)

Lemma 2. Let conditions of Lemma I be fulfilled. Then for any
fixed P> 0, N< - and for any 1S 1 :5 L there exists in R
the unique solution of (11),(12)z

g E W2(R), x E L (R) (j 1,.. ,N).

Proof of Lemma 2. Rewrite (11) in the form
-Pa3 1 K 1 w 1 i "h N1w

+ (K u w) + ((a + 1/h)u 3w) + xjg
x j xxji x )

f + g X /h =f(
3 31. (13)

It is easy to verify, that for any smooth solution of (13),
(12) the following estimate holds

1 1 C Ilf 1 II 15 1 5 L,
j=l1lgjx lW (R) + IXj3I11L 2 (R) 5 j=1 1

which imply a weak solvability of (13),(12). One can show the
regularity of solutions by standard methods. Lemma 2 is proved.
Now we can continue to prove Lemma 1. Let us define:

Vlxh = (v xl - vl1-1 )/h, v 1lh- (v 1h -1 h ) / h , Lh l :(Lhl
xh x x xhh= xh vxh /h L2hg h(Lg

Lhg-1 )/h, L3h g l = (L2hg
1- L2hg-1)/h and consider in-

1L 1f. 1 .i 1_l +gd

tegrals: f (L g - f)g.xdx 0 0, fa x(Lag j xR j jjR J

i = 1,2,3; j m 1,...,N. After some calculations one can get

the estimate5 1 N
zl3vlIl2+{Ila~vnlI2h S n-i 2Ifl3(R)h).(14)

s=1 n:1 X s=1 x n=1 3 W2 (R

Here hjull 2 = <u,u >, <u,v> = f u(xy,t)v(x,y,t)dxdy; a con-
Dm 1

stant C in (14) does not depend on h. To be sure, that g

are regular functions of h, consider integrals:
g L d  ;if+3 1 iL dx =,1,2;
jb~xL2hg x gjhax 2hg f i=,4; ghhxL3hgjdx

R R R

fx hh x 3 dx , (s = 0,1), whence one come to inequalities

R
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ijjalv~lj2+ja5vn h " n h C(taiv~xhj 2 +j NIIf hI
1=1x n=1 1 n=1 j 1 Jh W2 R))

svh 112+ E1Ivfn 12 h :5C( Iasv( 12 +

s= xh n=1 x hh siM1lxvh
IN' 12 , .

n=lf Jhhl W2(R)h) 
(15)

wedefine values for Vh, Vhh as follows: vhx2 - Vx y,0)

0v hhx Vxtt(xy,O), and calculate values of v xt(x,y,0),
Vxtt(x,yO) with the help of v (xy) and (7). Constants C

in (14), (15) do not depend on h > 0, that makes it possible
to pass to the limit in (11) as h tends to 0, that means, to
prove Lemma 1. The next step is most complicated in technical
sense. It consists of finding a priori estimates for solutions
of (9),(107 in suitable Sobolev spaces.
A priori estimates. The structure of domains G let it pos-
sible to difereiitiate (9) in t and x. The dTfferentiation
in y is created with the help of the equality Ajwj M -A yw.

In order to prove existence of a solution for (9),(10) in a
classical sense, it is sufficient to show,that uxt, Uxx, AyUE

Lj(O,T;W2(Dm)). Then smoothness of a solution will follow

from the embedding theorems [3] . We consider with this purpose
scalar products of the form

<31 u(L - f),3 3~ux>= 0 (i + j = 0,1,2,3; j 0,1,2),
x't 'tx

<k+l(L u-f, k+lu
<x,t L yf),& axt x> 0, k + 1 = 0,1,2; 1 0,1.

Now we will show, for example, how posessing the estimate

IluXll(t)W(Dm)+ lull(t) +llutll(t) +
2 M

AIYul I(t) S C V t E (0,T) (16)

to obtain the inequality

IluxII(t)W2D 3 +hlaUII(t) 1D )+iYUII(t)W1() +

2Dm 01 W2 (Dm +1'y2 (Dm)

IIN l(t)w I (Dm C, (17)
Xt 2 m 2

where constants C do not depend on V , N,m; Ilull (t)
fu2(x,y,t)dxdy. Indices V ,N,m will be omitted. Consider the
D

equality f1<32t L u - f),a3u>- <(L u - f) A a 2u>)dt 0.
0ix U XA x yx
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After integrating by parts, using (16) and the multiplicative

inequality 11'L 4 (D) (t) :5 (IgI1()Igj1() 3]

we come to the expression

x W2 (Dm 0 W 2 (D J

f t 3auIl~ I( (T)dT).

The constant C does not depend on vi, N, m. From here, accord-
ing to Gronwall's Lemma

Ila 2uHlD )(t) :5 C V t E (0,T).
2 m

Consider further the equality

After some trans 5ormations with the help of yearlier obtained
estimates for 3 Xu, we come again to the inequality

Iluxt11( (t) :5 C(1 + 5Ilu, IWC ()dT,' (,)
xtW2( m) 0 XTW2 (Dm)

From here IIUXtlHWI(D ) (t) 5 C. Now we may differentiate (9)
2 m

in x and, using the fact, that <6 u , 4 u> =0, to find:y x

Ila yu XH1t) :5 iluxx+ (Ku xx) x+ (alu ) X f x 1(t) :5 C,

IJH13uIIW ()t :5 Ilu + KU +4 Mu - fIl~ )(t) S C.

At last, one can see, rewriting (9) in the form

AyU = u xt+ KU x + QuX - IIUxxx,

that Ay u L Q(0,T;W I(D )). Proof of (17) is accomplished. Pro-
y '2 m

ceeding successively in the same manner, one may be sure, that
the following assertion holds.
Lemma 3. A solution of (9),(10) satisfies the inequality

IluX jIW3 (D )(t) + IiuxtllW2(D )(t) + Ila yuIIW2 (D )(t) +

II3Xu ( )(t) :5 C, V t E (0,T)
2 m

and a constant C does not depend on Va, N, m. Now, having
sufficient estimates, we can prove Theorem 2. The sketch of
the proof consists of Lemmas 1,3 and making use of the Contrac-
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ted mapping Theorem.
Corrolary 1. Let Lemmas 1-3 hold. Then for any fixed m < c

> 0 there exists in Gm the unique solution of (7),(8):

U L (0,T;W 3(Dm)) (i - 0,1,2 ); A E L(0,T;

W2-j(Dm)) (j =0,1); Pa3uE L (O,T;W2(Dm)), ID6u E L (O,T;

L2(Dm)), and the inclusions do not depend on m, v.

To prove Corrolary 1 it is sufficient to pass to the limit in
(9) as N tends to .
Corrolary 2. Let Lemmas 1-3 hold. Then for any fixed V > 0
there exists in G the unique solution of (7), satisfying the
following initial and boundary conditions

v (x,y,0) = v (X,y), lim v = 0, lim v = 0, lim v = 0.ji0 x1+1Y I Ax  x -0- Y yl- PY

Proof. We continue solutions v m(x,y,t), obtained in Corrola-

lary 1, from G in G, conserving smoothness properties, and
pass to the limit in sequence {v } as m . - . It is possible

pim
due to Lemma 3.
Proof of Theorem 2. Introduce a new unknown function z=u- p
in (5),(6) and define in G compact set SM:= {vx(x,y,t):

i E L (0T.W3-i(D)) (i=0,1,2), av /ans Ttx ''2 x 0
Elat IL .(O,T;W 3ZL)) x M, vx(x,y,O) Voxy) }.

i=o 2

We substitute an arbitrary function from SM into the nonli-

near term in (5), rewritten in terms of z. Thus we come to
linear problem (7),(8). For any fixed M < = all conditions
of Lemma I will be fulfilled, therefore one can define an ope-

rator P: zx  Pv . It is easy to verify by choosing T1,

(0,T) sufficiently small, that Contracted mapping Theorem
takes a place. It permits us to prove Theorem 2. Uniqueness
of solutions of problems (1),(2); (5),(6) etc is proved in a
standard way. Let u1 ,u2 be two solitions, then z= ul-U 2

satisfies the following homogeneous linear problem

Lz = Zxt- PZxxx+ Ulxzxx+ u2xxZx- Ayz 0 O.

az/nls T = 0, z(x,y,0) = 0.

Considering the scalar product <Lz,z x> = 0 and integrating

it in T from 0 till t, come to the inequality
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l1z 11(t) :5 Cliz llI(T)dT , V t E (0,T 0,

00

where C does not depend on Pi > 0. Hence, zx=0 in l

and z(x,y,t) is defined up to a constant, that is typical

for gasdynamics.
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ABSTRACT

For nonlinear hyperbolic systems in nonconservation form we consider weak solutions in the

class of bounded functions of bounded variation . A generalized global entropy ineauali4y is proposed and

studied. In this mathematical framework, we solve the Riemann problem and prove, for the Cauchy

problem, the consistancy of the random choice method for systems In nonconservation form. Our theory

of entropy weak solutions is applied to nonconservative systems of elastodynamics and gasdynamics. In

particular, we give here a nonconservation form of the system of conservation laws of gasdynamics,

which is equivalent for weak solutions in BV.

1. INTRODUCTION

We are Interested In nonlinear hyperbolic systems In nonconservation form:

Ao(u) a~u + A(u) axu - 0, u(x,t) E U, X E R, t > 0. (1.1)

Here, U is an open subset of PI; Ao and A are continuously differentiable functions defined

from U into the space of pxp matrix. For each u in U, we assume that Ao(u) is invertible, and

for the sake of simplicity the matrix Ao(u)-l.A(u) has p distinct eigenvalues

X(u < ) 2 (u) < ... < ).,(u),

with a corresponding basis of right eigenvectors r,(u), r2 (u) ... , rp(u). Each i-characteristic

field is supposed to be globally either genuinely nonlinear or linearly degenerate ([121).

Gallu, the nonlinear hyperbolic system (1.1) Is not a system of conservation laws, i.e.

of the form

aLfo(U)+ a.f(U) = 0, u(x,t)E U, xE (R, t>0, (1.2)

with C2-functions f0 and f : U c RP -- RP, so that the theory of conservation laws (Lax [5],

Gimm [4]) does not apply: the notions of weak solutions and entropy conditions have no sense
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for (1.1). But such nonconservative systems appear In some applications in elastodynamics

(where the evolution of the stress into an elastic medium is given by physicists by a

nonconservative equation) or in gasdynamics (where it may be very useful to work with

nonconservation forms of the well known conservation laws for the construction of new efficient

numerical schemes); see [6-101 and Section 4. below. Thus a theory of entropy weak solutions

for systems in nonconservation form is needed.

Here we define a notion of entropy weak solution for (1.1) in the space of bjnded

IuncIogn. of (locally) bounded varation (BV). Let us recall that the relevance of this space BV

for studying systems of conservation laws is recognized by many authors as Glimm [4], DiPerna

[21, DiPerna-Majda [3J,...In this paper, we extend the usual definition of entropy weak

solutions for (1.2) to the systems (1.1).

First, we have to define in which weak sense the equations must be understood. To seek

weak solutions to (1.1) in the space L""flBV(RxR ) of bounded functions u of (locally) bounded

variation, the main tool here is the notion of "functionLI superposition" introduced by Volpert in

[13]: roughly speaking, to make sense to products as those appearing in (1.1) for

discontinuous functions, the idea is to complete a discontinuous function by specifying "its"

value at points of discontinuity. In fact, the way to complete is not trivial at all and is contained

into the definition of functional superposition of Volpert (Section 2., below).

Second, for the sake of uniqueness of weak solutions, it is necessary as in the context of
systems of conservation laws ([5],[12]...) to add a so called entropy condition. Here, we propose

such a condition for systems in nonconservation form, It takes the form of a global entroy

Jn.Puali., in general in nonconservation form,

(TA o )(u) atu + ( *T A )(u) a8u ! 0, (1.3)

where the function 0: lR P-+ R is assumed to satisfy some positivitness and compatibility (with

respect to Ao and A) properties. We emphasize that a lot of properties, well known for

conservation laws, may be generalized to (1.1) thanks to this new notion of entropy condition

(Le Floch [6-91).

The coherence of our definitions is shown by the following result : if the matrix Ao and A

in (1.1) are Jacoblan matrix of some fluxes fo and f, so that the system in nonconservation form

(1.1) may be written In the conservation form (1.2), then our new rnoion of entropy weak

solution for (1.1) and the usual notion (in the sense of distributions, see for instance Glimm )

are ajiy.aIani. At the contrary, let us recall that a completely mathematical framework Is
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proposed by Leroux-Colombeau in [101 to define products of distributions as those appearing in

(1.1) : their solutions are more general than distributions and thus are not at all "classical"

solutions.

In the proposed mathematical framework, we find the entropy weak solution of the Riemann

problem associated with (1.1) for small initial data. Our result is a generalization of the Lax 's

theorem for systems of conservation laws [5]. We also establish the egJJ.VIaJJe3. between our

nonconservative entropy condition (1.3) and the usual Lax entropy criterium for speeds of

shocks (Lax [5]).

Section 3. is devoted to the Cauchy problem for (1.1). Because we are now able to solve

Riemann problems for a nonconservative system, it Is a simple matter to follow the construction

of the random choice method of Glimm [41 and hence to define a sequence uh of approximate

solutions of a Cauchy problem with small data in uniform and BV norms, We are concerned with

the convergence of this sequence to an entropy weak solution of (1.1),(1.3). First, we prove

that the sequence u remains uniformly bounded in sup and BV norms and uniformly Lipschitz

continuous in time. By a standart compactness argument, it results that a subsequence tends to a

limit function u almost everywhere in the sense of the Lebesgue measure. Using the previous

estimations we give a proof of the consistancy of the sequence uh with respect to both the system

(1.1) and the entropy inequality (1.3). Finally the last point is to pass to the limit into the

product Ao(uh) aluh and A(uh) a,,uh. To this purpose, we note that the convergence almost

everywhere is not sufficient in general I However, being the results of sharp convergence of the

random choice method proved theoretically for instance by Liu [111, we may conjecture that

Ao(uh) atuh -- Ao(u) a u and A(uh) a.uh --j A(u) axu (1.4)

weakly in the sense of measures. If (1.4) holds, then the limit-function u is an entropy weak

solution of (1.1)(1.3).

In Section 4., our theory is applied to nonconservative systems issued of elastodynamics

and gasdynamics. The modelisation of an elastic medium (tridimensional but with propagation in

only one direction) yields a system of four equations: the usual three conservation laws of mass,

momentum and total energy, plus an equation for the evolution of the stress deviator of the

material. This latter is given by physicists in nonconservation form [101, as a consequence of

the Hooke.s law. It seems that it is not possible to express it in conservation form, so that a

direct *nonconservative" study is needed. Here, we use our theory of Section 1. to analyse a

simplified version of this system assuming the pressure is constant. The study of the complete

system will be published later in [8). For this system of 3 equations (conservation of mass and
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momentum and the equation for the deviator of stress), we solve the Riemann problem -for non

necessarily small initial data- and we find the entropy inequalities (1.3) for this system.

Moreover, we are also interested in the conservation laws of gas dynamics. For this system

we get a nonconservative form which is equivalent for weak solutions In the sense of Section 1.

As noted In a different mathematical context by [10], such nonconservation forms of systems of

conservation laws may be very useful to construct new numerical finite difference schemes.

2. AN ORIGINAL DEFINITION OF ENTROPY WEAK SOLUTIONS

Let us briefly recall a regularity property of BV functions, i.e. functions whose partial

derivatives are locally bounded Borel measures (Volpert [13]). For an element u in L°"n

BV(ix[R';PR), it turns out that -with the possible exception of a set with zero 1-dimensional

Hausdorff measure -each point (x,t) of [R x R * is regular, that is : either a point of

approximate continuity (u(x,t) = u_(x,t) - u.(x,t)) or a point of approximate jump where

one may define two distinct values u_(x,t) and u (x,t). So we may consider representants of

BV-functions modulo 1-dimensional Hausdorff measure.

Following Volpert [13], we define the "functional superposition" of a BV function. Consider

a continuous function f in C°(DiP;[R) and an element u of L-r)BV(DIx R ;R)). The unctional

superposition of u by f, denoted by ?(u), is the function of L ,BV(tRx i+;Rp) given by the

formula

1
?(U)(X,t) J f( u_(x,t) + a (u4 (xt) - u_(x.t))) da, (2.1)

0

valid for each (x,t) in DRx R + with( t a set of zero 1-dimensional Hausdorff measure. If A is a

matrix valued function, A(u) is defined similarly. The main result of Volpert we need here is :

for each arbitrary bounded BV function v, the function f(u) given by (2.1) is measurable and

locally integrable with respect to the Borel measure defined by a partial derivative av/ot or

av/ax. Thus a product ?(u).v/at or f(u).avax makes sense as a locally finite Borel measure.

Indeed, for systems of conservation laws, this concept of superposition is known to be very

useful by many authors (DiPerna [2], DiPerna-Majda [3]). Using the notion of functional

superposition, we propose:

Definition 2.1 A function u in L'tnBV(RxlR,;U) is a weak solution to the nonlinear

hyperbolic system (1.1) If the equality

,o(u) a u + A(u) axu = 0 (2.2)
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holds in the sense of Borel measures.

Let us apply this definition of weak solutions to discontinuous functions consisting of two

constant states and get a practical formula for computing iump relations for systems in

nonconservation form.

Theorem 2.1 The discontinuous function u given by:

u(x,t) = uL for x-atcO, u. for x-at>O, (2.3)

with uL and u. in U, a in R, Is a weak solution to the system (1.1) if and only If

the following generalized Rankine-Huaonlot lume relation holds

I

J { -a AO(UL+a(UR-UL)) + A(UL+.(UR-UL)) ) da (UR-UL) '0. (2.4)
0

Then, for the sake of uniqueness, we need a so called entropy condition which applies to

systems in nonconservation form. Here let us define for the system (1.1) a notion of (global)

entropy inequality which generalizes the well known Lax entropy inequalities [5] for

conservation laws. We set

Definition 2.2 A p-vector valued function *:U -* P P of C '-class Is

an admissible function for the system (1.1) If it is Increasing and satisfies the

compatibility property

D T AO = Ao T D0, DT A AT . (2.5)

In general, there do not exist admissible functions for an arbitrary nonlinear hyperbolic

system. However, as for entropy -entropy flux of conservations laws, we hope that physically

meaningfull systems admit admissible functions. Namely, examples of admissible functions for

nonconservative systems are presented in [7,81 ; see also Section 4. Finally, our definition of

entropy weak solution to (1.1) Is :

Definition 2.3 Suppose there exists an admissible function * for (1.1). A

function u in L r-,BV(IR x P .) which is a weak solution to the system in

nonconservation form (1.1) (in the sense of Definition 2.1) Is an entropy weak

solution to jt1.1) (with respect to the admissible function 0 ) if the

aeneralized eiitropy ineauality
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0TA 0 )^(u) a[u + ( OTA )^ (u) axu S 0 (2.6)

holds in the space of measures.

Inequalities (2.6) are really a generalization of the usual entropy inequaties deriVed 110

conservation laws by the viscosity method. An important fact Is that the usual notion of entropy

weak solution to conservation laws is contains into our new definition: suppose A0 and A are

Jacobian matrix and thus (1.1) is equivalent to (1.2) for smooth solutions; then we prove in

171 that a BV function is a solution of the system In nonconservation form (1.1) in the sense of

definitions 2.1-2.3 If and only if It Is a solution of the conservation laws (1.2) in the sense of

distributions. Henceforth, in that case, our notion of entropy weak solution reduces exactlyto

the usualotion of Glimm [4) and Volpert (131.

3. RIEMANN PROBLEM AND RANDOM CHOICE METHOD

To get existence of entropy weak solutions of the Cauchy problem for systems in

nonconservation form, we use the random-choice method introduced by Glimm (4] for systems

of conservation laws.

First, concerning the Riemann problem for (1.1) (which is the basis of the random choice

method), we give briefly our main results. It is a Cauchy problem with a p;ecewise constant

initial data uo of the form:

uo(x) = ut if x<0, Un if x>O, (3.1)

wtth uL and u. in U. On one hand, the usual notion of rarefaction waves (51 is clearly still

valid for (1.1). On the other hand, we remark that the Lax admissibility criterion on the speed

of a discontinuity (51 makes also sense for (1.1); thus, using the definition 2.1 of weak solution

to systems In nonconservation form, we have defined in (71 the notion of shock waves and contact

discontinuities for (1.1). Then, as in Lax (5], it is a simple matter to get:

TheoremI 3.1 For an Initial Jump luR-ULI small enough, there exists a unique

weak solution (Definition 2.1) of the Rlemann problem for the nonconservative

system (1.1) In the class of self-similar functions composed with at most p

rarefaction waves, shock waves or contact discontinuities.

Then, we prove that this solution which an entropy solution in the sense of the Lax

critenrum is also an entropy solution in the sense of our definitions 2.2-2.3.
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Theorem 3.2 Suppose there exists an admissible function for (1.1)

(Definition 2.2). For weak shock waves (associated with genuinely

characteristic fields) of the system In nonconservation form, the entropy

Inequality (2.6) is equivalent to the Lax admissibility criterion. Thus, when

all the characteristic fields of (1.1) are genuinely nonlinear, the weak solution

of the Rlemann problem given by Theorem 3.1 Is an entropy solution in the

sense of Definition 2.3.

In fact, in the case of linearly degenerate fields, the signification of (2.6) is not clear in

general. Nevertheless, refer to Section 4. where we analyse a physically meaningfull system of

3 equations with a linearly degenerate field.

Then, let us pass to the Cauchy problem for (1.1). Glueing together solutions of

different Riemann problems as in the random-choice method of Glimm [4], we easily contruct

approximate solutions { uh } of the problem (1.1) and

u(x,O) = uo(x). (3.2)

The initial data u. is assumed to sufficiently small in sup norm and BV norm. We refer to [] for

the precise definition of uh: recall only that this construction needs an (equidistributed)

sequence a=(a). As usual in the frame of systems of conservation laws, this family of

approximate solutions is uniformly bounded in norms L and BV and is uniformly Lipschitz

continuous in time. Hence, by the Helly compactness theorem, it (or a subsequence) converges

almost everywhere with respect to the Lebesgue measure to a boundedand Lipschitz continuous

BV-function u = u(x,t).

We are able to prove the consistency of the family of approximate solutions { uh I with both

the system in nonconservation form (1.1) and our nonconservative entropy condition (2.6), in

the following sense:

Theorem 3., Consider E=[.-1,+ 1 ] with the equidistributed measure. There

exists a subset Eo of E with zero measure and a subsequence (hn) , tending to

zero, such that

J J e(x,t) { ,_o(Uh) atuh + A(uh) a8uh ) dx dt -* 0, h =h -, 0, (3.3)
IR

for every function 6 In C 0 (lRxP+, R) with compact support and each equl-

distributed sequence a of E\Eo . Moreover, assume that the system (1.1) admits

an admissible function 0 (Definition 2.2), and that all the characteristic fields

of (1.1) are genuinely nonlinear. Then, the family of approximate solutions {uh }
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is also consistant with the entropy Inequality (2.6) In the sense:

tim J f e(x,t) ( ATA0)'(uh) aLUh + (OTA)^(uh) a&Uh I dx dt < 0, ( h=h, -- 0).
IR + (3.4)

4. NONCONSERVATION FORMS OF SYSTEMS OF GASDYNAMICS AND ELASTODYNAMICS

In this section, we show how our general theory applies to both gasdynamics and

elastodynamics equations.

4.1. The modelisation of an elastic medium provides a system of nonlinear hyperbolic equations

which is given in nonconservation form. In Euler coordinates, the density p, the velocity u, the

energy E, the internal energy e, the pressure p and the stress deviator a of an one dimensional

homogenous elastic medium satisfy [101:

atp + a"(pu) = 0, aj(pu) + a.(Ppu2 +p-a) - 0, o~t(pE) + O)x(puE+(p-a)u) = 0,

(4.1)
a8t + uaa - k2 au = 0, where E = e + u2/2, p=p(p,e) and k>O.

Here the medium is supposed to be tridimensional but the propagation is only in one direction.

This system is composed of the three conservation laws of mass, momentum and total energy,
plus an equation for the evolution of the stress. The fourth equation in (4.1) is in

nonconservation form because of the advection term uaa , and is a consequence of the Hooke's law

expressed in Lagrangian coordinates.

For the sake of simplicity, we study a simplified version of (4.1), assuming the pressure

p is constant. For this model of 3 equations

atP + a"(pu) - 0, a (pu) + a"(pu2 -o0) = 0, ato" + ua.a - k2oxU = 0, (4.2)

we solved in (7] the Riemann problem without restriction on the size of the initial data. Let us

transform (4.2) by using the mass Lagranglan coordinates (y(x,t),t) defined for smooth

solutions by : a y(x,t) - (p u)(x,t), y(x,O) - x.
We get a system equivalent to (4.2) for smooth solutions :

a - OaxU - 0, oatU - a %)a - 0, VotkO - k 2a yu - 0,(43

where here v denotes the specific volume : v. 1/p. Moreover, we may verify that (4.2) and

(4.3) are even equivalent for weak solutions.
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Theorem 4.1 The shock curves of the two systems (4.2) and (4.3) are

equivalent.

We begin with the entropy inequalities (2.6) for the system (4.3). Writting the positivity and

compatibility properties (2.5).

Theorem 4.2 Define the function S(v,o) by : S(v,a) - v-0 eo. Then, the entropy

Inequalities (2.6) for the nonconservative system (4.3) are:

vatg(S(v,a)) + K I k2uau + va VoG- k2 )Y(au ) I s 0, (4.4)

for each convex function g : Pf - [R and each positive constant K.

We consider now the system in Eulerian coordinates. A surprising fact is that the system

(4.2) does not admits any admissible function: the relations (2.5) yield linear partial

differential equations which are incompatible I However, we know that our notion of both weak

and entropy solution is not stable by a change of variable. So that, we may hope that choosing

different unknown will correspond to a "better" system. Namely, we prove

Thtorem 4.3 The nonconservative system (4.2) with the unknown (p,u,a) is

equivalent for weak solutions In BV (Definition 2.1) to the following system

with the unknown (v,u,c) :

-atv+v 1 uaxv-o au=0,
V- atU + u V-Io U - axo =0, (4.5)

ato + ua.C- k2 au = 0.

And finally, we find the entropies for the system of elastodynamics in Eulerian coordinates:

Theorem 4.4 The entropy Inequalities for the system (4.5) are

atg(S(v,cr)) + uaxg(S(v.a))+ K { k2 v-Iu(o~u + ua,,u) + vacr- k2 a (Cu) } 5 0,

where g is a convex function and K a positive constant. (4.6)

Broadly speaking, we remark that there exists in general a lot of different nonconservation

forms of a given nonconservative system, which are equivalent for We,& solutions. However, we

think that some of them have better stability properties (for instance of the point of view of the

construction of numerical schemes). Hence, we hope that our notion of entropy inequality

-which relies on symetry properties of the system- provides a criterium to select the "good"

nonconservation forms of a nonlinear hyperbolic system.
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4.2. We now consider the system of conservation laws of gasdynamics. Following some previous

ideas of [10] (in a completely different mathematical framework), we derive a nonconservation

form of this sy.-,em equivalent for weak solutions. Let us begin by the system in mass Lagrangian

coordinates [121 :

atv- a,,u = 0, au + ap =0, atE + ax(pu) = 0, (4.7)

where v, u, p, E and e=E-u 2/2 are the specific volume, '.e velocity, the pressure, the total
energy and the internal energy of the gas respectively. We assume that the equation of state for

the pressure

p = P(e,v)
may be equivalently written as a function for the internal energy

- E (v,p).

We know [131 that (v,u,p) are in some sense "natural variables" for the resolution of the
Riemann problem for (4.7). And that gives the idea to look for a system for (v,u,p).

Theorem 4.5 The system (4.7) is equivalent to the following system in

nonconservation form with the unknown (v,u,p)

a v - aku = 0, (4.8a)

atu + 3.P =0, (4.8b)

aPE(v'p) lP + ( P + aVE(vp)) au = 0, (4.8c)

for weak solutions in L fl BV (Definition 2.1).

For the proof, we need a lemma which displays the importance of a property of linearity of an

arbitrary system (1.1):

Lemma 4.6 Consider a nonlinear hyperbolic system: Ao(U)atU+A(U)aU=O, and
set Ao(U)=(ao0 jj(U)) and A(U)=(aij(U)). Let us assume that there exists an integer

q:sp such that the functions ao.ij(U ) and aij(U) are constant for i!q and j!p. Then,
let C(U)=(c 1 (U)) be a matrix satisfying the properties

1

f C(UL+a(UR'U)) da Is Invertible for each UL, UP In U, (4.9)
0

and
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cj(U) = Cst., for each i!p and jzq. (4.10)

Then, the two nonconservative systems:

Ao(U) atU + A(U) a&,U - 0, and C(U) Ao(U) atU 4 C(U) A(U) a.U - 0,

are equivalent for weak solutions In Ltm oBV.

For the proof of Theorem 4.5, it then suffices to use the linearity of the two first composants of

the flux (-u,p,p.u) with respect to the variables (v,u,p). In the case of a polytropic perfect

gas, the functions P and E are given by
P(v,e) = (1-1) e/v, E(v,p) - p v (-1), with I > 1,

the equation (4.8c) becomes

v a8 p + X p axu = 0. (4.11)

We now turn to the system of gas dynamics in Eulerian coodinates:

p + (Pu) = 0, ajpu) + a8(pu 2+p) = 0, ajpe) + .( (pe + p)u) = 0. (4.12)

Here p=l/v is the densily and the other variables have the same signification as in (4.12).

Using again the variables (v, u, p), we get an equivalent nonconservation form of (4.12) :

Theorem 4.7 The system of conservation laws (4.12) and the following system

in nonconservatlon form with the unknown (v,u,p,):

v-1 atv+ v-1 uoav -oau 0, (4.13a)

v- atu + u v- I1)u + CXP =0, (4.13b)

ap + uap + I p au = 0, (4.1 3c)

are equivalent for weak solutions In L- n BV In the sense of Definition 2.1.

As in paragraph 4.1, we may prove that the systems (4.8) or (4.13) with the unknown (v,u,p)

do not admit any entropy inequality in the sense of definition 2.2-2.3. Again our interpretation

is that the systems (4.7) and (4.12) have probably better properties of (numerical) stability

than the new systems (4.8) and (4.13).
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A VELOCITY-PRESSURE MODEL FOR ELASTODYNAMICS
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SUMMARY

The experimental construction of the shock polar of a

material leads to a curve u = g(p) in a velocity-pressure

diagram. This corresponds to the rankine Hugoniot condition

for any shock linked to the state (0,0) Since the Volpert

rule for the multiplication of distributions works for a non

conservative model involving the velocity and the pressure

(this means that usual shock waves are to be found with this

rule), we build such a model, the Rankine Hugoniot curves of

which correspond to the experimental shock polar. Then a

transport projection method, as for the Godunov scheme, is

described. The transport step uses a Riemann solver and the

projections are performed in such a way to conserve the same

quantities as for a conservative model. Here the variations of

the density are neglected for this model is to be used mainly

for solids. Some remarks are added for the case of a density

variation taken in account, as for a several material case.

THE EXPERIMENTAL CONSTRUCTION OF THE SHOCK POLAR

We denote by A the material for which the shock polar is to

be constructed and by B an other material the shock polar of

which is known. A cylindrical block of B is thrown against a

target which is a cylindrical block of A. The bases of both

cylinders are parallel and large enough to enable the use of a

one dimension model, along the axe of symmetry.

Immediately after the impact a shock wave propagates across

A and reaches the opposite face. Then a rarefaction wave comes

back into A and makes the target to start with some velocity.

In the same way another wave runs across B. The initial

velocity of B is known before the impact and is denoted by v.

The initial velocity of A is zero. The initial pressures in A

and in B are both supposed to be zero.

Then the state of A behind the shock wave is some velocity u

and some pressure p . This state (u,p) is a point of the shock

polar of A, which is the shock curve passing through the state

(0,0). This is usually derived from the Rankine Hugoniot

conditions when these conditions are known.
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Since the two shocks after the

impact are separated by a contact p

discontinuity, the state of B is

also (u,p) . This state can be (B)

linked to the state (vO) by a

shock curve of B . This gives a

first condition to determine the

two values u and p . A second (A)

condition is obtained by

considering the instant when the

shock wave reaches the opposite

face of A . The rarefaction wave

which appears at that time links

the state (u,p) to the state w U

(w,O) . Here w is the velocity of I

the target after the rarefaction u=w/2

wave has crossed it. This means

that we have assimilated the ambient medium to the vaccuum.

The value of w is measured during the experiment.

Now we claim that the curve linking the value (u,p) to (w,O)

is closed to the symmetric of the shock polar of A . This

assumption corresponds to identify the shock curve to the

Riemann invariant and leads to set w = 2 u

Next the value (u,p) is obviously found at the intersection

of the line u = w / 2 and the shock curve of B going down

through (v,O). We get this way one point of the shock polar of

A. By doing the same experiment with other values of the

initial velocity v of B we get other points of this shock

polar, and then build the curve.

We have found this way a curve u = g(p) with g

increasing and satisfying g(O) = 0 . In practice g is a

concave function

In practice such curves are to be found in this form,

p = a U + BU2

with given positive real parameters a and B (see C4,5]). Then

for the velocity we get the form

u=o( 1=+Bp 1) (1)

We give here a few examples of the corresponding values ac

and B0 for several materials in m-k-s- units and with p given

in pascals. These values are obtained from [5]. We give also

the values of the density Do and of the soundspeed c. for the

same materials (at rest and for a given temperature).
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materials a 0 0o co

gold 972 3.5 10-"  19240 3056
iron 931 7.66 10 - " 7850 3574

water 429 2.84 10 -' 998 1647

copper 1323 4.3 10-"  8930 3940

iridium 1344 1.7 10 - " 22484 3916

lithium 2050 3.96 10 -
10 530 4645

plexiglas 857 7.57 10 "1o 1186 2598

beryllium 3558 3.8 10-10 1851 7998

lead 702 1.22 10- 'o 11350 2051
rubidium 445 2.59 10 - 9 1530 1134

In practice this model is valid for a pressure of the order

of 10 kbars which leads to a value of So p of the order of a
few units.

We may remark that g(p) is a concave inceasing function.

THE VELOCITY PRESSURE MODEL

This experimental method does not give directly a state law

of the form

p F( ,I)

that is the pressure p as a function of the density P and the
internal energy I. We use to find such a state law in the

conservative equations of mass, momentum and total energy.

This is the case for example in hydrodynamics.

The system we shall derive from this shock polar will not

have a conservation form, but this does not mean that mass,

momentum and total energy will not be conserved.

We choice to work with the two parameters involved in the

experiment: the velocity and the pressure. The density can be

also introduced; this is discussed later. We aim to get the

same shock curves than the one described by the shock polar we

have built and which can be seen as a curve

u = g(p) . (2)

We give our model the following form, where vo is the

specific volume

ut + uu, + vo P. = 0 , (3)

Pt + u p, + - U, = 0 . (4)

v o
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This comes from the following arguments. Equation (3)

corresponds to the conservation of the momentum. The effects

due to the variation of the density have been neglected. The

velocity of the material is taken in account in the inerty

terms u u. and u p., what we call the convection terms. The

function o(p) corresponds to the square of the soundspeed

which is only depending on the pressure and not on the
velocity. This function o(p) will be derived from (1) and by

using some arguments allowing to compute the two products of

distributions u p. and o(p) u.. From [3J we know that the

Volpert rule (see [6]) for the multiplication of distributions

can be applied to the couple of parameters u and p

Let us consider now a shock wave which propagates along a

line x = c t . We denote respectively by (u1 ,p1 ) and (u,p 2 )

the states of the material on the left and on the righ hand

side of the shock. Then we set

u+u 2

Au = u2 -u1  , u= -2
2

and define Ap, p,.. in a same way.

By denoting Y the Heaviside function we have

u=u 1 +Au Y(x-ct) , pfp1 +Ap Y(x-ct)

and denoting 4 = x-ct , we get

-c AU Ys (4) + (u 1+AuY(4)) Y' (4) + vo Ap Y' (4) 0

Since from the Volpert rule we have 2 Y Y" = Y" , we get the

condition

(i - c) Au + v o Ap 0 (5)

In a same way, we have
1

-c Ap Ye (4) + (u 1+AuY(4)) Y (4) + - w(p 1 +ApY(4)) Au Y. () 0
Vo

and since from the Volpert rule,

AO$(p)
r(p+ApY(4)) Ye (4) Ye ()

Ap

with 4(p) w(J ) d
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We get the condition

alb (p)
(U-c) Ap + au = 0 (6)

v o Ap

From (5) and (6) we obtain

- = Vo - 7

Ap I Au

Now we consider the particular case of the experiment where

u2 =O, p2 =0, uf=u=g(p) and p,=p. This gives

vo 2 p3

g(P)=

Thus we get 9p(p) from g(p) by

d p 3

= v { gp)2} (8)

However we need the system to be hyperbolic, that is
0(p) ) 0 , which is here the same as

3 g(p) - 2 p g" (p) • 0 . (9)

This is true for any increasing concave function g(p).

Moreover this system is genuinely nonlinear.

In conclusion, by taking w(p) as defined in (8) we get a

hyperbolic system whose shocks are ruled by the Rankine
Hugoniot condition (7), which corresponds exactly to the
experimental shock polar.

THE RIEMANN SOLVER

The numerical scheme will use a splitting of the system (3)
(4) into two parts: a convection part corresponding to solve

the equations

u, + u u 0 (10)

Pt 4 u P. 0 (11)

for a time increment,
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and a propagation part corresponding to

u, + v o p. = 0 (12)

v0 Pt + ((p) u = 0 (13)

also for a time increment.

For each part, the scheme corresponds to a transport

projection method. The transport step uses a Riemann solver in
each case.

For the convection part (10),(11), and starting with the

initial value

f (unpn) for x < 0 3
(u(x,0) ,p(x,O))

(- (U r , Pr) for x > 0 ,

the Riemann solver gives the value (u,p) of the solution for

x = 0 and t > 0 . We get

(u1 3 p1 ) for u1 0, ur+u 1 >0,

UrPi-U1 IPr

(up) (0,) for Ur>0, U1 (0, (14)

U r -U1

(Urspr) for U,<O, Ur+UI(O

Now for the propagation part we shall approximate any wave
by a shock wave. This is argued by the fact that for a

rarefaction wave, (u,,p,) and (UriPr) are close to one another

in practice and then to take the shock wave instead of the

Riemann invariant is a good approximation. Then we have to

approximate the value at x=0 for t)0 of the solution of (12),

(13) by (u,p) solution of the nonlinear system

p - P, = - Z(p,p 1 ) ( u - u, )
(15)

P - P, = Z(PPr) ( u - u, )

with with1 4 €(p)-$ (q)

Z(p,q) -

v o  p-q

which is known as the dynamical impedance, equal to o c , the

product of the density by the soundspeed c

379



This is solved very rapidly by starting with pO=p and

iterating

Zr = Z(P Pr) , Z, = Z(p,p 1 )

Z,P i + Z1 P r - ZiZr(Ur-u l) (16)

pV+1 =

Zi + Zr

which converges in a few iterations, and we set

Ziu, + ZrUr - (Pr-Pi)

U = (17)

Z t  + Z r

THE NUMERICAL SCHEME

We describe the numerical scheme for the two parts, the

construction of which is the same as for the Godunov scheme in

each case. We denote by h the meshsize and by At the time

increment, and we set r = At/h . On any cell

M, = ](i-1/2)h,(i+1/2)h[ with i E 2

the approximate values of the velocity and of the pressure are

constant and respectively denoted by u' and p' at t =n At.

The convection part is performed as follows. We compute

(u i+/2,pi+/2)as in (14) with ul-u', p1 =p, ur=u+ i, Pr=P'.

Then for m=n+1/2, we compute

r

U? = u- - ( (u /2) 2 
- (u_,/) ) (18)

2

which corresponds to the well known Godunov scheme for the

Burgers equation. Then we compute the pressue by

p - r (pk+,/,un+,/,-pni/,un,-/2)

P' = . (19)
1-r(u 1/ 2 ul 112 )

This last scheme is built as follows. Since (11) has not a

conservative form and since the velocity field is known by

(1!), we introduce a function a which is the solution of

a,+(au),=O with the initial data a(x,O)=l. Then ap is also

solution of (ap),+(apu),=O. Here (19) corresponds to the

computation of the rate of the projections of a and (up) on M,

after a time step At.
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The schemes (18) and (19) are stable and preserve the

variation of u and p if r is such that the stability condition

r Max(Iunl) Q 1 (20)
in

For the propagation part we start with the values uT and p7

on each cell and compute (um+,/2 ,p,+ 1 /g) as the solution of

(15) with (u,,p,) (u7,p7) and (ur,p r ) = (u7,,1 pm ). Then we

project the solution on the cells. this can be done by

computing successively

Oi = r v o  Z(p i-/s, p7)

(21)
¥7 = r v o Z(p7+1 /,p7)

uT+= 07 uT1,/2 + T uT+./, + (1-07-vT) uT (22)

Ps,= 0M. PM-,/2 + T PT+/ (1 ) P (23)

This method is stable for

0m + 10 • 1 . (24)

This condition can be improved (and replaced by OTs7, v7(1)
by solving an additional Riemann problem on each cell where

(24) is not satisfied.

Note that the computations already done by iterating (16)

can be used to obtain 07 and VT in (21).

SOME REMARKS AND CONCLUSION

The formula of projection used in (22) corresponds to the

conservation of the momentum since the variation of the
density has neen neglected. The projection of the pressure by

(23) uses the same formulabut this does not correspond to a
conservation law. However the value of the pressure is large

in practice (more than one kilobar, when u$0)and we find here
a good behaviour of the scheme and a good position of the
shock waves. This has been tested in a simulation of a shock

"iron against iron" and compared with experimental results.

Other numerical simulations have been performed . They give

results of the same quality as the one expected for the
Godunov scheme. An antidiffusion technique has been also
tested which improved efficiently the numerical results. Such

a method was described in [2].
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The quality of this scheme (with the projection of the

pressure as in (23)) is not so good for lower values of the

pressure. For example in hydrodynamics, the value p7*' needs

to be corrected by adding a non negative term of the order of

(Llu)'

The introduction of the density can be performed as follows.

the system becomes

V4 + u V - V u x = 0

Ut + U U" + V p= 0

O(p)

Pt + U P + - U" = 0
V

and the Riemann solver for the convection part is the same as

above sinc v is also solution of (11). Then we compute the

propagation part. Here the Volpert rule cannot work, for

another rankine Hugoniot than the expected one will be

derived. So we give the following sense to the product

,p + dp H( )) A ( 4(p)
6u HI (&) l u H' ())

vI + Av H() A p

which leads to the same rankine Hugoniot condition as the

shock polar. This product is meaning full in the algebra
introduced in [1]. Now a Riemann solver can be constructed

which generalized the one above. The projection must be

performed as follows

+ o +

m _

V 1" V'1-12  vI',1,,

to ensure mass conservation. To preserve the momentum we set

U*, B - + v , + (1-7-y7)

Note that (22) still works for a small variation of v which

is often the case in practice.

The same scheme as in (23) can be applied for the

pressure, and works. This method allows to get a good

behaviour of the; velocity and the pressure near a contact

382



discontinuity. As a matter of fact these parameters are then

computed without oscillations. This was not the case when the
projection uses the total energy, by mean of the specific

volume, to compute the pressure. This can be explained by the

fact that a very small variation of the specific volume leads
to a large variation of the pressure in elastodynamics. Then

any perturbation of the specific volume, which appears

necessary near a contact discontinuity, produces oscillations

in the pressure profile.
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SUMMARY

A new upwind method called Kinetic Flux Vector Splitting
(KFVS) has been developed for the solution of the Euler
equations of gas dynamics. This method is based on the fact
that the Euler equations are the moments of the Boltzmann
equation when the velocity distribution is a Maxwellian. It
is shown that the KFVS is a suitable moment of the Courant-
Isaacson-Rees (CIR) scheme applied to the Boltzmann equation
and further that it is equivalent to the flux-difference
splitting approach. It can also be regarded as a Kinetic
Theory based Riemann solver. The KFVS has been combined with
the TVD and UNO formalisms and its application to the test
case of one-dimensional shock propagation has been shown to
yield accurate wiggle-free solution with high resolution.

INTRODUCTION

The one-dimensional unsteady Euler equations are

ao/at + aG/ax = 0 , (1)

where U - [p, pu, pe] , G = [pu, p+pu 2 , u(pe+p) ]T (2)
p = mass density, u = fluid velocity, p = pressure

and e is the total energy per unit mass. These equations can
be obtained as the moments of the Boltzmann equation, that is,

<4j, aF/at + v aF/3x> = 0 , (3)

where 4) = moment function vector = [1, v, I+v2/2]T ,

F - Maxwellian velocity dis~ribution
- (P/I0 v'27rRT) exp[(-(v-u) /2RT)-I/I0] , (4)

v = molecular velocity, I = internal energy varible
corresponding to the nontranslational degrees of
freedom, T = temperature, R = Gas constant per unit
mass, and I0 a [(3-Y)/((Y-1)2)]RT, Y - ratio of
specific heats, and the inner product <qi,F> is defined
by

+W 00

< -,F> a fdv fdI4)F . (5)
-w 0
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The vectors U and G in terms of the inner product are

U = <I,F>, G = < ,vF> = <v$,F> (6)

The equation (3) is the basis of the KFVS method.

ANALYSIS

In case of one-dimensional unsteady flows, the Maxwellian
can be split into two parts corresponding to v>0 and v<0. The
flux vector G therefore splits as

G+ = <t,((v+Iv)/2)F>, G- = <W,((v-lv!)/2)F>. (7)

The split flux vectors G+ and G- are integrals of vF over
positive and negative half spaces in velocity varible
respectively. They can be evaluated in closed form in terms of
error functions as

+_ 2

GI + pu(l+erfS)/2 t Pe-S /(2/-),
2

G = (p+pu2)(1±erfS)/2 ± pu e - /(2/O) ,
3 (8)

G3 - (Ypu/(y-1) + pu /2)(1±erfS)/2
_2

±((y+1)p/(2(y-1)) + pu2 /2) e- /(2/i) ,)

S = uv/ , = 1/(2RT) . (9)

In terms of split flux vector (1) can be written in the form

DU/at + aG+/3x + aG-/x = 0 (10)

Upwind differencing the split-flux terms in (10) we obtain the
first-order accurate KFVS

(aU/at)j + (G-+j 1 )/Ax + (G j+-Gj )/x (11)

where the superscript n corresponds to time level tn +and j is
any mesh point along x-axis. Substituting for U, G and G-
from (6) and (7) we obtain

3<,,,' >/3t + <tT,((v+Iv )/2)(Fn-F j I)>/Ax

+ <q,((v-jvI)/2)(Fn Fn)>/AX 0
J+1 j

from which it is evident that (11) is a 0-moment of the CIR
differenced Boltzmann equation

(3F/,t) n + ((v+lvl)/2)(Fn_,n_1 )/Ax

+ ((v-lvl)/ 2 )(Fn+1-F; )/Ax = 0 . (12)

Now an interesting question arises whether the KFVS scheme
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(11) which is obtained from (12) remains an upwind scheme
after the moments are taken. It can be very easily verified
that the Jacobians 3G /3U, G-/3U have complex eigenvalues
having real positive and real negative parts respectively.
However, using the theory of (I] and [2] it can be shown that
the split-flux Euler equations (10) can be transformed to the
symmetric hyperbolic form

P aq/at + B + aq/ax + B- aq/ax = 0 , (13)

where q s a transformed vector, P is a positive symmetric
matrix, B and B are positive and negative symmetric matrices
respectively. In [2] P- B and P- B- have been shown to have
real positive and real negative eigenvalues thus confirming
the upwinding property of the scheme (11). It is also observed
that the eigenvalues are smooth functions of the Mach number M
and have no sonic glitches which are present in Stager and
Warming flux splitting [3]. The eigenvalues of P- B- (see
Fig.1) decrease to very small values as M becomes increasingly
supersonic, while the eigenvalues of P -B+ (see Fig.2) tend to
those of P-1B (see Fig.3) as M +1. It is interesting to note
that though this splitting also leads to split fluxes whose
Jacobians (in symmetric hyperbolic form) have positive and
negative eigenvalues, it has been performed in a completely
different manner compared to that of Steger and Warming [41.

It is interesting to observe that (12) can be written as

(F/t) i  + v(F 3 1 2 -Fj i 2 )/tx = 0 , (14)

where F+/ +1 for v>0/ and Fn v<,J+1/2 = J+1/2, a +/2 foJ1/

and F +/ 2 , F +I 2 are the velocity distribution functions

immediately to the left and the right of the interface j+1/2

respectively. The equation (14) reduces to (12) by taking
F L  j FR F(5
F+1/2 = J, F+/ 2 = Fj+ 1 . (15

The 4-moment of (14) gives the corresponding differenced Euler
equations as

(aU/at) + G n G n_  ) /Ax= 0 . (16)

Obviously, Gn  G(UnUn G (Un) +G(U+
J+1/2 m GUjj+I J+

The KFVS scheme is therefore a 4-moment of the Riemann solver
for the 1-D wave equation

aF/at + v aF/ax = 0

Another interesting property of the KFVS is that it is
equivalent to the flux-difference splitting approach. For
demonstrating this equivalence we observe that

vFJ+1/2 = ((v+Ivi)/2)F3+i/2 + ((v-lvl)/2)F3+l/2

= ((v+Ivl)12)F + ((v-lvl)/2)F3+ , using (15)
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V r -

Therefore

vFj+1 / 2 = v (Fj+Fj+1 )/2 - jvj (Fj+I-F)/2

= v(+F j+ )/2 + ((v-lvl)/2)(F j+1-F )/2

- ((v+Ivl)/2)(F j+1-F )/2 ( (17)

Taking tP-moment of (17) we obtain

GJ+1/2 = (Gj+Gj+ )/2 +(DGj+I/2-DG+ 1/2)/2 , (18)

where the flux-differences are defined by
+

Dj+/2 - <,',((v±Ivl)/2)(F -F )>. (19)
JD1/ - j+1- j19

The extension of the first-order KFVS to higher order schemes
can be done in many ways. A method adopted here is based on
the analysis of Chakravarthy and Osher [51, that is, define
the flux vector GJ+1/2 by

G = EFS +[(1+)(DG + 2 DG
J+1/2 J+1/2- J+1/2~

+ (1-$)(DG_ 1/2 -DG +3 /2 )]/4 . (20)

where EFS stands for Expression for First-order Scheme and is
equal to the right hand side of (18). The parameter takes on
respectively the values -1 and 1/3 for second- and third-order
accurate upwind schemes. As higher order schemes are known to
have spurious wiggles in the solutions, modified differences
[5) , [6] can be introduced to suppress the wiggles. The
modified differences are given by

+ +
G+I/2 = minmod[DG1 +l/ 2 ' R.DGj- 1 / 2 l (21)

-± =+ RD+ ,(2

Gj+±/2 minmod[DGj 2  R.DGj3/2 22

where minmod[a,b] = 0.5[sign(a)+sign(b)] min[lal,Ibj], (23)
sign(a) = +1 for a>0

-1 for a<0
0 for a=0

O-R-I_ (3-)/(1-4)

The modified expression for GJ+I/2 to be used instead of (20)
is therefore given by

GJ+1/2 = EFS + [(1+l)(5G;+1/2-BGJ+1/2)

+(1-0)(BG _- G 3  )1/4 . (24)
In terms of L j+3/2

FJ+1/2 J+/2 the various order accurate KFVS

methods correspond to the choices :

(a) First-order scheme

F +1/2 j+1/2 = FJ+1
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(b) Second-order(4-1) and third-order(i-l/3) schemes

F L F + [(1+)DF4 1/2 + (1-$)DF _1/42]/
J .J+1 J (25)

F R - [( )DF+ + (1-$)DF 1/4
J+1/2 j+1 J+1/2J3/

where DFJ 1/2 m F j -F .

(c) Schemes with modified differences

FL F + (11%F * (1-)BF 1/4J 1F2 +i L Dj+1/2 J-1/2 (26)

F R/2 j+1 - ((1+4)BFj+ (1-0)& ]/F+ = F j+12 + j+3/2

where
DFJ 12 = minmod[DF J 11 R.DFJ 2 ]  ,27~ /2(27)

BF J1/ 2 * minmod[DF J1/2' R.DF J+3/]

TVD and UNO interpolation

At this stage it is important to make a few remarks about the
TVD property of the above schemes. Defining the TV norm of F
by +7

TV(F) =f jaF/DxI dx.

We can easily prove that the first-order scheme described by
(14) and (15) is TVD if the Courant number Iv At/Axi is
less than unity . This condition introduces a cut-off
- Ax/At,;v jAx/At in the velocity space. For taking moments
of F (and this is always done in the present formulation) the
velocity has to vary from -- to +- , and hence the TVD
condition is violated for velocities beyond the cut-off
bounds. However, the contributions from these velocities to
the 4p-moments become negligibly small as At-' O because of
the exponential decay of F. It is therefore reasonable to
expect that the moments will still be wiggle-free if At is
kept sufficiently small. Similar remarks will apply to the
higher order accurate schemes (25) and (26).

Since TVD formalism has inherent mechanism to degenerate
to first-order accuracy at extrema, another technique called
UNO (Uniformly accurate essentially Non-Oscillatory)
interpolation (7] has also been adopted together with the KFVS
method. UNO interpolation is based on the Newton polynomial.
Here instead of using fixed stencils as in TVD, adaptive
stencils are used and this way higher order accuracy right
upto the discontinuity is possible [7]. Suppose n-th order
interpolation is used. Then there are n stencils possible for
the n-th order polynomial to be fitted to data including the j
and J 1 mesh points depending on the upwinding requirement.
Choices are made among these stencils that give the smoothest
polynomial using the criterion given in [7]. Advantages of
the use of this sort of interpolation is that divided
differences can be constructed recursively which will be
consistent with the above criterion and the numerical scheme
can be extended to any order of accuracy. The UNO
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interpolation has been used along with the KFVS method at the
Euler level.

RESULTS AND DISCUSSION

Fig.4 shows the results of the shock-tube problem solved
by using various order KFVS schemes. The higher order
accurate KFVS schemes with modified differences show
progressive improvement over the results of the lower order
schemes and have very good agreement with the exact results.
The near absence of wiggles do indeed confirm the validity of
the arguments given before. Fig.5 shows the results of the
third-order KFVS with UNO interpolation. Also on the same
figure the results of the third-order TVD scheme have been
plotted for the purpose of comparison. One can notice that
the UNO method gives comparatively higher resolution as
expected.
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MONTE CARLO FINITE DIFFERENCE METHODS FOR THE SOLUTION
OF HYPERBOLIC EQUATIONS

Guillermo Marshall
EPFL, GASOV Group

1015 Lausanne, Switzerland.

ABSTRACT

A new class of stochastic finite difference methods for
the solution of hyperbolic partial differential equations is
introduced. They are monotonicity preserving, unconditionally
stable and grid free. The numerical results presented show the
convergence of these methods. They also evidence the
simplicity, robustness and universality of the Monte Carlo
approach.

INTRODUCTION

The aim of this work is to extend the use of
probabilistic models to the numerical solution of nonlinear
hyperbolic partial differential equations (for nonlinear
parabolic and elliptic equations see [5]). A probabilistic
model related to a differential equation is any procedure which
involves the use of sampling devices based on probabilities to
approximate its solution. A probabilistic model uses stochastic
processes, that is, a sequence of states whose transition is
governed by random events. The type of stochastic process under
consideration is commonly called a random walk.

The conexion between probabilistic models and certain
linear differential equations of mathematical physics dates
back to the works of Lord Raleigh, Einstein, Langevin and many
others, it originated the models at present known as random
walk or pedestrian models . In particular, the relation of
random walks to linear hyperbolic equations was established in
1938 by Polya who introduced a random walk method for an
hyperbolic equation studied by Albert Einstein Junior.
Mathematical interest was further stimulated by the work of
Kolmogorov who found the relation between stochastic processes
of the Markov type and certain integro differential equations.
The name Monte Carlo was given to these probabilistic models by
von Neumann and coworkers at Los Alamos Scientific Laboratory
in the mid forties, but became widely known only after the
article of Metropolis and Ulam in 1949 (see references in (5]).

The main advantages of linear random walk models are that
the solution at a point can be estimated independently of the
solution at other points, and that the dependency of
computational time on dimensionality is weak. The main
disadvantage is that the convergence is proportional only to
I/sqrt(N), where N is the number of random walks.

The conexion between probabilistic models and nonlinear
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hyperbolic systems was established in [3). A new class of
stochastic methods for the solution of nonlinear hyperbolic
equations based on [3), the Random Choice Method (RCM), was
introduced in [1]. The RCM is a numerical technique consisting
in sampling local exact solutions of Riemann problems. To avoid
the inherent difficulty in finding local exact solutions, an
approximate Riemann solver was presented in [4] and [2], these
methods however, are only valid for scalar conservation laws.
The main advantages of these type of stochastic methods are
that they are grid free, unconditionally stable and give high
resolution near sharp fronts at a modest price.

The stochastic methods for nonlinear hyperbolic equations
introduced here are a natural extension of Monte Carlo linear
random walk models. They consist in sampling local exact
solutions of finite difference schemes; in this context they
are located between the RCM and plain deterministic finite
difference schemes. Following this reasoning we have
generically called them Monte Carlo Finite Difference Methods
(MCFDM in short) rather than random walk models.

One of the main advantages of the MCFDM for linear
hyperbolic equations, namely, that the solution at a point can
be estimated independently of the solution at other points, is
lost for nonlinear problems due to the inherent global nature
of the problem. However, other advantages become extremely
important: grid independency, unconditional stability and
oscillation free. In brief, MCFDM share many of the good
properties of RCM. The rate of convergence of MCFDM can be
greatly improved by appropriate variance reduction techniques.
Moreover, the advent of massively parallel processors
stimulated the application of these methods because the
parallel environment architecture is ideally suited for the
Monte Carlo approach.

MONTE CARLO FINITE DIFFRENCE METHODS FOR NONLINEAR
SCALAR HYPERBOLIC EQUATIONS

In this section we introduce the MCFDM for the solution
of nonlinear scalar hyperbolic equations using as a model
problem the Burgers inviscid equation. Consider the hyperbolic
equation

ut + F(u)x = 0, 0 S x : 1, t > 0 (1)

with F(u) = u 2/2, u > 0, and with initial conditions

u(xi,0)=g(Q), 0SXI, t=O, (2)

and boundary conditions

u(O,t)=f(Q), u(l,t)=f(Q), t>O. (3)

For solving this problem with a deterministic model, for
instance a finite difference method, we discretize the domain
and the boundaries with a rectangular grid of width h and
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height k. h and k denoting the space and time steps,
respectively. We denote by Piinternal nodes and by Q. boundary

nodes (by boundary nodes we mean initial or boundary nodes).
The approximate solution at node Pi=P(xi) and time tn=nk is

denoted un (Pi). An explicit finite difference analogue of

equation (1) at an internal node P0 (with P1 and P2  its left

and right neighbours, respectively) of the domain, reads
n+1 i=2n

un(P0) = E ai (P0 ) un(P i) (4)i =0

where the coefficients ai(P0 ) depend on the particular scheme

being chosen. For the Lax scheme, for instance, a0(P0)=0,

a1(P0)=(1+q 0 /2), a2 (P0 )=(1-q 0 /2), where q0=u0 k/h, and for the

Godunov scheme, a0 (P0)=l-q0 , a1(P0)=qo, a2 (Po)=O, where

qo=0.5(uo+un)k/h. Similar expressions can be obtained for the

Wendroff implicit scheme. Equation (4) can be written in matrix

form as Un+i =P Un+D, where P is a tridiagonal matrix readily
derived from (4). Stability in the L2 norm is satisfied if the

spectral radius p(P) of the matrix P lies inside the unit disk;
this is ensured if the CFL condition is fulfilled. Convergence
of the method follows.

We now consider the stochastic model for (1) in the realm
of finite Markov processes. For this we impose the following
restrictions

i=2
E ai(P) 1 and ai(P0 0 (5)
i=O

which are necessary for probability assignment. It is worth
observing that in principle it is not possible to associate a
Markov process to an hyperbolic equation since its difference
approximation yields negative coefficients not allowing
probability assignement; however, since every monotone finite
difference approximation to a hyperbolic equation is first
order accurate and hence, is a second order approximation to a
parabolic equation, the MCFDM is then justified. Moreover, in
nonlinear problems the transition probabilities are unknown
apriori since they are function of the unknown solution, thus
we are forced to estimate the latter to calculate the former. A
discrete Markov process or Markov chain is defined to be a
system S consisting of a finite set of states Si , at each of a

sequence of discrete times t=0, 1, 2,.., n the system S is in
one of the states S. The state S. determines a set of

1* 1
conditional probabilities pij, the quantity pij is the

probability that the system which, at the time n is in the
state Si, will be in the state S. at the n+1 time, clearly, pi
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is the probability of the transition Si  to S. The
characteristic property of a Markovian process is that pij only
depends on the current state Si and is independent of the

-previous states of the system. The set of all conditional
probabilities pij forms a stochastic matrix P which completely

determines the properties of the given chain. The state Si is

said to be an absorbing state if the system S remains in this
state with probability one, the states Siand S, are said to be

linked if there is a non-zero probability that Si may attain S.

in a finite number of time steps and finally, a Markov chain is
said to be terminating if each of its states is linked to an
absorbing state. It follows that if a finite Markov process is
terminating it attains an absorbing state with probability one,
in a finite number of states. We can now associate the set of
states Si of a finite Markov chain with the approximate

solution at the nodes of the domain on which the finite
difference is defined, the internal nodes corresponding to
transient states and boundary nodes to absorbing states. The
coefficients ai (PQ) of the difference equation (4) can be

associated with transition probabilities pij in the Markov

chain. Consider now the following random walk procedure. Let PO

at time tn+1 be the current state of an hypothetical particle

and Pi. i=1,2, the next possible states at tn, reached in the

unit time. The transition from PO at tn+ 1 to Pi at tn occurs

with probability a i(P ) according to the following formula

Un)(P1  if 0 i aP 0 )

Un+l(Po)= un(P O )  if a1(Po)5 i aI(Po)+a 2(Po) (6)

un(P 2) if a1 (P0 )+a2 (P0 ) : ti 5 1

where a point falls at random in the interval [0,1) with
coordinate ti picked from a uniform distribution in the range

[0,1). We call expression (6) a Monte Carlo Finite Difference
Scheme, it satisfies the finite difference equation (4) but not
its boundary conditions. For this we need the following
considerations. If u(PoQ ) denotes the probability of ending a
random walk at a boundary Q having started at POP the

expectation of the boundary values reached is given by
j=s

V(P0 ) = E u(PoQ.) f(Q.) (7)

where s is the total number of boundary nodes. It can be shown
that V(P0 ) satisfies the finite difference equation (4) and its

boundary conditions (see details in [5)). For estimating
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u(PoQ ) we simulate N times the random walk starting at PO and

counting the number of times n in which a boundary node Q. is

reached. An approximation of (7) is given by

V1 )M:j=s j=s
(PO  E n/IN f(Qj) 1N E nx t f(Q) (8)j j=1 j=j

The last summation is the average of all the boundaries reachedafter N random walks. It can be shown that the expectation of

this average is u(P0) and by the law of large numbers this

average converges to the exact solution of (4) for increasing
values of N. For the construction of the stochastic model the
random walk begins at a node PO of a time level tn+ 1 for which

the solution, at the previous time level and for all grid
nodes,is known. Here a random walk consists in one random step
since after it a boundary node or absorbing state is inevitably
encountered. Implicit in this procedure is the fact that the
unknown transition probabilities have been estimated using the
solution at the previous time level; obviously the solution is
calculated for all nodes at each time level.

Formula (6) can be written in matrix notation as
U n+=pUn +D where P is a tridiagonal matrix whose elements are

the set of all probability transitions ai(Pi). Stability of the

MCFDS can be established in the L2 norm if the spectral radius

p(P) of the matrix P is inside the unit disk. Since the mktrix
P is a stochastic matrix and by definition its spectral radius
is equal to one, it follows that the MCFDS is unconditionally
stable.

To reduce the variance we have used the following
strategy introduced in [1]. The interval [0,1] is subdivided
into m 2 subintervals, Z1 is picked in the first subinterval, C2

in the second, etc., Cm2+1 in the first subinterval, i.e.,

C = (i+T'i+)/m2 The subinterval ordering is obtained with
)i+1 =(Yi)+m )mod m 2, where m, i 2 , m <m2 are prime integers,

)o<m2 and YO given. It is clear that since only one Ci is
picked per random walk, after m2  random walks, m2  random

coordinates C have been picked and each one on a different

subinterval. With this procedure the sequence of samples C*

reach approximate equidistribution over [0,1] at a faster rate.
Numerical experiments presented below show a significant
improvent using this technique as compared with simple
sampling.

The MCFDM can be easily extended to hyperbolic partial
differential equations in any number of dimensions, the only
constraint being the satisfaction of the stochasticity
conditions given by expression (5).
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MONTE CARLO FINITE DIFFERENCE METHODS FOR HYPERBOLIC
SYSTEMS OF CONSERVATION LAWS

In this section we introduce the MCFDM for the solution
of one dimensional homogeneous hyperbolic system of
conservation laws. This system can be written as

Ut+F(U)x=O, (9)

where F(U) is a flux density, U is a vector valued funcion and
x and t are the space and time coordinates. A simple example is
provided by the one dimensional shallow water system (or
isentropic gas flow) which is given by (9), where U = { uh,h },

F(U)={u 2+gh 2/21, here u is the water velocity, h is the depth
and g is the gravity. System (9) can be written in
characteristic form as

Wt + A Wx =0, (10)

where now W = { r, a } and A = diag { (3r+s)/4, (r+3s)/4 }, r
and s are the Riemann invariants: r= u+2C, s=u-2C and
C=sqrt(gh) (see details in [6]). An explicit finite difference
scheme is given by

i =2
Wn+(PO) = E aiPO) W) (1)

i=O

Using a Godunov type scheme and assuming superoritical flow

(for instance), a0(P0)YI-k/2 A(P0 ), a1 (P0 )=k/2 A(P0 ) and

a2 (P0 )=O. The numerical method consists in solving the shallow

water system for the Riemann invariants, recovering then the

primitive variables with the formulae: h=(r-s) 2/(16g) and
u=(r+s)/2. Similar arguments as those used in the scalar case
show that formula (11) is stable if the CFL conditio. is
satisfied.

For the construction of the stochastic analogy we need to
satisfy the stochasticity conditions given by expression (5)
but now for vector valued functions. Thus a Monte Carlo Godunov
Scheme for system (10) can be written as

Wn(p 1 )  if 0 5 ni : al(Po)

Wn+I(Po) { wnf(P 0 ) if aI(P 0 )5 ni S a1(P0 )+a2 (P0 ) (12)

Wn (p2 ) if a1(P0 )+a2 (P0 ) S ?iS I

where now ni= {Cis 2}i and C1 and C2 are picked from a uniform

distribution in the range (0,1). With similar arguments as
those given for the scalar case it can be shown that the MCFDM
just described is unconditionally stable.
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NUMERICAL RESULTS

In this section we present some results obtained in the
application of the MCFDM to scalar and hyperbolic system of
conservation laws. In figures 1 and 2 we present the results
obtained with the Monte Carlo Godunov method in the solution of
the Riemann problem constituted by the Burgers inviscid
equation (1) with the following initial data: u(x,O)=u 1=2 for

x<O and u(x,O)=ur=1 for x>O. The exact solution is given by

u(xt) u1 for x < s

u for x > sr

where s=1 /2(u1+ur)=
3/2 is the shook propagation speed. The

local CFL conditions at the left and right of the shock are
CFL=k/h<i/2 and CFL=k/h<1, respectively, while at the shock is
CFL=k/h<3/2; the critical CFL is then CFL r=1/2. Figure 1 shows

the exact and Monte Carlo Godunov solutions for t=O and
t=0. 1172 using the CFLor* Characteristics at the left of the

shock travel at the correct speed but the shock is smeared. The
results of the Monte Carlo method coincide with those obtained
with the Godunov deterministic scheme. In figure 2 we present
the results of the Monte Carlo Godunov method for the same
problem but now using a CFL=3/2=1.333 CFL or. For this value the

stochastic solution coincides with the exact solution while the
deterministic scheme is unstable. This remarkable result has
been obtained violating the stochasticity condition and thus
the consistency of the Markov chain (except at the
discontinuity) and is due to the fact that the Monte Carlo
method is unconditionally stable. More specifically: the Monte
Carlo Godunov scheme is given by

n+1 un (P1 ) , 0 < zi < a1(P0 ) (13.a)unl
u(Po0)= un(P0 )  al(P 0 ) < ti < a1 (P0 )+a2 (P0 ) (13.b)

n+1 n
a1(Po)=1, a2 (Po)=O and u(Po)=u(P I) with probability one. At the
left of the shook q0=4/3, a1(Po)=4/3 > 1 and a2 (P0)=-1/3 < 1,

which is not consistent. However, since the condition (13.a) is

n+1 n
checked first and because a1 (P0 ) > 1, u(P0 )=u(P I) with

probability one. This has no consequences here because of the
initial data involved; had we been dealing with initial data
constituted by a rarefaction wave, the violation of the CFL
condition would have produced a spurious constant state. For
the particular problem discussed here the Monte Carlo Godunov
method has infinite resolution.
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Figures 3 and 4 show the results obtained with the Monte
Carlo Godunov method (12 ) in the solution of the Riemann
problem constituted by the shallow water system (10) with the
following initial data: r(x, 0)=r 1 =20, s(x,O)=s1 =-20, for x<O

and r(x,O)=rr=8, s(x,O)=sr=-B,for x>O; these data corresponds

to the dam breaking problem with initial conditions hi=10.2,

hr=1.8 3 and ul=ur=O. The exact solution in the primitive

variables is given by a constant state separated by a right
shook and a left rarefaction (see details in [6]). Figure 3
shows the Monte Carlo Godunov solution for the Riemann
invariants r and s, initially and 40 time steps later. Figure 4
shows the corresponding results for the depth and velocity.
These run were made with a time step corresponding to the
critical CFL condition, a grid of h=1/256, 110 random walks per
node and stratified sampling. The Monte Carlo results coincide
with those obtained with the exact solution (not shown here).
The sharpness and non oscillatory character of the solution are
noticeable.

CONCLUSIONS

A new class of stochastic finite difference schemes for
the solution of nonlinear hyperbolic systems of conservation
laws has been introduced. It is based on exact solutions of
finite difference schemes and sampling techniques . Its main
advantages are that it is unconditionally stable and grid and
oscillation free. Numerical results show the convergence of
these methods. For certain data, the MCFDM possess infinite
resolution.
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NUMERICAL SOLUTION OF FLOW EQUATIONS

AN AIRCRAFT DESIGNERS VIEW

Josef Mertens, Klaus Becker
Department of Theoretical Aerodynamics

MBB-UT, TE 212, Hunefeldstr. 1-5, D-2800 Bremen I

SUMMARY

Today the most accurate and cost effective industrial codes used in
aircraft design are based on the full potential equation coupled with
boundary layer equations. However, these are not capable to solve
complicated three-dimensional problems of vortical flows and shocks. On
the other hand Euler and Navier-Stokes codes are too expensive and not
accurate enough for design purposes, especially in regard of drag and
interference prediction. The reasons for these deficiencies are investi-
gated and a way to overcome them by future developments is demonstrated.

NOMENCLATURE

a speed of sound p pressure
ao stagnation speed of sound R special gas constant
dA element of surface aV s specific entropy
dive. div. in plane normal to n t time
DM. wave operator at Mach cone T temperature
Dp. wave operator at path line * space-time velocity,

stationary: v* = v
D_. substantial derivative X space velocfty ~
OT v, normal component of velocity
V surface of V v-101 := (- Vshock) " shock

e specific inner energy yjX tangential part of velocity
F flux V control volume
ho specific stagnation enthalpy ' ratio of specific heats

space-time like normal vector X Riemann invariant
space like part of n* p density

DEFICIENCIES OF MODERN NUMERICAL METHODS

In the aerodynamic design of modern aircraft, especially transonic
transport aircraft, numerical methods became one of the most important
design tools. The mayority of the codes used nowadays relies heavily on
the experience gained with the elliptic subsonic potential equation. To
make possible a solution of transonic flows, conditions were introduced to
enforce numerical stability. Even today, the most accurate codes for drag
prediction are full potential codes coupled with a boundary layer method.
Often viscous effects strongly influence the solution (Fig. 1: shock/
boundary layer interaction, rear loaded profiles, transonic wakes). The H-
type grid enables an accurate coupling of the inviscid and viscous
solution including the wake, and an easy capture of normal shocks [4].

These codes are restricted to two-dimensional or nearly two-dimensional
flow problems because they cannot capture the typical three-dimensional
effects (Fig. 2: unknown three-dimensional shocks, free vortices, wake
interferencies, nacelle and jet interferencies, rotational flow fields).
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Fig. 1: Transonic airfoil calculation

Fig. 2: 3D-flow problems around transport aircraft

For aircraft having low aspect ratio wings the older methods are complete-
ly insufficient: the flow field is dominated by vortex systems; at higher
Mach numbers the steep entropy gradients and real gas effects do not allow
a potential approximation.

"

0..-- .... _.o....
0.2 0.4i 0.6P' 0 1'

X/C

Fig. 3: Relative loss of total pressure on a midwing airfoil
(Solutions of two different 3D Euler codes)
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On the other hand Euler and Navier-Stokes (NS) codes are available, with
it should possible to solve these problems (8]. Figs. 3-8 show some
typical 3D-results of two modern Euler codes representing the state of the
art. Oue to smearing and wiggles shock location and strength cannot be
determined accurately (Fig. 3). At the leading edge spurious pressure
raises resp. entropy losses occur which partly vanish downstream; the
trailing edge solution produces similar errors.

Inviscid wave and induced drag can be determined by pressure integration
in the direction perpendicular to the free stream. It is given as the
small difference of the large areas enclosed by the pressure curves (Fig.
4); errors result mainly from incorrect pressure computation at leading
and trailing edges.

c*0.

MACH- 0.78

ALPKR- 2.24 6-

-0.06 -0.06 -0.0 ,0 0C4 0.0 6 0. 0D

z c

Fig. 4: Inviscid drag by pressure integration
(Solutions of two different 3D Euler codes)

Fig. 5: Absolute value of vorticity, streamwise direction
(3D Euler solution)
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Fig. 6: Relative loss of total pressure, streamwise direction
(3D Euler solution, values 0.005)

Another possibility is to calculate wave drag from the entropy rise at the
shock and induced drag in the Trefftz plane. This requires accurate shock
determination and vorticity transport; both are not sufficiently resolved
by current codes (Figs. 5/6).

Another important problem is interference caused by vortex systems, the
computation of which should also be possible by Euler and NS solvers.

Fig. 7: Absolute value of vorticity, wake behind wing (3D Euler solution)

Fig. 8: Total pressure loss, wake behind wing (3D Euler solution)

Figs. 7,8 were to show only the inviscid wake and shock vorticity of an
Euler solution. Partly vorticity occurs at the physically known places.
But obviously, additional vorticity is generated by grid properties, is
smeared out, and in the downstream direction the vorticity content [3]
diminishes rapidly. So these codes are not yet able to solve this problem
with the accuracy needed for effective aircraft design.

Looking at computing costs the Euler (and NS) codes are surprisingly
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expensive: Today's Euler codes still need grid sizes comparable to those
of full potential codes. But the required pressure or velocity values are
directly obtained as solutions of the Euler equations. Therefore a much
coarser mesh should yield the same accuracy as for potential solutions,
which produce an order one loss of accuracy by numerical differentiation
of the potential function. Moreover - because of the required degree of
continuity - additional difficulties occur for potential solvers in
regions of strongly varying solutions. Therefore important accuracy and
cost improvements of future Euler (and NS) codes can be expected.

The viscous nature of real flow may lead to assume that difficulties could
be overcome by using the NS equations. However, since the errors mentioned
are generated by the numerical method and not by the equations, an
improvement appears possible only by proper formulation of the algorithms.
Especially for high Reynolds number flows the Euler terms remain essential
in the NS equations; they completely describe the flow field away from
body surfaces or wakes. Therefore solving the NS equations will only be
possible by accurately solving the intrinsic hyperbolic Euler equations;
their numerical treatment by field methods will be discussed here.

It is well known, that the errors in numerical solutions are generated by
numerical smearing, amplification and artificial damping, but it is diffi-
cult to localize the hidden sources of these effects. We will try to iden-
tify some of them and to show possibilities to overcome them. The facts
presented are well known, but not fully respected in numerical methods.

The development of numerical field methods is made in five steps:
- Selection and analysis of the governing equations,
- Selection of a point distribution or grid to represent the flow field,
- Approximation of solution values between grid points,
- Formulation of the boundary conditions defining the special problem,
- Mathematical solution algorithm.
In the next sections only the first three points are discussed for the Eu-
ler equations as an example of systems of nonlinear hyperbolic equations.

GOVERNING EQUATIONS

The well known Euler equations are

P + Pdiv v = t + div (pv) - 0Dt

PPA +  grad (1)

Dt deep = T s = 0
Ep9- + p div X - PD- P -" = p T 21-T 0

=t ot P Dt Dt

Hyperb.lic differential equations have real directions with undefined
derivatives. For the Euler equations (1) these directions are the direct-
ions fl normal to the path lines and normal to the Mach cone:

path line: -0,
(2)

Mach cone: V*.m* = -a

All solutions of hyperbolic systems, except the trivial ones, are defined
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by jumps of (sometimes higher order) derivatives. The possible discontin-

uities are (depending on the selected set of dependant variables) e.g.

across the path line: all variables except P, vn v

across the Mach cone: 1. derivatives of p, (y.,n) ,
(3)

across shocks: all variables except Xt, Pvn,, , P + pv , d • vn

p(e + T2 ) V.'*1 + P vn

The path line and wake discontinuities are connected with vortices and
occur even in steady subsonic flow. The Euler equations can generate
wake discontinuities only at shocks or boundaries, but they completely
describe their transportation along path lines.

In elliptic problems the polynomial order of the Taylor approximation is a
quality measure for the discretization. For hyperbolic problems this is
only true for regions with very smooth solutions. In the physically more
interesting zones different kinds of discontinuities are significant;
especially here the solution cannot be expanded into Taylor series.

Normal to the directions Q! of possible jumps there exist corresponding

directions of wave propagation with the associated wave operators:

path line v* : Dp. := D- := + (v.grad). ,Dt J Ti(4)
Mach cone v*+a!: D. :=D + a (.grad).

The continuous part of the solution is defined by the set of compatibility
conditions of characteristics theory, e.g. (depending on variables)

along path line: E DP s = 0 ,

p() - v •grad p ,2 P -(5)
along Mach cone: M (.n) + - DM p + a div n  = 0

(div n X : div v taken in the plane normal to p).

These conditions are special combinations of the governing equations (1)
which are valid everywhere except across shocks. But only in the direct-
ions of the corresponding characteristics they describe continuous wave
propagation although continuity is not required for each single term.

Along the path line entropy (and in steady flow stagnation enthalpy) is
convected, without any continuity required in the transverse direction.
For vortical flows the correct calculation of vorticity transport is
substantial; but this is described only indirectly by convection.

Important for numerical treatment is, that the hyperbolic solution is
exclusively defined by jumps of derivativs across the characteristics and
in certain cases as jumps of the solutions themselves.

Referring to integral formulations instead of differential equations,
it is possible to capture all discontinuities within one cell for
one-dimensional problems, because fluxes may be treated as unknowns.
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E(U).n dA =rhs

Fig. 9: Finite volume

C- Jpe+ )dV = [(

NJ-, (pX) dV = j~ (pv (yX.j) + p p~ d (6)
V

E f -PeI-]V Pe.2 + -P)_vp) dA
V 2-~ pP+~.]V pe

This normally fails in multidimensional cases since the fluxes are tensors
one degree higher than the flow variables. Therefore fluxes are computed
by surface integration and their values have to be calculated from a usual
set of variables. However, the values of these variables are only known at
distinct points and not at the whole boundary. This must be overcome by
interpolation assumptions which often are inconsistent with the discontin-
uities. Therefore a combination with other techniques is recommended which
will be described later.

The selection of unknowns has a strong influence on numerical properties.
For the Euler equations the so-called conservative variables yield shock
capturing capability to finite difference schemes, but are normally
working well only for one-dimensional cases. For finite volume schemes
based on the surface integral equations (6) instead of the differential
equations, it is not necessary to use the conservative variables for shock
capturing. The only important condition is, that the equations do not
contain production terms.

Using conservative or primitive variables, the set of differential
equations is strongly coupled. For numerical reasons and for consistency
it is desirable to decouple the system of equations. This is at least
partly possible by using a different set of variables. A complete
decoupling is provided by Riemann invariants if they exist; unfortunately
they usually do not exist. But often it is possible to construct a system
of equations with weaker coupling and weaker nonlinearities, using the
knowledge of Riemann properties of simpler cases. Choosing velocity,
speed of sound and entropy as variables leads to a set of only mildly
coupled and nearly linear compatibility conditions. Wave transportation is
described by the wave operators D (4). The nonlinearity is restricted
to the determination of the wave operator's characteristic direction and
the right hand terms:
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along path line: E Dp s = 0

n n Dp () = X [T grad s - 1 grad (a2 )]
'(transient) D 2 ~

v.N Op (a)-a 2)_-Y1Ta
(quasi stat.) a t T (7)

along Mach cone: OM (-L a + = -- Dms- a div. X.

If we locally construct for each grid plane Riemann invariants by combi-
ning velocity and speed of sound, the weakest coupling of compatibility
equations is obtained [1, 5]. This is implemented by using two differing
normal vectors [7].

X( := --La+( ) = (8)

It is well known that for isentropic plane waves the equations are comple-
tely decoupled. However, this set has no shock capturing capability.

SELECTION OF REPRESENTATIVE POINTS

Wave directions

Fig. 10: Numerical grid

In most numerical field methods the solution is represented by a distinct
number of grid points. Between the grid points the solution values are
distributed by some kind of interpolation. These interpolation functions
are defined locally, their definition changes at grid lines. Therefore
grid lines introduce numerical discontinuities. The best results are
obtained, if these numerical discontinuities coincide at least with the
most important physical discontinuities.

For the Euler equations the most important discontinuities are:
- At shocks: shocks and path lines,
In nonisentropic, shock-free regions: path lines and characteristics,
especially "main characteristics" (The "main characteristic" is the
downstream characteristic in the plane spanned by the boundary normal
vector and the velocity vector.),
In the isentropic region: characteristics, most important the
"main characteristics",

- Steady subsonic vortex flow: path lines which here are stream lines.
This constitutes a great challenge on grid construction, but it is a way
to get sufficiently accurate solutions with a restricted number of grid
points (e.g. Fig. 11).
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Wave direction "I"

Wave direction *20

Fig. 11: Example of a physically motivated numerical grid

APPROXIMATION OF SOLUTION VALUES BETWEEN GRID POINTS

Most numerical field methods need some kind of solution distribution
)etween grid points which generate numerical discontinuities along grid
lines. If the grid lines do not coincide with the characteristics, part of
the information transport changes direction from that of the character-
istics to that of the grid lines due to the redistribution of disconti-
nuities. This produces numerical dispersion.

On the other hand, the interpolation functions often must be continuous
across grid lines. Then continuity is introduced numerically whereas
physical nature may be discontinuous. This smears out solutions, amplifies
disturbances and produces the well known wiggles.

Normally interpolation of different variables between the grid points is
treated independently from each other, e.g. linearly for density, momentum
and energy. But the equations as well as the physical distributions of
values are strongly coupled. In the zones of steep gradients or even
strongly varying gradients, the solution is affected by inconsistent
interpolation. A subsequent computation, especially of sensitive functions
like pressure or entropy, amplifies these errors due to the nonlinear
combination of inconsistent values; spurious entropy often disappearing
further downstream is generated. Moreover, truncation errors increase with
nonlinearity and stronger coupling of equations. So it becomes impossible
to accurately calculate wave or induced drag by pressure integration,
because the most important regions have strongly varying gradients.

REQUIREMENTS FOR NUMERICAL FIELD METHODS

In contrast to most numerical schemes which stay in the tradition of
elliptic solvers or one-dimensional approximations, an accurate numerical
scheme requires proper modeling of the hyperbolic character. Therefore
physical and numerical discontinuities should coincide as much as
possible. For more than two variables it is necessary to select the most
important directions: wave and discontinuity lines which transport the
main information and the strongest discontinuities.

From the aircraft designer's view, a combination with a viscous solution
is absolutely necessary. It is facilitated by the selection of grids well
adapted to stream lines (2]. To facilitate code construction, stream line
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adaption can be used as a construction principle of the code itself [1,6].

To achieve accurate solutions the scheme should be of second order in
smooth regions, but at physical discontinuities it should introduce as
little numerical smoothness as possible. Therefore interpolation should be
restricted to one mesh or cell surface. Then numerical inaccuracies
introduced by approximation are not amplified; they will be transported
along the grid lines. If the grid lines coincide with a wave propagation
direction, all corresponding approximation errors remain confined within
the neighbouring grid lines, with no further dispersion. A realization
seems possible, e.g. with characteristics oriented schemes [1] or node
oriented finite volume schemes using physically motivated grids.

To overcome the difficulties with inconsistent interpolation and trunca-
tion errors, it is possible to use sets of variables which better decouple
the equations. These sets normally have no shock capturing capability. So
they can only be used in a nearly converged state to improve accuracy;
shock fitting must be pwiformed. Another possibility is to use better
interpolation functions, based on local approximations of the flow field,
e.g. locally linearized potential solutions.

The methods mentioned above will give the possibility of cost effective
and accurate solutions. But programming work will be more arduous,
especially when versatility is to be maintained. At comparable accuracy
for Euler codes the goal is to achieve
- computing time in the order of that of full potential codes,
- with coarse grids as known from the method of characteristics.
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I. Motivation and Objective

The recently developed second-order explicit and implicit total variation diminishing (TVD) shock-
capturing methods of the Harten and Yee [1,2], Yee [3,4], and van Leer (5,6] types in conjunction
with a generalized Roe's approximate Riemann solver of Vinokur [7[ and the generalized flux-vector
splittings of Vinokur and Montagni [8] for two-dimensional hypersonic real gas flows are studied. A
previous study [91 on one-dimensional unsteady problems indicated that these schemes produce good
shock-capturing capability and that the state equation does not have a large effect on the general
behavior of these methods for a wide range of flow conditions for equilibrium air. The objective of this
paper is to investigate the applicability and shock resolution of these schemes for two-dimensional
steady-state hypersonic blunt body flows.

The main contribution of this paper is to identify some of the elements and parameters which can
affect the convergence rate for high Mach numbers or real gases but have negligible effect for low
Mach number cases for steady-state inviscid blunt body flows. In order to investigate these different
points, two kinds of flows are considered. The blunt body calculations at Mach numbers higher than
15 allow significant real gas effects to occur, while the case of an impinging shock provides a test on

the treatment of slip surfaces and complex shock structures. In separate papers, a temporally second-
order, implicit, time-accurate TVD-type algorithm for viscous steady and unsteady flows is studied.
Studies show that the behavior of the schemes with various temporal differencing but similar spatial
discretization for inviscid and viscous flows are very different - in terms of stability and convergence
rate. This point will be addressed in reference [101. However, this paper only concerns itself with
steady-state inviscid computations.

In the following section, the generalized Roe's approximate Riemann solver and flux-vector split-
tings for real gases are reviewed. Due to space limitation, only the ADI linearized conservative

implicit version of the Harten and Yee schemes [II] and Yee 13] is reviewed here since most of the il-

lustrations are computed with this particular algorithm. The findings concerning the various aspects

in improving the convergence rate and numerical examples are discussed in the subsequent sections.

tPResearch Scientist, Theoretical Aerodynamics Division, this work was performed while on leave as an Ames Associate
at NASA Ames Research Center, Mofett Field, CA 94035 USA.
tResearch Scientist, Computational Fluid Dynamics Branch
"Rensrch Scientist
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1. Description of the Numerical Algorithm

The conservation laws for the two-dimensional Euler equations can be written in ;he form

au aF(u) + aG(U)
ax +-- =o. (1)

where U = [p, m, n, e]TF= [ pu, mu+p, nu, eu+pu ]T, and G [pv, mV, nv+p, ev+pv] T .

Here p is the density, m = pu is the x-component of the momentum per unit volume, n = pv is the
y-component of the momentum per unit volume, p is the pressure, e = p[C + (u2 + v2 )] is the total
internal energy per unit volume, and c is the specific internal energy.

A generalized coordinate transformation of the form = C(z, y) and t7 = i,(x, y) which maintains
the strong conservation-law form of equation (1) is given by

au a(u) aa(U) -o (2)
at ' E at7 ' ''_

where U = U/J, F = (C.F + ,G)/J, 5 = (YI.F + q5G)/J, and J = - 4,V, the Jacobian

transformation. Let A = aF/cU and B OG/U. Then the Jacobians A = al/a and B =

aG/aU can be written as
A = (CA + CB) (3a)

b (A + % B). (3b)

2.1. Riemann Solvers

Here the usual approach of applying the one-dimensional scalar TVD schemes via the so called
Riemann solvers for each direction in multidimensional nonlinear systems of hyperbolic conservation
laws (see for example reference 121) is used. The eigenvalues and eigenvectors of the Jacobian matrices
A and B are used in approximate Riemann solvers. Given two states whose difference is AU, Roe
1121 obtained an average A in the C-direction, for example, satisfying AP = AAU for a perfect gas.
The generalization by Vinokur [71 for an arbitrary gas involves the pressure derivatives X = (ap/ap)7
and xc = (ap/a8, where 7" = pe. The relation c = X + ich then gives the speed of sound, where

h = c + p/p. Introducing H = h + (u2 + V2)/2, Vinokur found the same expressions for U, V and
as for the perfect gas, and that 3 and R must satisfy

3Ap + RAC = Ap. (4)

Unique values of 3 and R are obtained by projecting the arithmetic averages of the values for the
two states into this relation (see references [71 and [2] for the exact formulas).

Flux-vector splitting methods divide the flux P into several parts, each of which has a Jacobian
matrix whose eigenvalues are all of one sign. The approach by Steger and Warming [13] made use
of the relation F = AU, valid for a perfect gas. Van Leer 161 constructed a different splitting in
which the eigenvalues of the split-flux Jacobians are continuous and one of them vanishes leading
to sharper capture of transonic shocks. Vinokur and Montagni [8] showed that the expressions for
both these splittings can be generalized to an arbitrary gas by using the variable -Y = pC2 /p, and
adding to the split energy flux a term equal to the product of the split mass flux and the quantity
C - c2/[y(y - 1)] (see references 181 and [21 for the exact formulas).

2.2 Description of the Implicit TVD schemes

Let At be the time step and let the grid spacing be denoted by A and At such that C = jAC
and ri= kA7. An implicit second-order in space, first-order in time TVD algorithm in generalized
coordinates of Yee and Harten for two-dimensional systems (1) [2-4] can be written as
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01 +r 1I - j.+ =

^n+i + ~- +i1 Ft -+i _-+i j (5)A;, + {. ,- r_4,,] + % ,, ;, 5

The functions Fi+±, and 6j,k+ are the numerical fluxes in the C- and PI-directions evaluated at

(j + !,k) and (j, k + 1), respectively. Typically, F,+pk can be expressed as

F,+i, : (k , + P3+1,, + R,+ J+ ). (6)

Here R+i is the eigenvector matrix for F/aU evaluated at some symmetric average of U, and

Uj+,,k (for example, Roe average [12] for a perfect gas and generalized Roe average of Vinokur 171
for real gases). Similarly, one can define the numerical flux 6,+, in this manner. For viscous steady

and unsteady flows, a fully implicit second-order in time and space algorithm (with the same spatial

differencing for the convection terms) appears to be more stable and efficient (in terms of convergence
rate) than (5). See references [10,14,15] for details.

Second-order Symmetric TVD Scheme: The elements of the $,+j in the C-direction denoted by

(01 +j Sfor a spatially second-order symmetric TVD scheme 13,4] are

The value at. is the characteristic speed a' for alPIZ1u evaluated at some average between Ui,&

and Ui+,,,. The function 0 is

t Ibz)(+82I II 2! 61 (7b)OW)= (z'! + 6?)2, Iz1"< 6'.

Here O(z) in equation (7b) is an entropy correction to IzI where 61 is a small positive parameter.
For steady-state problems containing strong shock waves, a proper control of the size of 61 is very
important, especially for hypersonic blunt-body flows. See reference [2] or section III for a discussion.

An example of limiter function used in calculations is:

= minmod [aj, a +j',a)+1]. (7.c)

The minmod function of a list of arguments is equal to the smallest number in absolute value if the
list of arguments is of the same sign, or is equal to zero if any arguments are of opposite sign. Here
al+, are elements of

71= Rh(,,, - U,,,). (S)

Second-Order Upwind TVD Scheme: The elements of the O,+ in the C-direction denoted by

(+j)u for a spatially second-order upwind TVD scheme [11,21 are

(01+)= U I +I )(g, + g) - O(a+I +'I ,)a+ (9a)

where /(Oal 96 0 1I
O +i (9' S I I ola+# j+tI@  (9b)

7 j1 2(+j ) I Y+c #0

An example of limiter function 91 used in calculations is

i minmod [a.Qa+*] (c)
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A Conservative Linearized ADI Form for Steady-State Applications: A conservative linearized ADI
form of equation (5) used mainly for steady-state applications as described in detail in references
[3,11, can be written as

I +At f !!.I +n k+- d +AC All [(10a)

l + AtH7 + At 
4 ~H A; ]E= E* (10b)

On + 1 = 0n + E, (1oc)

where
,9+ . = 2 [A2.+,.,k - 0,l+,.,]", (1d

(tod)

- f,.,+, (~e)

The nonstandard notation

Ht E'= [ E;+,, - Ile jE ]n (1o0
2+1

is used, and nC i can be taken asf+i,' E=R+ - (belakeg)

rl E= Rj+ , ,tdag[OIa,+j)lR +'k (E;+,, - E;,k) (log)

fin R =: R~j,+ idiag [,(a,+ 1)] R, + i (E,.+I - Ej,).

Here Ai+i,, and Bh,,+, are (3) evaluated at (i + 1, k) and (j, k + 1), respectively. The nonconserver-
ative linearized implicit form suitable for steady-state calculations [21 is also considered. Numerical
study indicated that the latter form appears to be slightly less efficient in terms of convergence rate
than the linearized conservative form.

]n. Enhancement of Convergence Rate for Hypersonic Flows

The current study indicated that the following three elements can affect the convergence rate
at hypersonic speeds: (a) the choice of the entropy correction parameter 61, (b) the choice of the
dependent variables on which the limiters are applied, and (c) the prevention of unphysical solutions
during the initial transient stage.

(a). For blunt-body steady-state flows with M > 4, the initial flow conditions at the wall are
obtained using the known wall temperature in conjunction with pressures computed from a modified
Newtonian expression. Also, for implicit methods a slow startup procedure from freestrearn boundary
conditions is necessary. Most importantly, it is advisable to use 61 in equation (7b) as a function of
the velocity and sound speed. In particular

(61),+f = 'Ujil + I'Vj.+121 + C2+20(ia

(6)'+, = 6(lu+l + IV+J1+c+) (ib)

with 0.05 < 6 < 0.25 appear to be sufficient for the blunt-body flows for 4 < M < 25. Equation
(11) is written in Cartesian coordinates. In the case of generalized coordinates, the u and v should
be replaced by the contravariant velocity components, and one half of the sound speed would be
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from the C-direction and the other half would be from the T-direction. For implicit methods, it is
very important to use (11) in O(z) on both the implicit and explicit operators. For the implicit
operator, numerical experiments showed that the linearized conservative form (10) converges slightly
faster than the linearized nonconservative form [11]. It seems also that when the freestream Mach
number increases, the convergence rate of the linerarized conservative form (10) is slightly better
than a simplified version which replaces i+, and fl, of (10g,h) by max, 0(ao+') and

max, O(a5, +) times the identity matrix.

(b). Higher-order TVD schemes in general involve limiter functions. However, there are options
in choosing the types of dependent variables in applying limiters for system cases, in particular
for systems in generalized coordinates. The choice of the dependent variables on which limiters are
applied can affect the convergence process. In particular, due to the nonuniqueness of the eigenvectors
R3 + f, the choice of the characteristic variables on which the limiters are applied play an important
role in the convergence rate as the Mach number increases. For moderate Mach numbers, the different
choice of the eigenvectors have negligible affect on the convergence rate. However, for large Mach
number cases, the magnitudes of all the variables at the jump of the bow shock are not the same. In
general, the jumps are much larger for the pressures than for the densities or total energy. Studies
indicated that employing the form R.+ such that the variation of the a are of the same order of
magnitude as for the pressure would be a good choice for hypersonic flows. The form similar to the
one used by Gnoffo [16] or Roe and Pike 117] can improve the convergence rate over the ones used
in references [4,18].

(c). Due to the large gradients and to the fact that the initial conditions are far from the steady-
state physical solution, the path used by the implicit method can go through states with negative
pressures if a large time step is employed. A convenient way to overcome the difficulties is to fix a
minimum allowed value for the density and the pressure. With this safety check, the scheme allows
a much larger time step and converges several times faster. In addition, since the Roe's average
state allows the square of the average sound speed c+ , to lie outside the interval between and

c+1 , c! might be negative even though cz and r2 positive during the transient stage when

the initial conditions are far from the steady-state physical solution. In this case, we replace c2

by max(c 2  J , +min(c1, +)). This later safety check is in particular helpful for the symmetric TVD

algorithm (7).

IV. Numerical Results

The current study on the shock resolution of the various schemes for two-dimensional steady-state
blunt-body computations indicates similar trends as the one dimensional study [9]. The main issue
appears to be their relative efficiency. Due to extra evaluations per dimension in the curve fitting
between the left and right states in a real gas for the van Leer formulation, additional computation
is required for the van Leer type schemes than the Harten and Yee [1,2], and Yee [3,41 types of TVD
schemes. Here van Leer type schemes refer to the use of the MUSCL approach in conjunction with
Roe type approximate Riemann solver [12] or flux-vector splittings [6,13]. Moreover, for steady-state
applications, implicit methods are preferred over explicit methods because of the faster convergence
rate. In addition, it is easier to obtain a noniterative linearized implicit operator for the Harten and
Yee, and Yee type schemes than for the van Leer type schemes. For these reasons, the linearized
implicit versions of Harten and Yee [111 and Yee [3] are preferred over the van Leer type schemes.

Resolution of First- and Second-Orde" schemer. For problems containing complex shock structures,
first-order upwind TVD schemes are too diffusive unless extremely fine grids are used. For a blunt-
body flow containing a single steady bow shock only, the shock-capturing capability of a first-order
upwind TVD scheme seems to be quite adequate if one is interested in the shock resolution only.
However, a careful examination of the overall flow field of the density and Mach number contours of
the first- and second-order TVD schemes compared with the exact solution (shock-fitting solution)
reveals the inaccuracy of the first-order scheme. Figure I compares the resolution of the first-order
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(setting g1 = 0) and second-order upwind TVD schemes (10) using the Roe approximate Riemann
solver 112) with the "exact solution" for a perfect gas (-I = 1.4) at a freestream Mach number of 10.
The computations are performed on a 61 x 33 adapted grid for the full (half) cylinder, which yields
a fairly good bow shock resolution by both schemes. However, the contour levels near the body are
significantly shifted with the first-order scheme, while the second-order scheme reproduces almost
identical results as the exact solution.

Convergence Rate of Ezplicit and Implicit TVD Schemes at Hypersonic Speed: The five dif-
ferent second-order TVD methods previously studied [9] in one dimension yield very similar shock-
resolution for the blunt-body problem. In particular, for an inviscid blunt-body flow in the hypersonic
equilibrium real gas range, the explicit second-order Harten and Yee, and Yee-Roe-Davis type TVD
schemes [2-4] using the generalized approximate Riemann solver [7] produce similar shock-resolution
but converge slightly faster than an explicit second-order van Leer type scheme using the generalized
van Leer flux-vector splitting [8].

The freestream conditions for the current study are M. = 15 and 25, p. = 1.22 x 10s N/m 2,
po = 1.88 - 2 kg/m, and Too = 2260K. The grid size is 61 x 33 for the full (half) cylinder (figure 2).
For the M. = 25 case, the shock stand off distance is at approximately fourteen points from the wall
on the symmetry axis. The relaxation procedure for the explicit methods employs a second-order
Runge-Kutta time-discretization with a CFL of 0.5 (solution not shown). The parameter 6 is set to
a constant value of 0.15. Pressure and Mach number contours converge and stabilize after 3000-4000
steps but the convergence rate is much slower for the density (with a 2-3 order of magnitude drop
in L2-norm residual). The bow shock is captured in two to three grid points. The curve fits of
Srinivasan et a. [19] are used to generate the thermodynamic properties of the gas.

The same flow condition was tested on the implicit scheme (10). The convergence rate is many
times faster. Figures (3) and (4) show the Mach number, density, pressure and x contours computed
by the linearized conservative ADI form of the upwind scheme (10) for Mach numbers 15 and 25.
Figure 5 shows the slight advantage of the convergence rate of the linearized conservative implicit
TVD scheme (10) over the linearized nonconservative implicit TVD scheme suggested in reference
[11). The convergence rate and shock resolution for the symmetric TVD scheme (10,7) behave
similarly. For M. = 15 case, the L2-norm residual stagnated after a drop of four orders of magnitude.
In general, for a perfect gas with 10 < Moo _< 25 and a not highly clustered grid, steady-state solutions
can be reached in 800 steps with 12 orders of magnitude drop in the L 2-norm residual. However, the
convergence rate is at least twice as slow for the real gas counter-part. An important observation
for the behavior of the convergence rate for the Mach 15 real gas case is that the discontinuities of
the thermodynamic derivatives which exist in the curve fits of Srinivasan et al. [19] might be the
major contributing factor. This is evident from figures (3d) and (4d) and from comparing with the
convergence rate for the perfect gas result.

Computations of impinging shocks: Figure (6) shows the Mach contours computed by the implicit
upwind TVD scheme (10) of an inviscid shock-on-shock interaction on a blunt body in the low
hypersonic range. Extensive study on flow fields of this type were reported in references [20-22]
for the viscous case. This flow field is typical of what will be experienced by the inlet cowl of the
National Aerospace Plane (NASP). The freestream conditions for this flow field are M. = 4.6,
p = = 14.93 N/rn2, Too = 167°K, T. = 556*K, and -y = 1.4 for a perfect gas. An oblique shock with
an angle of 20.90 relative to the free stream impinges on the bow shock. Various types of interactions
occur depending on where the impingement point is located on the bow shock. As shown by the
Mach contours, the impinging shock has caused the stagnation point to be moved away from its
undisturbed location at the symmetry line. The surface pressures at the new stagnation point can
be several times larger than those at the undisturbed location of the stagnation point. In addition, a
slip surface emanates from the bow shock and impinging shock intersection point and is intercepted
by a shock wave which starts at the upper kink of the bow shock. The interacting shock waves and
slip surfaces are confined to a very small region and must be captured accurately by the numerical
scheme if the proper surface pressures and heat transfer rates are to be predicted correctly. The
77 x 77 grid used and the convergence rate computed by the implicit scheme (10) are shown in figure
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(6). Though the pattern of the flow is significantly more complicated than for the previous cases, the

convergence rate remains quite satisfactory. Detailed study of viscous steady and uisteady flow fields

of this type using a fully implicit second-order time-accurate scheme [101 of the same numerical flux

(6-9) for the convection terms are reported in 110,14,151. It was found that for viscous computations,
the scheme suggested by Yee et al. (101 is more robust than equation (10) which is best suited for

steady-state inviscid flows.

IV. Concluding Remarks

Some numerical aspects of the TVD schemes that can affect the convergence rate for hypersonic

Mach numbers or real gas flows but have negligible effect on low Mach number or perfect gas flows

are identified. Improvements have been made to the various TVD algorithms to speed up the

convergence rate in the hypersonic flow regime. Even with the improvement though, the convergence

is in general slightly slower for a real gas than for a perfect gas. The nonsmoothness in the curve fits

of Srinivasan et al. may be a major contributing factor in slowing down the convergence rate. Due

to extra evaluations per dimension in the curve fitting between the left and right states in a real gas

for the van Leer formulation, more computation is required for the van Leer type schemes than for

the Harten and Yee, and Yee types of TVD schemes.

Aside from the difference in convergence rate, the numerical results confirm the findings of the

one dimensional study. The different methods yield very similar shock-resolution on the blunt body

problem with freestream Mach numbers up to 25, and the state equation does not have a large effect
on the general behavior of these methods. Further improvements on the ADI relaxation algorithm
could speed up the convergence rate even more.
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(b) for a perfect gas at M = 10.
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ABSTRACT

A technique to compute two-dimensional flows on Cartesian grids in the
presence of bodies of arbitrary shape is presented. The basic technique is
patterned on the A-scbeme and shock-fitting procedures. The special handling
of boundary conditions on rigid bodies Is described in detail. A description
of the application of the technique to the calculation of transonic flows past
a NACA 0012 airfoil at no incidence is made.

INTRODUCTION

Numerical analysis of Euler equations is generally performed using
computational grids which are chosen to be as close to orthogonal as possible,
and to have all rigid boundaries on grid lines. Orthogonality of the grid
enhances accuracy. The handling of boundary conditions is simplified if
boundaries coincide with grid lines.

Generation of suitable grids, however, becomes a major problem when the
geometry of the bodies Is complicated, when there are many bodies in the
field, and in three-dimensional problems.

In the light of recent Improvements, both in computing machines and in
numerical techniques, the importance of a choice of a grid can be challenged.
The possibility of using a Cartesian grid all throughout has already been
explored. Successful attempts have been made using a finite volume method as
the basic integration technique [1]. Here we present and discuss results
obtained using the A-scheme and shock-fitting. The reason for our attempt is
that the latter technique has been proved to be accurate and efficient In all
cases analyzed so far and we want to see whether its good qualities can be
retained when a Cartesian grid is used to compute the flow about an arbitrary
body.

GENERAL OUTLINE OF THE TECHNIQUE

The A-scheme has been described in detail in [2), for general grids
(orthogonal and not orthogonal). When a Cartesian grid is used, the scheme
takes on the simplest possible form. For clarity's sake, we repeat here the
equations valid for a Cartesian grid.

Let a, S, and q be speed of sound, entropy and velocity, respectively, Y
the ratio of specific heats, and 6-(Y-1)/2. Let x, y and t be the Cartesian
coordinates, and time. All quantities are non-dimenalonalized. The unit of
speed is the speed of sound at infinity, divided by VY, the unit of length is
chosen according to the problem, and the unit of time is the ratio of the
units of length and speed. In addition, the entropy is divided by YR, where R
is the gas constant.
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The general equations of motion (Euler equations):

(a t +ua x Va y)/6 a(Ux+V y)-as t-a(USx+VS y).0.

ut+uu x +Vuy+aax /6-a2Sx 1

vt+uv +vv +aay/6-a3 yO

St +USx+vSyO

are recast Into the form:

a 6(f, +f, x+fIY+fY)+6aSt

y ~ (2)vtf, Y-f, XYfS

Stf' x+fY

where

f x ~A x (R )-as 1 2, fl'- -AY'C(Ry') -aS 3/2
f' . Ix , I l-y y

xyf -uS , f'Y- -VSy

xx

and

A -uia, A.via, R .a/6,u , R.a/6ov (4)

The derivatives are approximated by forward or backward differences according
to the coefficients (A, u, or v) being negative or positive.

The code may be formally first-order or second-order accurate. rhe
latter consists of the former repeated twice; at the first level, the
quantities defined by (3) are divided by 2; at the second level, each quantity
is used as defined by (3), but the value obtained at the first level in a
neighboring point Is subtracted. The "neighboring" point is the node next to
the point In question, In the forward or backward direction according to A, u
or v being negative or positive.

Tug COIN TECHNIQUE

To minimize errors In the leading edge region and a consequent decay of
total temperature on the surface of the body, we reformulate the equations of
motion In the spirit of (3]. Let us split q and a Into sums of two terms, of
which the ones denoted by 0 are computed at the start of the calculation and
never changed again, and the ones denoted by a prime are the unknowns to be
computed: The velocity qO is the velocity of an incompressible, irrotational
flow about the profile; therefore, It satisfies the conditions:

V.qO 0 , Vq* - 0 • (5)
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The term aa is related to qO by the condition of conservation of total

temperature:

6(q°)2 + (a0 )2 - a.' - a 2(1+6%1) (6)

where a. is the stagnation speed of sound, and a , M are the values of a and
H at infinity. As said above, neither qO nor a depend on time:

q t = 0 , t  0 . (7)

For brevity, we denote the following technique by the acronym COIN
(Compressible Over INcompressible). In the vicinity of the leading edge,
where the flow stagnates, a compressible flow behaves as incompressible;
therefore, better accuracy will be obtained in discretizing the primed terms
since their gradients are small [3).

All "incompressible" velocities are obtained by solving (5) and
prescribing a velocity at infinity, V _ . The actual velocity at infinity is
V-aM. but, instead of letting V,=V+. (which, with the current non-
dimensionalizing parameters, would make V 0=/- 4 ), we first compute the ratio,
density/stagnation density at Infinity Lwhich, in this context, is

1/(1+6M.2)1/(Y-) 1 and then define

V.0 - -i4 /(1+6M.2) (8)

By so doing, mass-flows in the stagnation region are well represented by the
"incompressible" solution.

Taking (5), (6), and (7) into account, Eqs. (2) can be replaced by:

a't.6(fx+f x+f,Y+f )+6aSt+f
P

ult fx-fa x +fYf P

x P (9)v1t f:y-fY+f, +f,

where the coefficients of (3) remain unaltered, but the terms being
differentiated are primed (with S'-S), and

P
- -(uax,+vaya)

fP -(u'u °+v'u °+a'a 0/6) (10)
x y x

fP -(Uvx°+v'Vy+a'ayO/6)

The integration technique, thus, is the same described above, with the
addition of terms, locally defined by (10).

BOUNDARY CONDITIONS

Boundary conditions at outside boundaries are easily enforced. On an
inlet boundary (x-constant), the entropy and the stagnation speed of sound are
assumed to be constant, and the ratio, o-v/u to be known. It follows that

aat + 6uut(lo) - 0 . (11)
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Therefore, using the first two Eqs. (2),

a(f, x4fx+f'Y fY)+(1+,o)u(frx-f'x+fY) -0 (12)

from which f x may be determined, since all the other quantities are known
from inside or along the boundary. On an exit boundary (x-constant again),
the pressure is assumed to be constant in time. This yields the condition:

f x+f2xf1XY+f 1  . 0 (13)

from which fa x may be determined.

At the upper and lower boundary, far from the body, the incompressible
solution is accepted and no compressible perturbation has to be computed.

TREATMENT OF THE BODY

So far, the calculation Is simple, straightforward and fast. The code is
vectorizable without difficulty. The results are more accurate than using any

iG

E ,-

Fig. I

other grid.

The novel feature Is the enforcement of boundary conditions on a rigid
body, the contour of which is not a coordinate line. Accuracy In enforcing
such a condition is crucial. In using upwind schemes, particularly the A-
scheme, on an orthogonal grid wrapped around a body, the procedure does not
introduce arbitrary elements; accuracy Is not impaired. In our new attempt we
must maintain spirit and accuracy of the above approach. To this effect, we
first focus our attention on all grid points In the Immediate vicinity of the
body (such as points A, B, and C In Fig. 1). The boundary condition Is easily
enforced at A and B. At point A, according to the rules of the A-scheme,
there Is only one quantity which cannot be evaluated from grid values, i.e.

x
f , which contains the forward difference approximating one of the x-
derivatives. Similarly, at point B. only fY, which contains the backward
difference approximating one of the y-derivatives cannot be evaluated. In
either case, however, one boundary condition is available, i.e. the direction
of the velocity vector at point D or point E. To use such a condition at A or
B, the direction of the velocity vector at A or B is interpolated from F or G
(where it has been computed) and D or E. At C, where none of the two above

A
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differences is computable, arbitrariness seems to be unavoidable, but there

are ways to circumvent the difficulty.

In brief, one has to express derivatives in the directions normal and
tangential to the body as functions of derivatives along Cartesian lines,

without violating the domains of dependence. This can be accomplished In

different ways, two of which have been explored In the present work.

In the first, all points at Intersections of the body with a grid line

are marked, the values of u, v, a, and S at such points are stored and the
normal and tangential c mponents of the velocity can be evaluated. Using them

and some value interpolated from the Cartesian grid, Eqs. (1) can be

reformulated in a local frame, normal and tangent to the body, in which only
one f is unknown, with no discrimination between points A, B, or C of Fig. 1.
By so doing, all points on the body are actually computed, and the neighboring
grid points are interpolated.

In the second, points A and B are treated as explained above. In the

vicinity of points such as C, the angle, a, between one grid line and the body

is smaller than the similar angle for the other grid line (Fig. 2). The

unknown f-term relative to the former line Is extrapolated to C from M and N,

and the other unknown is then obtained by imposing the boundary conditions.
When all grid points are computed, the values at the body are extrapolated
from the neighboring grid values.

Each technique has Its advantages and disadvantages. The former is more

appealing from a theoretical viewpoint, essentially for two reasons. a) it
computes points on the body, without having to resort to extrapolations, and
b) it has only one unknown to determine at each point, consistently with the
availability of one boundary condition only. The latter is simpler to
implement, but it uses more extrapolations.

N

C.

Fig. 2

The results presented here are obtained using the second option.

MULTIPLE GRIDS

High resolution is needed in the vicinity of certain portions of the

rigid body. The mesh. Instead. can be rather coarse at some distance from the
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body. Refinement of the mesh can be achieved by stretching the coordinates.
It is well-known, however, that separate stretchings of the two coordinates
create cells of high aspect ratios in certain regions. This results in a
waste of computational work and a loss of accuracy. Better stretchings bring
back either non-orthogonal coordinates or curvilinear grids, or both. In
order to maintain simplicity and accuracy, and in view of extensions to
complicated geometries and three-dimensional flows, we opted for using a

number of rectangular regions, of increasing sizes, contained inside one
another. One of the regions contains the rigid body. For example, to compute
the flow past an airfoil, we use a maximum of four regions, as shown in Fig.
3. Each region is covered by a Cartesian grid. The fineness of the mesh
varies from region to region, increasing toward the body. In going from one
region to the surrounding one, the mesh intervals can be doubled, tripled or
quadrupled.

FC _ d' D

F G-

Fig. 4

Fig. 3

Matching of regions is performed as follows (Fig. 4). Rows of values

used in the A-scheme (Biemann variables) are linearly interpolated along AB
and CD from the outer (coarse) mesh, and used to generate certain normal
derivatives along EF and FG, when needed. The integration of the inner region
is performed including the lines EF and FG, but not along AB, CD. The values
In the outer region along EF and FG are transferred from the inner region.
This procedure is correct for a first-order accurate calculation. If a two-
level scheme is used (to achieve second-order accuracy), some additional
manipulation is needed, which we will not outline here.

We ran preliminary tests for a circle. The circle is centered in a
square, the side of which is twice the diameter of the circle. This square,
in turn, is contained within another square, the side of which is 12 times the
diameter. The inner square is covered by a 30x30 mesh, the outer square by a
60x60 mesh. Both meshes are Cartesian, with equal spacing in x and y. The

spacing in the outer mesh Is three times the spacing in the inner mesh. The
Mach number at infinity is 0.4. At convergence, the maximum Mach number is

0.989. This result compares well with results obtained by other Authors [4].
It is important to note that the total number of points on the circle Is only
46.

The accuracy in the frontal section of the circle is very good. This

means that the technique can be very accurate and no restrictions should be
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Fig. 5

Fig. 6

Fig. 7

anticipated on the use of Cartesian grids for bodies of any shape. The
calculation Is very fast. Using the two grids mentioned above, it takes about
30 seconds to advance 1000 steps on a CRAY X-MP computer; most of the time,
however, Is spent on the coarse grid and it could be reduced by making the
grid even coarser. The convergence is good. The residual, defined as the mean
square value of the difference between the moduli of the velocities at two
successive steps, reaches machine zero at step 1000.
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Fig. 8

CALCULATION OF A VACA 0012 AIRFOIL

Calculations have been made for a NACA 0012 airfoil, at no incidence.
Four grids have been used, testing effects of different mesh sizes and
different overall sizes. The regions sketched in Fig. 3 are shown in better
detail in Figs. 5 through 8. Fig. 5 presents the inner grid, containing the
airfoil. In Fig. 6 we see the two Innermost grids; in Fig. 7 three grids are
shown and finally the three outermost grids appear In Fig. 8.

Fig. 9

SUBSONIC CASE

The first calculation presented here has been made for a Mach number at
Infinity equal to 0.72. The results shown In Figs. 9 (Isobar plot In the
Innermost region), 10 (Mach number distribution on the profile), and 11 (C p
distribution on the profile) prove that an accuracy comparable with that of
the most reliable codes can be reached. Indeed, the mesh used around the body
Is still coarse in the leading edge region, when compared with current C-grids
or 0-grids. A fair comparison can be made between the present results and
results obtained using our fast solver code (5) with a 614x16 mesh; they are
Identical.
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TRMISONIC CASE

For the transonic case, provision has to be made for the appearance of
shocks on either side of the airfoil. The analysis of the shocks has been
outlined in [2] and explained In detail In [5) for a C-grid. Here, the same
principles are used, with some simplification due to the simplicity of the
grid, and some additional manipulation, made necessary by the obliquity of the
airfoil surface over the Cartesian grid.

If the shock is located as shown in Fig. 12, the calculation can proceed
as explained In [5]. Minor variations are needed if the shock Is located as
in Fig. 13. Substantially, certain extrapolations from upstream cannot be
carried on and a simpler definition of values In front of the shock must be
used.

Typical results are shown in Figs. l4 through 19. The free stream Mach
number Is .805; the Inner region has 128x64 intervals; the other regions are,
in order, 64x32, 32x32 and 16x16. Moving from one grid to the next, the
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values of Ax and Ay are multiplied by 4I. In Fig. i14, Isobars are shown for
the inn~er region (above) and again for the inner region and the region
surrounding It (below). The matching of Isobars and their slopes Is very
good. The fitted shock Is shown by a row of x's. Note that the shock is
fitted in the inner region but not in the next one. In Fig. 15, lines of
constant entropy, and the shock, are shown in the Inner region. Figs. 16 and
17 show the distribution of C pand M along the airfoil. Fig. 18 shows a

detail of the grid, the body surface and the shock, to demonstrate that the
fitted shock Is actually oblique with respect to the grid, and that It crosses
grid lines. Fig. 19 presents the location of the shock root as a function of
computational steps. It is clear that the location of the shock is stabilized
before 3000 steps.

AI,

Fig. 14

Fig. 15
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CONICUSIOINS

Calculations made on circles and airfoils (in the latter case, for
subsonic as well as supersonic flows) show that, with minor modifications, a
technique based on the A-scheme and shock-fitting over Cartesian grids can be
used to evaluate flow fields about bodies of arbitrary shapes, without
Impairing accuracy. The present work should be considered as a first step
towards generalization to multiple bodies and three-dimensional flows.

This work has been sponsored by the Science and Technology Foundation of
New York State, under contract SBIR (87)-91.
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CHARACTERISTIC GALERKIN METHODS FOR HYPERBOLIC SYSTEMS

K.W. Morton & P.N. Childs
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SUMMARY

Explicit use of characteristics together with the Galerkin
projection proves to be a powerful combination in the
approximation of hyperbolic equations. A basic scheme uses
piecewise constant functions to produce first order
approximations which are unconditionally stable, conservative,
entropy-satisfying and monotonicity-preserving. An adaptive
recovery technique at each time step then gives higher accuracy
where warranted by the smoothness without affecting these
properties.

1. INTRODUCTION

The finite element method needs some sort of global
principle to be truly effective: for elliptic problems this is
provided by variational principles; but for hyperbolic problems
it is natural to look to the existence of Riemann invariants to
play this r~le. Thus it is no surprise that as the scope of
finite elements developed, the idea of combining the use of
characteristics with the Galerkin projection occurred to many
people at a similar time in the early 2980's, including Benqug
and Ronat [1981], Bercovier et al [1982], Douglas and Russell
(1982], Morton and Stokes [1982] and Pironneau [1982].

Suppose an evolutionary problem for u(t) is characterised

by the evolution operator E(-):

E(At): u(t) 1-4 u(t+At), (1.1)

and that this is approximated by EA. Suppose further that at

the discrete times {tn}, the spatial variation of u(tn ) - u(x,tn )
is approximated by the finite element expansion

U"(X),- I()U +j(x)(1)

in basis functions {+J}. Then the Galerkin projection leads to

the time-stepping algorithm, for approximating the evolution of
the approximation from tn  to tn+l - tn +At,

435



(un+l.+) _ Kx.U'n~.j) (1.3)

where <-,°> denotes the L2 inner product over the spatial
variable(s). For example, use of a Taylor expansion to define
E leads directly to the Taylor-Galerkin algorithms introduced

by Donea [1984]. On the other hand, use of characteristic paths
to define the mapping EA leads to characteristic Galerkin

methods, with Lagrange-Galerkin methods being special cases in
which only particle paths are used.

Consider the scalar problem in two dimensions

ut + div(f,g) 0 0, (1.4a)

written in the form

ut + a-Vu 0 (l.4b)

where a - (af/lu,ag/3u). If the characteristic paths X(x,t;t'),

given by

dX
dt- - a, X(x,t;t) - x, (1.5)

are approximated by straight-line sections, we are led to the
evolution operator

(Eu)(y):- u(x), (l.6a)

where
y - x + a(u(x))At R X(x,t;t+At), (l.6b)

and thence to the Euler characteristic Galerkin (ECG) method

(Un+lf) fUncx),.l)dy. (1.7)

Note that there are two approximations involved in this Euler
time-stepping scheme: firstly the characteristics are
approximated by (l.6b); and secondly the evolution of (1.4a) is
approximated by constancy of the solution along the
characteristics, (l.6a). Both of these may be improved upon in
more sophisticated schemes.

Clearly, even in one dimension, a single-valued solution
curve u(x,t) at time t can lead to a multi-valued u(y,t+ht)
through (1.6) being applied where the characteristics envelope.
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In that case the integral (1.7) is interpreted as being along the

graph (y,EU ] as in the definition of the transport-collapse
operator by Brenier (1984].

An alternative formulation of (1.7), introduced in Morton
and Stokes [1982] and used extensively thereafter, makes more
explicit the r8le of the flux functions in (1.4a) and in one
dimension has the form

(Un+l -Un,..) + IAt(a xf(Ufl),, - 0, (1.8a)

where
() 1 tx+aAt

n (x) 1 x *ax)t 4(z)dz. (l.8b)

Note that the special test function 4Dn is an average of the
i

basis function *i over the interval covered by a characteristic

in the time step, and is just applied to the spatial differential
operator in (l.4a). This form implicitly assumes that a fixed
approximation space is used at all levels and is easily derived

from (1.7) by integrating by parts along the graphs G :- [x,Un],

G :- [y,Eun], where y - x + aAt:

(Un+,) - fUfl(x)-Oi(y)dy

fen x~df yi 40z)dz

f f 4i(z)dzdu; (l.9a)

while we can write

<un.+i>- fun(x)+i(x)dx

. fu n(x)dfi (z)dz

S- f i(z)dzdu; (l.9b)

and adu can be replaced by df.

When an adaptive mesh is used that changes from time step to
time step, the double integral form in (1.9) has to be used so
that we write

(Un+lgon+l) Y f ~+4 (z)dzdu. (1.10)
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We shall give results below that show the effectiveness of an
adaptive mesh refinement strategy based on this form.

For the linear, constant coefficient, advection problem
ut+aux - 0, which is the universal first model problem, the

choice of piecewise constant basis functions on a uniform mesh
leads to the first order upwind difference scheme

9+ -,IAA

where it is assumed a>O, the CFL number aAt/Ax has integral

part p and fractional part u, and A is the backward

difference operator defined by A.Ui :- Ui-U i 1. If piecewise

linear basis functions are used, the well-known third-order
accurate scheme

12n+l r 12 A 1A22 1A32, .n
(1+4.6)u- (146 - + - oSU

(1.12)

is obtained. The sequence can be continued indefinitely with
splines of order s giving accuracy of order 2s-l: and
replacement of the Euler time-stepping by central differencing
raises this order of accuracy to 2s.

All these schemes are of course conservative and
unconditionally stable: and (1.12) is highly accurate for smooth
problems, even on nonuniform meshes and when extended into two
dimensions - so long as the inner products are adequately
approximated (see Morton, Priestley and Stli (1988]). However,
only (1.11) is monotonicity preserving, and with the higher order
schemes non-physical oscillations are introduced when nonlinear
problems, typified by compressible gas dynamics, are
approximated. Thus it is advantageous to regard the piecewise
constant approximation as basic and to introduce an intermediate
recovery stage at each time step to increase the accuracy to the
level warranted by the smoothness of the solution. That is, the
recovery stage is adaptive and may include explicit
representation of shocks and other discontinuities. This
recovered approximation is then substituted into the evolution

equation (1.7) or (1.8), instead of the piecewise constant Un,

in order to produce a more accurate piecewise constant Un+1 at
the next time step.

Algorithms developed along these lines by Morton and Sweby
[1985, 1987] and by Childs and Morton (1986] are described in the
next section, and convergence results for the scalar case given
in section 3. New results are given in section 4 for the
development and application of these methods for systems of
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equations in one dimension, using flux vector splitting and flux
difference splitting techniques developed for finite difference
methods. Finally, in section 5, we consider some of the special
features which arise when these ideas are extended to hyperbolic
systems in two space dimensions.

2. ECG ALGORITHMS BASED ON RECOVERY TECHNIQUES

Suppose Un(x) is piecewise constant on a nonuniform mesh,
equalling ui on the interval (xi_%,x i+) of length Axi  and

mid-point xi. As is implied by the Galerkin procedure, it is

supposed to be a good approximation to the I? best fit of the

true solution un by piecewise constants: that is, each Ui is

interpreted as an average over the ith interval. The recovery

stage seeks to construct an improved approximation to un  from
these averages. It is to a large degree quite separate from the
evolution stage and is essentially an exercise in approximation
theory.

We denote the recovered approximation by u n and construct
it through the use of three types of information by means of

(i) combining several neighbouring values (Un};
i

(ii) exploiting a priori information regarding the
underlying solution, e.g. positivity,
monotonicity, smoothness; and

(iii) insisting on the projection property

(Zn-un,i) - 0 V i, (2.1)

where here the basis function i is the characteristic function

of the ith interval. Then the resulting ECG algorithm for the
time step t - t n - t + At replaces (1.7) bytie te n in+1  n

(Un+l,) _ftpn(x)*,(y) dy - f i -PA Zn (x)dy V i,
xi _.

(2.2)

with y- x + a(n )At. Similarly, because of (2.1), (1.8) can be
replaced by merely substituting In for Un  everywhere.
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The choice of form for u can be made in many different
ways. For the linear advection equation, it was shown by Morton

[1983] and Childs and Morton (1986] that, if Un  is a spline of
order s on a uniform mesh and recovery is by a similar spline
of order s + p, then the resulting order of accuracy for (2.2)
is 2s + p - 1: indeed, if p is even the same scheme is

1
obtained as if a spline of order s + lp were used without

recovery. For example, recovery with quadratic splines from
piecewise constants reproduces the third order scheme (1.12);
while recovery with piecewise linears yields a new second order
accurate scheme.

This is one attraction of basing the recovery procedure on
splines. Another is that they have the same number of free
parameters, the higher order polynomial forms being used to give
greater smoothness. A disadvantage is that the recovery process
is a global process: thus while (1.11) is explicit, reflecting
the diagonal mass matrix obtained with piecewise constants,
recovery introduces a banded mass matrix corresponding to the
implicitness exhibited in (1.12). In the algorithms given here
we shall limit the recovery to piecewise linears, which have
their nodal values at the points {xi}, the centre-points of the

intervals introduced above: that is, as with the spline family,
the corresponding finite elements for the piecewise linear
representation are staggered relative to those for the piecewise
constant representation.

Consider then the scalar conservation law in one dimension

Ut + fx 0 (2.3)

where the flux function f(u) we suppose for simplicity is
convex, so that its derivative a(u) has only the one sonic

point u at which a(u) - 0. Then (1.8) for piecewise constants
and without recovery is easily seen to yield a generalisation of
the well-known algorithm of Engquist and Osher [1981]. We
clearly have the relations

t n (x)m 1 (2.4a)
(i)

and

x (kj{[fkU)_f(u)] + [f(u)_f(Uk_1)]I'

(2.4b)

Thus the update process can be carried out by dealing with each

discontinuity in f(Un ) in turn, cycling over k, and allocating
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some proportion of it to (Un+-Un,,i), cycling over i.

Moreover, because of the assumed convexity of f(u), the

characteristic speed between k and u has the same sign: thus

when the CFL number is less than unity all of the contribution

from (f(Un)-f(T)] goes to the kth  interval, to the right of
k

the discontinuity at xk-% , or to the (k-l)th interval to the

left, according to whether a(t?) is positive or negative.
k

Hence in this case we have the following simple result.

Alaorithm: set Si : Axi; for each k

transfer - At~f( )-f(U)]

from { ol tf a(Un) { 0 (2.5)

t k  Skt < 0

then Un+iAx. :- S ..

Conservation is obvious from this form. Also the generalisation
to larger time steps, in which a characteristic starting from the
discontinuity at Xk-% can reach beyond the interval on either

side, is also clear. Details are given in Childs and Morton
[1986].

This has been given in detail because after recovery
essentially the same algorithm may be used. In order to achieve
adaptability, each discontinuity is resolved by a linear section
whose length is controlled by a parameter 8: for ek-% = 0, there
is no resolution of the discontinuity at xk.%; and for 0k-% - "

it is spread to the centre of the interval on either side. Then
in order to implement (2.2) we need only to modify the flux
function locally before carrying out (2.5): specifically, we
introduce Ak_%(u) to satisfy

A_% (u)At - a(u)At + (x-xk. ) (2.6a)

for u between n and uk, and x between x - - Ax
k-1 k k-Yi4 2 k-% k-l

1
and xk_ + -%_Ax; then we set

Fk.%(u) - fA .%(u)du. (2.6b)
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In effect, for example, the characteristic starting at
1 ~n

+ =k_ AXk with speed a(u) is started from xk_ with

an appropriately increased speed. The limitation on At for the
simple form (2.5) to hold is of course more severe, but this is
of little consequence.

_n
Once the parameters {O i_} have been chosen, the {ui) are

given by solving the projection equation (2.1) which yields the
tridiagonal system

[ Axi n Axi n] + n _ U.
4e1  1 i 14 i+4i-% AxiAX A u + iA Axi+xi+ + + i

(2.7)

This is relatively straightforward: what is less so, is the
choice of the {e i_}. It is convenient at this stage to

introduce the possibility of explicitly fitting shocks or other
discontinuities, because this breaks up the sequence of {. to

be chosen to a set of subsequences.

Because of the nature of the information being used, the
recovery procedure is inevitably subjective and

problem-dependent. When it is known that a true solution un x)
may have a discontinuity, its presence is recognised by two

sequences of smoothly varying averages {[U}, separated by one

intermediate value, representing the average across the jump.
For this purpose it is useful to introduce the ratios

AU~i A~x

r. :- i +. (2.8)
1 A + n Axi

Then, with a suitable choice of program parameters, a jump is
.th

deemed to lie in the j interval if:

(i) r. > 0 with Ir.lI<<l, Ir j+ii>>l; (2.9a)

and (ii) a(Unl) a(Un4l). (2.9b)

The second condition is imposed to prevent the development of an
expansion wave being inhibited.

Suppose a jump has been recognised in interval j (and not
in those on either side): then we set ej_, - ej+M - 0 before
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solving (2.7). All other parameters {i.} are chosen "as large

as possible' in the interval [0,1] consistent with the
nonotonicity-preservation condition

~n (A.~i (2no
signum {Au i - signum 1 . (2.10)

This choice and the solution of (2.7) has to be carried out
iteratively: suitable algorithms are given by Morton and Sweby
[1987] and Childs and Morton [1986]. Generally it will be
necessary to have E<l only at severe changes of gradient: see
Fig.1 for a typical example, where initial data has been first
projected onto piecewise constants and then recovered by
piecewise linears after detection of the jump on the right.

.. .. ...... :

Fig.1 Recovery from piecewise constant projection.

Finally, in the subsequent update process, the shock in 
the jth

interval has a starting position given by the projection equation
( n-un,) - 0, namely

x s : (1-T))xi.J + xj+ (2.11a)

where -n), -n + n;
)+ A j); (2.11b)
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and it moves with the "shock speed"

f(t-f (un
a. (2.11c)S _n _n

u j+l-uj_ 1

Otherwise the update is as before.

3. CONVERGENCE RESULTS IN THE SCALAR CASE

We denote by G the graph [x, n ] of the recovered

solution, including jump recovery, and by a*(-n) the
characteristic speed modified to be the shock speed as given by

(2.11c) over that part of the graph corresponding to a shock: E
will be used to denote the evolution operator in this case.
Then, as in (1.9) and (1.8), one can still write the update
process in the compact forms

<u~l, >  (~ At

(Un+l"0o) - G* t *i (z)dzdu (3.1a)

- (Un ) - Atf*-df, (3.1b)
G

* _
where 0. is defined as in (l.8b) with a (u ) replacing a(Un).

It is these forms that are most useful for the analysis leading
to the theorems given below. Proofs of all the results can be
found in Childs and Morton [1986].

We begin with a result giving a key entropy inequality.

Theorem 1 On a quasi-uniform mesh and for a uniformly bounded

a (-), we have

(i) Var( Un+ ) Var(un);

and, for any convex entropy function V(.) E W (IR),

*-n*
(ii) V(BE*un(z)) -f*V'(u)H(x+a At-z)du, (3.2)

G

where E is the evolution operator defined as in (1.6) but

using a , B is Brenier's collapse operator and H(.) is the
Heaviside function.
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With no shock recovery, sharper results are possible. Thus

one can show that the operator BE produces no new extreme for
any continuous single-valued graph. One can also in this case
obtain an approximation result which indicates some of the
constraints that need to be placed on the choice of the
e-parameters.

Lemma 1 Suppose that in the linear recovery from U to i, with
no jump recovery, there is a constant C such that, for
h - max(Ax i),

ei-%A-UiI K Ch V i. (3.3)

Then 2 22IM -UII2 -:'Ch Vat(u). (3.4)

[Note that this would be a straightforward result if we assumed

Z E H1 (R).] Using this, we have the following result.

Theorem 2 On a quasi-uniform mesh (for both (xi) and (tn}), with

linear recovery satisfying (3.3) and the monotonicity criterion

(2.10), but without jump recovery, suppose that the initial data

u is of bounded variation, with a finite number of extreme, and

of compact support. Then as h -+ 0, the ECG approximation (Un}

converges in L (L1(1R);(0,TI) to the unique entropy-satisfying
solution of the equation (2.3).

A similar theorem holds when jump recovery is included, but
the hypotheses need to be tightened in several respects. In
particular, undershoots may develop when too large a time step is
used in conjunction with a recovered shock. The situation is
well illustrated by the results shown in Fig.2 for the inviscid

12
Burgers' equation, that is with f(u) S v : these also show well

the effectiveness of the ECG scheme, particularly the value of
being able to use a large time step. The initial data shown in
Fig.2a provides a severe test on a uniform mesh of size h - 0.02
or 0.01: results for mesh ratios At/h equal to 0.3125, 1.25,
2.5 and 7.5 are shown in Figs.2b,c,d. In Fig.2b the two smaller
ratios are compared at time t - 0.3, h - 0.02, which show
accuracy can be lost if too many small time steps are used,
because of the excessive number of projections. In Fig.2c,d the
two larger ratios are compared at times t - 0.15 and t - 0.3
respectively with h - 0.01. The results for mesh ratio 2.5
(effectively the maximum CFL number) are very good indeed but the
mesh ratio of 7.5 is too large, causing an undershoot to occur to
the right of the second shock at the earlier time, even though
this has been eliminated by the later time.
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(a) Initial data

(b) t 0.3, Ax 1/50
A X = 0.3125
13 A = 1.25

o 0

(c) t =0.15, Ax =1/100 (d) t =0.3, Ax =1/100

A =2.5 A =2.5
D A =7.5 a A=7.5

Fig. 2 Initial data and solution for Burgers' equation.
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The undershoots occur because a in (3.1a) is discontinuous

and the graph E G contains a closed loop. The possibility of
new extrema arising from this cause requires more stringent
hypotheses in the convergence theorem. The increase of entropy
that results when a shock is recovered also requires modification
to the hypotheses: details can be found in Childs and Morton
[1986].

4. HYPERBOLIC SYSTEMS IN ONE DIMENSION

A characteristic based method for a system of equations must
make some use of the Jacobian matrix A : f/3u. Perhaps the

most direct, is to use its eigenvectors to convert the system to
characteristic normal form: then an algorithm might consist of
changing to characteristic variables at each time step so that
the scalar algorithm might be applied to each. The flux vector
splitting techniques of Steger and Warming (1981] and van Leer
(1982] are in effect based on this approach; and, for the Euler
equations of gas dynamics, exploit for this purpose the fact that
the flux functions are homogeneous of degree one in the conserved
variables. Some examples of applying the former technique to the
ECG schemes given above have been presented in Morton and Sweby
(1987].

However, the algorithm given in (2.5) lends itself more
naturally to the use of techniques based on splitting the flux
differences into components corresponding to the various waves
supported by the system. That is, they approximately solve the
Riemann problem for the jumps in u and f at each interval

boundary xi%. . The two most widely used are due to Osher and

Solomon [1982] and to Roe (1981): the former is based on the use
of simple waves; the latter introduces a linearised problem for

which the Jacobian satisfies A Au - Af and gives the correct

shock speeds in the case of pure shocks. We have found this last
technique both the simplest to apply and the most effective in
the problems that we have studied, although it needs an "entropy
fix' as in Harten and Hyman (1983] to preclude entropy violating
solutions. Thus it is the only one we shall describe here. Note
that we are generally limited to second order accuracy with ECG
schemes for systems, as no account is taken of the curving of the
characteristics: thus limiting the recovery to piecewise linears
is entirely justified in this case.

If the vectors u, f in the hyperbolic system ut + f x 0
I - x

have dimension p, the graph G E (x,Un], or G (xu I after

recovery, lie in the space Rp+l and the Roe decomposition
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breaks them into linear sections, each parallel to a right

eigenvector of the mean Jacobian A. For the linear recovery we
have used a single set of 0-parameters so that the recovery

equation (2.7) is applicable, with un replaced by -n and U.

by U: the O's are chosen so that the condition (2.10) applies

to all components, although of course for the differential system
we no longer have fhe monotonicity-preservatior properties which
motivated this criterion. Each of the sub-graphs, associated

with the mth characteristic field and the interval boundary
1

x is taken to run from Xk_4 - _A to Xk_ +

I A(m) A(m)-2.8Akx and has a length a in the p dimensions of
2 k k-% -Y
u-space, m - 1,2,...,p. That is,

- r (4.1)

where A (Ms) hetwh i- is the right eigenvector (corresponding to

eigenvalue A(m) of the Roe decomposition matrix A for

which

A f (Z) _n (4.2)

Then the characteristic speeds Akm) are modified as in (2.6a)
k-%

so that the updates can be computed from the recovered

approximation 'd through an algorithm based on (3.1) which
allows arbitrary time steps.

Boundary value problems are transformed to pure initial
value problems to which (3.1) can be applied directly. For
example, at a solid wall, boundary conditions for the Euler
equations are implemented by reflection, forcing the recovered
pressure and density to be symmetric and the velocity
antisymmetric. This can be shown to preserve key properties of
the scheme. As an illustration, results are given in Fig.3 for
the problem of Woodward and Collela [1984] in which two strong
blast waves collide in a shock tube closed at both ends. The
mesh is uniform with 400 points, the mesh ratio is 0.1 giving a
maximum CFL number of 5.4 and a very fine mesh result is given as
a full line for comparison.

448



8r

Density 12 Velocity

I a

-0.25 0.25 0.50 0.75 1.00 1.25

-0.25 0.00 O.2S 0.50 0.75 .OO L25

Pressure Energy

£001 2000

3001 1600

200 11200
100 B00

___________________ 400
-0.25 0.25 O.5o 0.75 1.00 1.25

-0.25 0.00 0.25 0.50 0.75 1.00 1.25

Fig.3 Woodward and Colella's blast wave problem at time
t = 0.038

Moving and adaptive grids are readily incorporated in the
ECG schemes, and with the lack of a time step restriction, local
mesh refinement is an attractive option. We use an error monitor
which takes account of the decomposed waves and typical results
are shown in Figs.4 and 5. This is for the familiar shock tube
problem of Sod (1978] but with closed ends: results are shown in
Fig.4 and the corresponding mesh with its adaptive refinement (in
x only) in Fig.5.

1.0--V 1.0

0.0 0.5 1.0 0.0 0.5 1.0

Fig.4a Density plot for Fig.4b As Fig.41, but after
shocktube problem time 0.288
at time 0.144
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1.0 1.0

0.0 05 1.00.0 0. 5 1.

Fig.4c As Fig.4a, but Fig.4d As Fig .4a, but
after time 0.432 after time 0.576

0. 6

0. 4

0.3

0. 2

0.1I

0. .10 0. 1 0. 2 0. 3 0. 4 0. 5 0. 6 0.7 0.9 0. 9 1.0

Fig.5 Adaptive mesh used for shocktube problem.
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5. EXTENSIONS TO TWO DIMENSIONS

Much still remains to be done here to properly exploit both
the flexibility of the finite element method in multi-dimensions
and the key properties of the characteristic Galerkin techniques.
Some preliminary results from a fairly straightforward extension
of the one-dimensional algorithms to two dimensions were given in
Fletcher and Morton [1986]. Here we confine our observations to
just three points.

The first is that the inner products such as in (1.7) are
very much more difficult to evaluate in multi-dimensions than in
one dimension. However, there is a considerable literature on
Lagrange Galerkin methods used for approximating the Navier
Stokes equations and problems of flow in porous media. These
usually use piecewise linear or quadratic elements and much is
now known regardin- how the corresponding inner products should
be approximated. s pointed out in Morton, Priestley and Suli
[1988] a straightforward use of standard quadrature formulae will
often introduce instabilities which can be difficult to control
through the choice of time step. On the other hand, if the
tracing of the characteristic paths is approximated in such a way
that the resulting inner products can be evaluated exactly, then
the resulting scheme can be both accurate and stable. For
example, with bilinear elements on a rectangular mesh one can
move the centroid of each element according to (1.6b), but then
consider the whole element to make this translation undistorted
and unrotated: the resulting integrals are then quite
straightforward. The stability of this scheme for linear
advection is established in the cited paper where its accuracy on
the commonly used "rotated cone" problem is also demonstrated.
These results seem highly relevant to the task of extending our
present algorithms into two dimensions.

Secondly, there is a question regarding the actual
characteristic velocities that should be used at a discontinuity.
Suppose a basic piecewise constant approximation over some mesh
of elements is used. It is argued in Osher [1980] that the
natural generalisation of the algorithm (2.5) is to use, at each
element edge, the normal component of the jump in flux to effect
the transfers. Thus contributions are made to the updates for
the elements on either side of the edge but to no others. That
is, corner effects are not taken into account or, equivalently,
characteristic velocities in a tangential direction. As pointed
out by LeVeque [1987] this is a serious inaccuracy when
reasonably large time steps are used.

It is therefore useful to record the precise form that the
update procedure for piecewise constants should take in a simple
case. Consider the scalar conservation law
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Ut + fx + gy = 0 (5.1a)

i.e. u +au +bu =0 , (5.1b)

where a - af/u and b - ag/au: and suppose we have a uniform
rectangular mesh of spacing Ax,Ay. Then if a,b 0 and
aAt Ax, bAt Ay, one can show that the correct generalisation
of the first order upwind difference scheme in one dimension
which is defined by (1.6), (1.7) is given by

Ax~C~1-U.)+ AtAyA- f(U'L) + AtAxA- g(U)2 12 -x ±j -y 1J

+ (At)2 A_ A h(U'Y) (5.2)

where h(u) :- fabdu. The last term in (5.2) gives the corner

effects'arising from tangential velocities at each element edge.
This form is readily generalised to the case where both f and
g possess sonic points.

Finally, we wish to point out the close link that exists
between the methods described here for unsteady problems and the
widely used cell vertex methods for steady gas dynamic flows.
Suppose we have a structured mesh of quadrilateral elements on
which we would have a piecewise constant approximation
parameterised by (U i. After recovery by piecewise bilinears

(generalising the e-recovery of (2.7)), attention is focussed on
the variation between the values (Z I} at the centres of the

elements: and joining up neighbouring centres creates a staggered
quadrilateral mesh of what we shall call cells, see Fig.6. An
update of the form (1.8) will be constructed from inner products

(af (z) + a,$ti).cb..). (5.3)

II

Element-..

Fig.6 Staggered meshes of "cells" and "elements".
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where each component of the test function vector ii. is an

average of the characteristic function for the (i,j) element over
an appropriate characteristic path. The steady state solution is
obtained by setting to zero all these updates, for any choice of
At, which means that it is not necessary to include the last term
in (5.2). There is then clearly a good deal of flexibility
available in how this might be done. But in algorithm (2.5), and
its generalisation after recovery, the emphasis was on
decomposing contributions into those arising from integrations
between cell centres. In two dimensions this generalises into
exploiting the fact that

(i~j) ii (xy) 1, (5,4)

and using a partition of unity based on the characteristic
functions of the cells whose vertices are the element centres
(i,j). Denoting by Qkl such a cell, we hence obtain by means

of Gauss' theorem and integration by parts around the cell
perimeter 89kl

0 - I div(f,.&)dil - f fdy-gdx = r xd.-ydLf, V k,l.
kl ankl-- kl

(5.5)

The central form here is that which is used to implement the cell
vertex method, the integrals between vertices being approximated
by the trapezoidal rule. The last form is an appropriate one for
generalising the algorithms of section 2 to two dimensions.
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SUMMARY

The large scale motion of two-dimensional interfacial instabilities -
namely the Kelvin-Helmholtz instability and the instability of a transonic
jet - is examined. The numerical calculations are based on the direct
simulation of the instabilities. The two-dimensional Euler equations are
solved by a high resolution scheme. The movement of the interfaces is
visualized by a marker particle algorithm. The interfaces are advected in
a Lagrangean fashion according to the Eulerian flow field. It is shown
that the numerical dissipation has a stabilizing effect similar to
physical viscosity.

INTRODUCTION

Interface instabilities arise in a wide variety of physical contexts. In
the present investigation we will study the instability of interfaces
separating two domains of the same compressible fluid moving at different
velocities, namely the Kelvin-Helmholtz instability and the instability of
a jet. Our calculations are based on the direct simulation of these
instabilities by the numerical solution of the equations of
two-dimensional compressible fluid flow, usually called Euler equations.
There are two different formulations of these equations. Numerical methods
based on the Lagrangean formulation use a computational mesh traveling
with the fluid. Hence these methods seem to be ideal for solving problems
which involve interfaces between two fluids. However, La rangean
calculations can typically be carried out for short time spans only. Then
severe mesh distortion or mesh tangling will occur and rezoning must be
performed in which all computational quantities are transferred to a new
computational mesh. Because this procedure calls for much computational
effort, the Lagrangean methods are not favourable for dealing with large
scale computations. On the other hand, Eulerian methods, in which the mesh
is fixed, are ideal for treating flows with large deformations. But
interfaces are smeared out over some grid zones and the movement of the
interfaces can hardly be seen.

We use a combined method: The flow field is calculated by an Eulerian
method, while the interfaces are moved in a Lagrangean fashion according
to this flow field. This means that we discretize the interface and within
each time step calculate the new nosition of the dicsretized interface
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from the flow field. This may also be considered as a marker particle
algorithm which is used only to visualize the movement of the interface.
The Euler equations are solved by a so-called high resolution scheme. An
efficient implementation on a vector computer permits to perform large
scale computations on fine grids.

EULER EQUATIONS AND MUSCL TYPE SCHEMES

We consider the two-dimensional equations of compressible fluid mechanics
without thermal conduction and viscosity, written in the conservation form

Ut  + f(U) + g(U)y = 0 (1)

with
pu pu2+p puv

U = Pv ,f(U)= puv g(U) = pv2 +p) (2)

As usual, p denotes the density, u and v denote the vclocity components in
x and y direction, respectively, p denotes the pressure and e denotes the
total energy per unit volume. The pressure is functionally related to the
other variables via the equation of state of an ideal gas.

The numerical method, considered here, is based on dimensional splittin
also termed method of fractional step [13]. According to this method t e
two-dimensional Euler equations (1), (2) are split into two
one-dimensional problems

Ut  + f(U)x = 0, Ut + g(U)y 0 (3)

These problems are then solved successively in each time step. In our
calculations we use the two-cycle splitting of Strang [13] in which after
each xy step the order is reversed for the following time interval: xy-yx,
and which is of second-order accuracy as regards the time t. The systems
(3) resemble in structure the one-dimensional Euler equations an num#erical
methods for these equations can be conveniently transferred.

We will restrict ourselves to describe the one-dimensional numerical
method for the first equation of (3). A MUSCL-type scheme is usually
formulated as a two step method with two main building blocks: a
non-oscillatory interpolation and an upwind scheme (see [81). In the first
step, by means of interpolation, a piecewise linear representation of the

approximate solution is calculated from the values Uin where U denotes an

integral approximative value of the solution in the ith grid zone at time

tn. This representation defines boundary values in each grid zone - on
1+

the right and i on the left side:

U% U 11' AX Sn (4)
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The value Si stands for the slope in the ith grid zone, as usual Ax

denotes the space increment, At the time increment. In order to obtain
second-order accuracy with respect to time a midpoint rule is used: the
boundary values are advanced to tn+1/2

Unl/ -Un- (F(UO F(U' )), A =- At (5)1+- 2 \\ +~ 1- E

In the second step an approximative integral value at the next time level
is calculated by

n+ n+1/2 n+1/2 n+1/2uiA~ = ihi1),""(i-)+ (6)

where h is the flux of an upwind scheme. Any upwind method as reviewed in
[5], [6] can be used for this purpose. The vector of slopes must satisfy
a number of conditions. A first necessary condition for second-order
accuracy in space says that the slope is a first order approximation of
Ux(xi, tn). In order to avoid spurious oscillations near strong gradients

the piecewise linear representation must satisfy some monotonicity
constraints. Within the MUSCL-scheme of van Leer [9] or the PPM- or
PLM-method of Colella and Woodward [3] and Colella and glaz [2] the slopes
are calculated in terms of the primitive variables p, u, v, p. We
calculate the slopes in terms of characteristic variables. This method
relies on the local linearization technique of Roe [12].

In each grid zone an average value Ui is determined, e.g. Ui=(Ui+ 1 + 2Ui +
Ui_l)/4. Here and in the following studies the time index n is omitted as

long as no misunderstandings can arise. The vector ri denotes the kth

right eigenvector of the Jacobi matrix evaluated at the average value. The
difference quotients are then expanded in terms of this system of
eigenvectors

Ax U. E rk I (U. U#k f.r (7)
4(jl I k x(UiUi 1) = E rk .

Lxk=1 Ax 1 1 k=1'

The coefficients ak, 1k measure the change of the difference quotients in
direction of the kth eigenvector. A vector of slopes is obtained by

4 k k
Si E ~~ i)r (8)

k=1

where s = s(a,b) denotes a slope calculation given by the scalar theory.
For a scalar conservation law various suitable functions s(a,b) have been
indicated and analyzed (see [10]). We use in the following slope
calculations based on the class of slopes

S1 (a,b) = sign(a)max {!minmod(la,b)I, Iminmod(a,lb)l} (9)

with 1 5 1 < 2 and
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a for lal Ibl, ab > 0
minmod(a,b) = b for lal > Ibl, ab > 0 (10)

0 for ab < 0

proposed by Sweby in terms of schemes using flux limiters (see [10]).

The main advantage of the slope calculation in terms of characteristic
variables is that different slope calculations may be applied to the
enuinely nonlinear characteristic fields and to the linearly deenerate
ields. Hence, the numerical damping of contact discontinuities which is a

severe problem for large scale computations may be strongly reduced or
prevented by using a very compressive slope in the linearly degenerate
fields. Such a compressive slope is the member for 1=2 of the class (9)
proposed by Roe and called superbee-function. The slopes (9) become more
compressive with increasing 1. Very compressive slopes should not be
applied to the genuinely nonlinear fields. Because they may be
over-compressive, they may compress each monotone profile into a
discontinuity and introduce at centered rarefaction waves non-physical
discontinuities. If the slopes are calculated in terms of primitive
variables, the different waves cannot be treated in a different fashion.
Hence, less compressive slopes must be used which introduce stronger
numerical dissipation at contacts or a correction mechanism must be added
which switches to a less compressive slope near sonic points.

VISUALIZATION OF INTERFACES

At the beginning of a calculation the surfaces between the fluids are
discretized and replaced by a number of points. We will term these points
marker or tracer particles. In each time step, at first the new flow field
is calculated by the Eulerian MUSCL-type scheme. Afterwards the massless
marker particles are advected in a Lagrangean fashion according to the
local flow field. The movement of the interface can then be visualized by
graphic oiplay of these marker particles. The particles are overlaid on
the fixed computational grid and are advected without any collisional
effect between them. A quite similar technique is commonly applied in
experiments using smoke or ink as marker particles.

At time tn the kth marker particle is located at a point (xk,yk) of the

computational domain and possesses the velocity (u, vn). After

computation of the flow field at the next time level by the Eulerian
method the new location of the marker particle is calculated by

n+1 n At un+l +nu+) y n+ At vn+l 1n 1
xk x F k+ -- k u k + v +k (11)

The velocity of the marker particle is determined by bilinear area
weighting interpolation. At first the location of the particle relative to
the computational &rid is calculated. For a uniform grid with constant
space increments this is given by

i: = int( ) , j: = int.Yk - YO (12)
Ay
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where (xO, yo) denotes the left lower corner of the computational domain.

Next we calculate the areas A1,...,A 4 in reference to Fig. 1. The

x-component of the velocity of the k-th marker particle at time tn+ 1 is

then determined from the flow field by the formula

u (Anun1 l + A0+1 + +l  A un + l n+ l A 1+1,j)/AxAy, (13)k I 1 ij 2 i+l1 + 3ui~j+l 4iljl ) / x \ ' (3

the y-component is determined in an analogous way. At the boundary some
modifications may be introduced according to the physical boundary
conditions. E.g., in the case of periodic boundary conditions, a particle
which leaves the computational domain should reappear at the opposite
boundary.

RLJ.1 R1.1,j.,

(xk- yD I I A Fig. 1: Area-weighting

A2  A1  interpolation\ I I I
R11) R1*1'J

INTERFACIAL INSTABILITIES AND NUMERICAL RESULTS

The MUSCL-type schemes and the Lagrangean tracking of interfaces described
above are applied to two-dimensional compressible interfacial
instabilities. We will study interfacial instabilities which are purely
inertial phenomena. We adopted two basic examples of hydrodynamic
instabilities: the Kelvin-Helmholtz instability and the instability of a
jet. A review of two-dimensional instabilities and their mathematical
description in the incompressible case has been given by Birkhoff [1]. The
initial data used in our calculations are sketched in Fig.2. In the first
diagramm the fluid flows to the left in the lower half. In the second
diagramm the fluid flow to the right is separated by a srtll band of fluid
flow to the left. In both cases density and pressure are uniform in the
whole domain. It is well-known that these shear layers are unstable for
inviscid fluid flow in the sense that small initial perturbations will
rapidly increase. Physical viscosity has a stabilizing effect.

We introduced sinusoidal perturbations of mode 2 of the initial data. In
the first case the shear layer S is sinusoidally perturbed

S: y = 0.025 sin (4rx) , x E [-0.5 , 0.5] (14)
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Fi.2: Initial data of a Kelvin-Helmholtz instability and a jet

t =0.4 t =0.8

t =1.6 t =2.4

t = 3.2 t =4.0

Fig. 3: Simulation of a Kelvin- Helmholtz instability
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In the case of the jet perturbations are introduced via perturbations of
the velocity component into y-direction. In B the velocity v is given by

v = v(x) = 0.1 sin(4rx) (15)

At the right-hand and left-hand side of the computational domain we
prescribed periodic boundary conditions. At the upper and lower boundary
those of a reflecting wall.

The numerical calculations presented here have been performed on a grid
with 200x200 grid zones corresponding to step sizes Ax=0.005, Ay=O.O05.

At each time step the time increment is adaptively chosen according to the
Courant-Friedrichs-Lewy condition. In the second step (6) of the
MUSCL-type scheme we used the simplest Godunov-type scheme theoretically
investigated in [6]. Einfeldt [5] has shown how to use it for practical
calculations. The marker particles (we used 40.000) are placed on the
interfaces. The development of the interfaces is shown in the figures
below by displaying the marker particle field at different times.Figs. 3,
4 indicate the stabilizing effect of the numerical dissipation. Fig. 3
shows the results of the MUSCL-type scheme (4)-(6) using the slope
calculation (9) with 1 = 1. The plots show that the amplitude of the
sinusoidal perturbation increases. At time t=0.4 the vortex sheet differs
from the sinusoidal profile as predicted by the linear theory. At x=0.25
and x=-0.25 the sheet becomes vertical and starts to roll up.

t =0.4 t =0.8

t 1.6 t =2.4

Fig. 4: Simulation of a Kelvin-Helmholtz instability
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t =0.8 t 1.6

t 2.4 t =4.0

Fig. 5: Simulation Of a transonic jet

t 0.4 t =0.8

t 1.2
Fig. 6: Simulation of a transonic jet
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This roll-up into a pair of spirals becomes obvious in the nexi plots. The
vorticity becomes concentrated. With increasing 1 for slope calculation
(9) the numerical scheme becomes more compressive and numerical
dissipation is reduced. This yields that also small scale perturbations
introduced by the approximation of the problem on the rectangular grid may
increase. Fig. 4 shows the results for the parameters 1=1.6 on the
nonlinear and 1=2.0 on the linearly degenerate characteristic fields. The
amplitude of the sinusoidal perturbation increases faster than for 1=1.
The shear layer consists of several separated small vortices. No smooth
roll-up into spirals will occur as in the previous case (Fig. 3) where the
small perturbations are suppressed by numerical dissipation. A turbulent
roll-up of the shear layer is obtained.

The situation for the transonic jet is quite similar. Fig. 5 shows the
result when the slope for 1=1 is used on all characteristic fields.
Initially the perturbation of the velocity v leads to a sinusoidal
perturbation of the fluid flow to the left. Due to the Kelvin-Helmholtz
instability the upper and lower shear layers start to roll-up smoothly.
Four asymmetric vortices occur forming a Kirmfn vortex street. This vortex
street is stable for all times. As in the previous case, small
perturbations will increase if the numerical dissipation is reduced.
Besides the four main vortices, 8 smaller vortices occur. At time t=l.2
they form an inner and an outer vortex street. The outer one consists of
four pairs of vortices. The smaller vortices surround the bigger ones.
This situation is not stable. The inner and outer small vortices
interchange later on and the fluid flow tends to a turbulent mixing.

CONCLUSIONS AND REMARKS

A comparison of our numerical results with experiments shows that the
numerical dissipation has a stabilizing effect similar to physical
viscosity. The K~rm~n vortex street produced by the high resolution scheme
which possesses inherently the largest amount of numerical dissipation of
all schemes, considered here, is quite similar to vortex streets behind a
circular cylinder at Reynolds numbers of about 100 (see e.g., j43]). If
the numerical dissipation is reduced by using a more compressive slope
calculation within the MUSCL-type algorithm, the laminar roll-up of the
shear layer tends to a turbulent rol1-up and the vortex street which is
stable for large time scales tends to turbulent mixing. Similar results as
by numerical dissipation can also be obtained by solving the compressible
Navier Stokes equations for different coefficients of physical viscosity
[11]. An almost identical roll-up of a single shear layer as shown in
ig.2 has t n obtained by Krasny [7] for the incompressible case. His

calculatio are based on the evolution equations of a vortex sheet. He
pointed out that the vortex sheet equations have a short wavelength
instability. Due to roundoff errors this instability restricts the number
of discretization points for a given machine precision. In our direct
simulation this short wavelength instability can also be seen. If
numerical dissipation is small and the grid is fine enough, small
perturbations due to approximation errors can increase. The numerical
solution does not converge, if the step sizes tend to zero. On a finer
grid smaller structures can be captured, the numerical dissipation is
smaller, small additional vortices are created. E.g., on a grid with 500 x
500 grid zones the numerical solution initially seems to be similar but
some time later it becomes quite different due to different vortex pairing
and transition to turbulence.
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The MUSCL-type algorithm used for our calculations has been fully
optimized for the vector computers Cyber 205 and Fujitsu VP5O. This could
be done in a straightforward manner, because it is an explicit algorithm
and contains no recursive elements. Some difficulties arise from the fact
that for efficient vectorization the data should be stored contiguously
within long vectors rather than two-dimensional arrays. Within the x-step
of the splitting algorithm it is easy to use such one-dimensional arrays
for the parts consuming most computer time, because the first index of the
two-dimensional variables can be chosen to be the index of the inner
loops. In the y-step this situation changes. Hence, we transpose all
physical quantities at the beginning of the y-step. Thus all calculations
can be performed in the same way (for the Strang-type splitting only one
transposition of the physical variables per time step is necessary). By
this technique we obtained a speed-up of 6-10 in comparison to Siemens
7890. The typical computer times for the calculations on a grid with 200 x
200 zones as presented above are 10 - 20 minutes, depending on the
algorithm used for slope calculation. Within this time about 2000 time
steps can been performed.
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ON THE "FLUX-DIFFERENCE SPLITTING" FORMULATION
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INTRODUCTION

The present paper refers to the numerical prediction of the
inviscid compressible flows described by the Euler equations.
We will focus our attention on unsteady flows (time marching),
but any concept can be easily translated in terms of steady
supersonic flows (space marching).

The Euler equations are obtained directly from the basic laws
of the mass flow conservation, equilibrium of forces and the
first principle of the thermodynamics. However, since they
are hyperbolic, they also describe propagation of waves.

The hyperbolic character of the Euler equations is best
revealed by a proper rearrangement of them, which I like to
call the "formulation". There are different formulations, all
related to the well-known method of characteristics. I intend
the formulation as the step in which the wave-like nature of
the problem is emphasized, by acknowledging that the evolution
of the flow, at any grid point, is determined by the merging
of signals propagated along characteristic rays. Since the
phenomenon appears governed by advection equations (those
which describe the convection of signals), these approaches
are generally known in the literature as "upwind" methods.

Different upwind formulations have been proposed. Some are
based on the quasi-linear form of the gove-ning equations
(lambda formulation, split coefficient matrix method,...),
others on their divergence form (flux vector splitting, flux
difference splitting,..). Non-linearity creates differences
among such formulations. Indeed, they would coincide for a
linearized version of the Euler equations. The main feature,
common to all of them, is the attempt to interpret the usual
thermodynamical properties and the velocity field in terms of
waves or signals, each of them travelling along well definite
paths. We note that a formulation can only be thought of for
a system of equations. In fact, in a scalar problem, the only
governing equation reveals immediately its hypernolic
character.

The present paper is addressed to the "flux difference
splitting" formulation (FDS) and intends to review some of the
forms under which it has been proposed in the literature. To
the inexperienced reader, such forms may appear rather
different and unrelated. Our aim is to look at them from a
single standpoint and to put their common background into
evidence.
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I the FDS formulation, the discrete data given on a set of
points is used to create a piecewise continuous distribution
of values. In its simplest form, such a distribution is a
sequence of constant values. Therefore a discontinuity of the
flow properties occurs at the middle of each interval.
Godunov [1] proposed to look at the evolution of this
discontinuity along the hyperbolic coordinate, time. Its
collapse generates three families of waves. A careful
analysis of this system of wavep provides information on how
to interpret the difference of certain flow properties over
each interval, in terms of propagating signals. In
particular, the difference of the flux, needed for the
numerical integration of the Euler equations in their original
form, is split into terms contributing to the flow evolution
at points located at the left and right ends of the interval.

The evolution of the discontinuity is described by the
solution of a Riemann problem (RP). Subsequently, the
difference of the flux is split on the basis of the resulting
pattern of the waves. Finally, the terms obtained by the
splitting are introduced into a numerical approximation. The
latter can be characterized by the kind of assumed
discretization (finite differences, finite volumes, finite
elements..) and by the numerical scheme (explicit, implicit,
prescribed order of accuracy...).

In his original presentation, Godunov pointed out two
shortcomings in the procedure that he suggested. The first
was the computational effort needed to solve the RP exactly,
including tedious and time consuming numerical iterations to
account for possible shocks. The second was the
unsatisfactory level of accuracy in the results, due to the
use of a first-order upwind scheme.

It is clear now that the practical failure of Godunov's
otherwise brilliant idea was due to the inconsistency in using
a first-order scheme of low accuracy after spending time in
searching for an exact solution of the RP.

Consequently, efforts to circumvent the difficulty were
attempted, along two different lines (i) the search for
approximate but efficient solvers of the RP, and (ii) more
sophisticated interpretations of the RP, to reach satisfactory
accuracy level.

We begin by reviewing Godunov's basic suggestion. Then we
focus our attention on some approximate and efficient solvers.
Finally we look at two sophisticated interpretations of the
initial data, aimed at improving accuracy.

Some of these procedures were originally suggested with
reference to the Lagrangian point of view, followed by a
proper Eulerian remapping, whereas others were proposed in the
Eulerian mode. Our present review is always based on the
latter.
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GODUNOVS BASIC SUGGESTION

We consider the Euler equations which describe the
one-dimensional unsteady flow, written in divergence form.
With the usual notations, we have

WT*-f =0 ()
where:

Pe

The initial data (time to , step K) are given at grid nodes,
in particular at the points (N,N+l), which delimite the
interval of length D4 X=X) I-XN . With reference to Fig. 1, we
consider two constant values (fj, fk+,), separated by a
discontinuity at the middle point, X 4Ia. The evolution of
the discontinuity in time is described by the governing
equations (Eq. 1). We expect then the generation of a system
of waves, the two so-called "acoustic" waves (1,3) and the
entropy wave (2). In general these waves propagate on the two
sides of the interval, depending on the speeds (u=Fa) for
waves (1) and (3), and the speed (u) for wave (2). Two
uniform regions (c,d) coexist with the initial ones (aWN,
b=N+1).

Now we consider the difference of the flux over the interval
(Dr4 f), as split into three terms:

iyfT=TNf,, f6 (7 F, ) (2)

Each of them is related to a wave, respectively (f -fp ) to
(3), (f -fC ) to (2) and (f -fa ) to (1). We define:

IN _N f (3)~
4-

where D. f is built up using those terms (from Eq.2) that
belong to waves propagating to the left (negative speed) and
DOf uses terms belonging to waves moving to the right
(positive speed). For the pattern of Fig. 1

Once such a splitting has been done over all the intervals, we
proceed to the numerical integration of Eq. 1. By confining
our attention to the plain first-order difference algorithm,
we have (Fig. 2):

W 0 + WT'-T =W -

- - (5)

N W-1h -1f --D/D
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EXACT AND APPROXIMATE SOLUTIONS OF THE RIEMANN PROBLEM

As described above, Godunov's procedure is very simple.
Unfortunately, the computational penalty to be paid to split
Eq.2 according to the exact solution f the RP, is too heavy.

This is due to the non-linearity of the Euler equations
(Eq.1), including the third one (energy), that accounts for
variations of entropy. One or both of the "acoustic" waves
(1,3) can be shocks with finite strength. In this case, the
Rankine-Hugoniot equations can only be solved iteratively.

The problem has been circumvented by introducing "approximate
solvers" of the RP, which, in fact, are approximate models of
the RP, to be solved exactly.

Two have been the main suggestion proposed in the literature
[2,3]. They have been developed indipendentely, almost at the
same time. Both are widely used. Here I review these two
approximate solvers and a third one developed later (5].

THE APPROXIMATE SOLVER PROPOSED BY ROE

The evolution of a discontinuity is described by the Euler
equations (Eq.1). These can be written in the quasi-linear
form :

WT tA W 0 (6)

where the matrix A depends on the variable w. Roe has
proposed to linearize the physics described by Eq.6, by
replacing the matrix A with a constant matrix . The latter
is determined on the basis of the flow properties at points
N,N+1, which define the Riemann problem as detailed in [2].

The linear equations, which describe the evolution of the
discontinuity are:

WTt A WX=-.
The constant matrix T is constructed with proper averagg
values Z, -9, T as reported in [2]. The eigenvalues of A
(slopes of the characteristics) are:

The corresponding right eigenvectors are:

The prescribed difference DN wzw,.l-wN can be written as:
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Since Dp w is known, we can evaluate the values of N,

and 03 . Finally we have:

The prescribed difference DN f appears as split into three

terms, each associated to a corresponding eigenvalue. The

latter represents the speed of the wave in the linear problem,
constant over the (x,t) domain. By looking at Fig.3, it is

easy to recognize that :

CA fec
where the regions ( , ) approximate the exact ones (c,d).

Depending on the sign of the wave speed, each of these terms

contribute to the split parts (D f, D f) defined in Eq.3.

The most important feature due to the linearization is that
the acoustic waves are now always concentrated on single lines
of discontinuity. This picture is close to the correct one
for "compression" waves, which, in the exact solution, are
shock waves. On the contrary the situation is quite different
for "expansion" waves, which, in the exact solution, are
described by a diverging fan of characteristic lines, centered
on the initial location of the discontinuity.

Unfortunately, the method fails in the following case. Assume
that the initial RP is represented by an "expansion" shock at
rest. This configuration is stable according to the
conservation laws, Eq. 1. On the contrary, the second
principle of thermodynamics (not included in Eq. 1) makes such
a discontinuity collapse into an expansion fan, this being the
only acceptable solution.

In the numerical procedure suggested by Godunov, the expansion
fan determined by the exact solution is split into two terms,
each of them contributing to the opposite parts appearing in
Eq.3. Such contributions, expressed in terms of the flux, are
equal and opposite. Consequently, the numerical result is
consistent with the correct collapse of the expansion shock.

In the linearized solver, however, the expansion fan is
approximated by a single vertical line and the numerical
collapse of the expansion shock does not occur. Some
artificial remedy can be found, as reported in [2], in order
to satisfy the "entropy conditions". On the contrary, a
steady shock is perfectly described by the numerical
procedure.

Once the splitting has been done over each interval, we can
proceed to the integration of the Euler equations. By using
the first-order scheme, we find again Eq.5.

470



THE APPROXIMATE SOLVER PROPOSED BY OSHER

An alternate approximate solver has been proposed in [33. The
following presentation and interpretation of this procedure
looks rather different from the original one, but it can
provide a better understanding of this methodology in the
framework of the FDS formulation.

Instead of solving a RP, as in the previous approaches, we can
look at the system of three waves merging at XN+I/aat time
to , thus generating the discontinuity defined by the initial
data. The picture of Fig. 4 shows these waves (1",2",3"),
which separate the regions (c",d"). Let us suppose that we
know how to predict these waves. At this point we may assume
that the strenght of a wave is not largely affected by the
crossing of other waves. This would be true in a linear
problem, and also in the non linear homentropic problem, where
the strength of a wave is given by the difference of the
appropriate Riemann invariants across the wave. Therefore it
would follows that:

Furthermore, we assume that the new waves (l,21,31), coming
out from the discontinuity, propagate in the same directions
as the old ones (1",2",3"). Once the pattern of the new waves
is known, we can soon proceed to the splitting of DN f, as
required by Eq.3.

We have now to predict the pattern of the waves (1-,2",3") and
the corresponding regions (c",d"). Following [3], we suppose
that the acoustic waves can be considered as isentropic. This
is certainly correct if these waves are expansions, but only
approximate in the case of shocks, owing to the entropy
generated through them. The only entropy variation is
accounted by wave (2") and corresponds to the initial
discontinuity of the entropy as provided in the initial data.
It is worthwhile to remark that, due to this assumption, the
RP retain its original non-linearity.

The solution of the RP requires the evaluation of six
unknowns, two thermodynamical properties and the velocity in
the regions (c",d"). They will be computed by matching the
regions (a,c",d",b) with the conditions which hold over the
waves (1",2",3"). Through the acoustic waves (1",3"), we
conserve the entropy (basic assumption) and the Riemann
invariant (either 2/(-).a+u or 2f(Y-13.a-u) which remains
constant along the characteristics (u+a or u-a) running across
the wave (from d" to b or from c" to a). On the contact
surface (2"), we impose the continuity of pressure and
velocity, as usual. Such conditions, formulated as follows:

2 C,_UC,, = 2j OIUa 8 ,,1 -s4
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are easily interpreted in a Fortran code. Once the flow
properties in the regions (c", d") are known, we can evaluate
the fluxes fc, and fdjl and find the splitting required by
Eq.2. In the next step, we evaluate the directions of
propagation of the waves (1",2",3"), so that we can determine
to which parts of Eq.3 (D"-f I DIf) the split terms
contribute.

We note that the acoustic waves can be expansion or
compression waves. Owing to the assumption of isentropy, they
are diverging or converging fans, respectively. Just in
opposition to the previous approximate solver, the expansions
are now described correctly, whereas the shocks are described
by converging fans, instead of single lines of discontinuity.

A very interesting feature of this approximate solver appears
in the case of a sonic transition (vertical characteristic)
imbedded inside an acoustic fan. The case is not an academic
one: to the contrary it occurs any time we have a steady
shock and prevents the formation of an expansion shock. In
these cases, in the spirit of Godunov's idea, the content of
the fan will be split into two additional terms which
contribute to the opposite parts appearing in Eq.3. The
reader interested on this point (one of the most important,
since we are interested in predicting flows with shocks) can
find a wider and more detailed presentation in [4].

Once these splittings have been operated and all the terms of
Eqs.2,3,4 are found, we can proceed to the integration (for
example, see Eq.5 for the first-order scheme).

A THIRD APPROXIMATE SOLVER

A third solver, somehow located between the previous ones, has
been proposed later in [5]. It follows basic Godunov's idea
of predicting the evolution of the initial discontinuity
directly (as in Roe's solver), but it assumes that the
acoustic waves are isentropic (as in Osher's solver). From a
practical point of view, the procedure follows the solution
proposed in [3], but the order in which the waves are crossed
in going from region a to region b has been reversed [5].

We think worthwhile to note that the assumption used in the
previous approach [3] and, later on, in the present one [5],
is not new in the prediction of unsteady flows and has been
suggested, many years ago, in a quite different scientific and
technical context. For example, in a classical textbook
written before the computer era [6], an iterative procedure is
suggested, to solve the problem of interacting shocks. In the
tentative initial configuration, the compression waves are
assumed to be isentropic. It is also shown that, most of the
times, the initial and final configurations are not very

different.

In conclusion, the approximation introduced by the solver
affects only the relative percentage of the terms in which the
difference of the flux has been split. It does not affect the
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Euler equations which will be integrated in the final step.
With reference to this specific point, let us quote from [2) :
.... the expense of producing an accurate solution of the

Riemann problem would only be justified if the abundance of
the information, which is thereby made available, could be put
to some rather sophisticated use". In other words, it pays to
spend time in obtaining the exact solution ONLY if in the
following numerical work we are capable to profit of its
results with a suitable accurate scheme. For the first-order
scheme (Eq.5), -nd also for second order schemes, the
experience has proved that the above approximate solvers
provide solutions sufficiently accurate to avoid any penalty
in the following numerical scheme.

HOW TO IMPROVE THE ACCURACY

The original procedure proposed by Godunov is based on a first
order scheme, as shown in Eq.5. To improve the accuracy, we
can use the ingredients provided by the solution of the RP
(exact or approximate), that is the split terms of the
difference of the flux, and incorporate them in a more
sophisticated numerical scheme.

A different approach has been followed in two very accurate
procedures, known as the "Piecewise Parabolic Method" (PPM)
and the MUSCL method, respectively. Here the accuracy is
improved in the step related to the formulation rather than in
the following numerical scheme. The interpolation of the
initial data is, indeed, more sophisticated than in the
piecewise constant value distribution. The definition of the
RP follows, but little care is taken to speed up its solution.
Once the splittings are obtained, the updating of the solution
follows a numerical scheme, similar to the one shown in Eq.5.
The accuracy of the results, however, is much better than in
the first order scheme which follows Godunov's interpretation,
due to the previous careful work in interpreting the initial
data and in defining appropriate RPs.

THE PIECEWISE PARABOLIC METHOD

The procedure is reported in detail in [7]. Here we point out
some of the main features.

We distinguish two steps. The first one is dedicated to the
interpretation of the initial data as parabolic arcs in each
cell. The second step regards the definition of a suitable
PP, on the basis of the previous interpretation.

We start by reviewing the first step. With reference to
Fig.5, we look for the arc of parabola which describes a
general flow property y over the cell (Xt+ 1iI-XW_-/Z ) about
point N. The coefficients needed to determine such an arc are
evaluated by requiring that the average of this distribution
equals the prescribed value LPN and by imposing the values at
XN./2 and XN.,12
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Such values are obtained through a particular interpolation
procedure. For example, in order to get the value TN i/2 at
XN+i/4 (see Fig.6), first we evaluate the integral 4=JT&X
numerically on the basis of the initial values of
provided at the symmetric points N-1,N,N+I,N+2. Once the
values of are found at the five locations X+.±Ia (J=z2,
T1, 0), we look for the quartic polinomial ( ) passing
throug these points and we evaluate its analytic derivative
iO =d$/dX. Then we compute P at N+1/2. This represents the
value WX,N which delimits the arc of parabola about the point
N, on the right-hand side. A similar prediction is done for
the left-hand side, that is for PL,N. Since these values are
also needed for the neighboring arcs, we have

IPL, - fR,?-l TIM-IlL

and so on for any other interval. At this stage the initial
distribution looks as a sequence of arcs of parabola,
continuously connected to each other.

Now we examine each arc and we modify those which do not look
monotonic. It is at this point that we may introduce (and we
certainly do it in the proximity of a captured shock) a jump
at the middle of some interval (X,4+112 ), since the two arcs
merging here can be modified and then tPR,N differs from

YL,f +1 . Further readjustments can still be introduced to
achieve more definite and sharp transitions in the final
numerical results through captured discontinuities,
particularly in the case of contact surfaces. The
distribution over a general interval (XN ,XN4.) looks now as
in Fig.7.

At this moment, we proceed into the second step. The picture
of Fig.7 does not look like the RP configuration of Fig.l.
Indeed, the relatively small discontinuity is closed by two
non uniform flow regions. Therefore we try to define an
appropriate" RP, that is, to determine the two levels of the
flow properties which define a RP as close as possible, to the
configuration of Fig.7 in terms of wave propagation. Such
values are called 'fN+1l2,L and PN-tI/ZR and the RP is defined as
shown in Fig.8. The equivalence of this RP with the non
uniform regions configuration of Fig.7 is required to hold for
the time interval (DT) determined by the CFL rule. It is
specifically in the search of this appropriate RP that the
wave-like nature of the phenomena is introduced in the
procedure, since, up to now, no reference was made to it.

It is convenient to recall the definition of the Riemann
variables, expressed in terms of pressure, density and
velocity. Their differential form is given by :

The first and the third variables represent the "acoustic"
signals, whereas the second one is related to the entropy. We
can define their finite forms approximately
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The variables (R1,R2,R3 ) are certainly much more significant
than the original ones (p, p ,u) to emphasize the propagation
of waves.

Let us now focus our attention on the search of fN ./,L , the
left hand side value of the RP, and consider the distribution
of T over the cell about point N (see Fig.9.l). First we
evaluate in which directions propagate the waves which belong
to this cell. Therefore, we look at the sign of the speeds of
the characteristics at point N (u:F a ,u ). Let us suppose
that (u +a ) is positive, whereas (u ) and (u -a ) are
negative. In this case we expect that the R3 signal only
flows toward the XN.1/2  (R2 and Ri propagate in the opposite
direction). Note that during the time interval DT, only the
section (Xt4,I t (u +a,)*DT) of the initial distribution
contributes to the evolution at XN+1/2 (see Fig.9.2). We
compute the averages, p, A , and u3 over this section and
the average of the third signal R3 there:

o.3 -4-

This is the only wave impinging on XN+i/2 , coming from the
left. Therefore, the left hand side values of the RP of Fig.8
must provide :

(Rj)

which is satisfied by assuming:

If (uN) is also positive, but (uN-a) still negative, we
compute the average values (Pa, a ) over the section
(X W41- UN*DT) which are related to the average value of the
entropy carried on X N+i/2 during the interval, DT. These
values define :

T2 t4 'P.

In this case the left hand side values of the RP (Fig.8) must
provide :

(IR ) ..-- R 3 14)-'/2,L = R

which are satisfied by assuming:

Finally, for a supersonic flow at point N (u./aW>1), we also
evaluate a third average (pPWut) over the segment
(XA+l| -(uN-aj)*DT) (see fig.9.4). With these values we
compu
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Now the left hand side values of the RP must provide three
conditions:

which are satisfied by:

(I P2 ) (V t4) -- VL~

Similar operations must be repeated at the right hand side of
the next interval, which extends from X N+12 to XN+3/,. The
attention is here focused on the waves that propagate
leftward. Therefore, we will only consider contributions from
the waves with negative speed. The averaging process is the
mirror image of the one just considered; a set of values:

t+ *,2, R gJIV2,R

is obtained which define the RP of Fig.8 on its right hand
side.

The appropriate RP is now completely defined and the full
picture of Fig.8 is determined quantitatively. Let us note
that the averages obtained for each wave on the pertinent
section are crucial for predicting the advection of each
signal accurately and, at the same time respecting the domains
of dependence.

Two further steps are still needed to complete the procedure.
First, we must solve the RPs. As we have mentioned
previously, no particular care is paid to speed up this step.
Then, we must update the solution in time according to the
scheme of Eq.5. The numerical scheme seems to have only a
first-order accuracy, but the accuracy is much higher, because
of the previous sophisticated procedure followed in
determining the RPs.

THE "MUSCL" METHOD

Similarly to the PPM, this approach emphasizes the
interpretation of the initial data and uses a simple algorithm
in updating the solution in time [8].

The initial data are not only the values of the flow
properties YN at each grid point N, as in the PPM. In
addition a further variable ( ,)LP) is given, to be updated at
each computational step by an integration procedure, just as
YO4 . We interpret these initial data (LPN,4NY) by means of
a piecewise linear distribution over a cell, as shown in
Fig.10. Its end values at XN.I/ and XN+II2 equal
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IFLN ?R, / 2

respectively. In the middle of the interval (XN ,X 1 ), we

find the discontinuity

?N,/2.R_ T%3+,/t,L equals PL,414 - TRN

as we can see by comparing Fig. 10 and Fig. 11. The

discontinuity separates two regions with flow properties

varying with X linearly and the initial configuration looks

like a sequence of neighboring segments. This is not the end

of the initial step. In regions of strong gradients, indeed,

the slopes of the segments must be readjusted not to generate

numerical oscillations in the integration step which follows.

The most peculiar feature of the NUSCL method consists in

working out the initial value problem directly from the

distribution shown in Fig.ll. In the following analysis, we

can distinguish between the initial, instantaneous breakdown

of the discontinuity and the analysis of the propagation of

waves proceeding from non-uniform regions.

The former is workei out as a RP. An almost exact solution is

developed. Let pm/l be the flow properties at

immediately after the collapse of the discontinuity. The

tools for predicting the second phase (smooth interaction of

waves) are the classical compatibility equations along

characteristics. With reference to the (u-a),(u),(u+a) waves,

they are written as:
(- (P)r T Q~~p~

respectively. These equations hold in the non-uniform region

following the breakdown of the discontinuity, at XN,+41?z. The

unknowns are the time derivatives. The brackets containing

the space derivatives do not change across suitable chosen
characteristics; therefore such derivatives can be computed

using the initial distribution of values. For example, in the

case of Fig.12, with (u+a) positive and (u) and (u-a)
negative, it would result:

PT-[ P ] ?)

[-K- r- P " I = [P- P P],
+( P LX-+ QkP) LJ14:

where the space derivatives on the right hand sides are

computed from the initial data.

We are now ready to update in time both the properties Ifiq and
JDj . By quoting (8], we point out that "the slopes (29,tf)

are independent of the average values (p); they cannot be

derived from the latter, must be storecTseparately" and also
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updated in time separately.

First we evaluate the flow properties at X,*/1 2 , at the time
T+DT/2 (step K+1/2) and at the final time, T+DT (step K+1), by
the simple algorithm:

We note that this integration is carried out on the "non
conservative" primitive variables (p, p,u), which appear in
the compatibility equations. Then we compute the difference
of the flux:

According to the previous Eqs.2,3,4 and to Fig.2, we recognize

that:

N=kb .
We note that such a splitting refers to the intermediate time
(T+DT/2). This improves the accuracy in time.

So far, we did not integrated the Euler equation (Eq.1) yet;
we have only prepared the necessary ingredients. As for the
PPM, we go to the plain scheme of Eq.5, which again seems to
provide first-order accuracy, but only apparently . From the
new values of the "conservative" variables wK*1 , we decode
the values of the primitives ones +, eded as initial

data in the following step. 
T1

As pointed out previously, we also have to update the slopes

( 1p) in time. They are computed as follows

where the terms in the right-hand side are the ones obtained
in Eq.7. We have worked out two independent integrations on
Ti4 and j LP . As pointed out in (8], "this approach
potentially has the effect of a mesh refinement of a factor of
two".

CONCLUDING REMARKS

In closing this short review, I would like to add some final
remarks.

First, let us recall that the same ideas can be used for
steady supersonic flows, to the expense of some formal
complication.

A second comment refers to the extension to multidimensional
flows. We know that the ID hyperbolic problem (ID unsteady or
2D steady supersonic flows) is a very well defined problem,
dealing with three compatibility equations, three signals, and

478



three unknowns. In the multidimensional case the situation is
not so clear. The number of the unknowns is increased by one
or two additional components of the velocity, whilst we find a
single or double infinity of available compatibility
equations, characteristic rays, and signals. Some criteria
have to be devised in order to select the more significant
information. These are related to the choice in defining the
grid and the velocity components. We would like to point out
that these problems are common to any upwind formulation
(whether the quasi linear or the conservative form of the
governing equations is used), as well as to the original
method of characteristics.

A third remark is of practical nature. Anyone of the above
mentioned approximate solvers has been widely incorporated in
codes for practical applications (nontrivial geometries and
curvilinear grids). On the contrary, the last two accurate
procedures, which require a rather heavy work in the
interpretation of the initial data, have been used, to our
knowledge, only for the understanding of basic physical
phenomena and confined to regular Cartesian grids.
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ON OVERDETERMINED HYPERBOLIC SYSTEMS
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Summary

The notion of hyperboLicity is generalized for over-
determined quasitineaor systems. We define the system as
hyperboilc if it is compatible and if its jet manifold
is generated by the characteristic elements. The
criterions of compatLbilty are also formulated.

Let us consider a quasilinear first order system of PDE's
A! V u ) ! jS = 1 ...,Im,

SA-(ux)- - f(u,x), j = 1,....., (1)3 ax V = 1, .. .,n.

When m > t one speaks of an overdetermined system. Maxwell
equations (because of the constrains div E = 0, div B 0) or
vorticity equations in hydrodynamics can be viewed as proto-
types of such system.

For any uo,x °  we define a linear space 3(uo,x0 ) of in-
tegral elements of the homogeneous system as composed of all
I x n matrices (p)) satisfying

jA"'(UoXo) pj = 0. (2)

Special role is played by the characteristic elements which
are the matrices of rank 1, i.e. they are of the form pV
=X1 .,. In order to demonstrate it,let us recall the standard

definition of hyperbolicity. Suppose that m = L. Let x. be

the chosen direction. We say that system (1) is hyperbolic at

(U0 ,X0 ) in the direction x1  if and only if:
1°  For any X = (O,)' 2....X An), X e , the characteristic

polynomial

W(N) = detlA (Uox .o)X + A (uo,X)Xfa, a=2,....n,

has L (including multiplicities) real roots for X., say
t 2 L
Xi X, ...

20 The corresponding eigenvectors, say X,.... span an
L-dimensional space, i.e.

(A' oI X +....n, .... (,),
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dimfx .... .

As follows from this definition, for any (X 2... 2 X) e

we haTe L different characteristic elements of the form
p = X.) where X = (i .X2 ,.. ,X) and X is a correspond-

ing eigenvector. Matrices p satisfy Eqs.(2).
Any system of partial differential equations can be

converted into a Pfaffian system. For example, system (1) can
be written as a system of one-forms

du - (A')-if dx* = - (A')-A " p. dxi + p. dx0  (3)

in the space of {u,x,pl of dimension L+n+(n-1)L, a = 2,.., n,

P, (pQ), p. . IR.
It is interesting to note that if system (1) is hyperbolic

then the space :(uo,x o ) is generated (as a linear space) by

the characteristic elements. In other words there exists a
following representation of (3)

du - fdt XeX1 + XS0X 2 + + % XS0X" (4)
11 2 2 nlT

where the matrices of X e Xc satisfy Eqs.(2), and X are

treated as differential forms X = X dx', f = (A-')-f and
k = (n-i) x 1.

The above property will be used in order to generalize the
notion of hyperbolicity for an overdetermined system. However,
this property is insufficient to make a good definition. If
k < (n-i) x L, the system is overdetermined and, in general,
it may be incompatible. By adding compatibility conditions
representation (4) can loose its validity. Indeed, these
conditions can lead to some constraints among the variables
u, t, x. If, for example, Z, = t2 is such a constraint then

the right hand side of (4) is no more a linear combination of
elements of rank 1 (characteristic elements) with "free
coefficients" % .... tk' To avoid such complications we will

require the system be compatible.
The most general notion of compatibility for C systems is

expressed by the notion of "formal integrability" [6,7,9].
Janet [2) (see also [8]) used the notion of passive systems
whereas Cartan [1,3] by introducing the notion of
involutivity was, in addition, able to formulate an algebraic
criterion allowing to verify in a finite number of steps
whether the system is involutive (hence, also formally
integrable) or contradictory. He also proved that after a
finite number of prolongations any system becomes involutive
or contradictory. There also exists a criterion of formal
integrability which is expressed by the 2-acyclicity of the
symbol. However, this criterion is rather cumbersome in
application and therefore we are using here a less
complicated notion of involutivity.

In order to give a very brief review of these ideas let us
consider the following first order system
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F(u,Du,x) = 0, s = 1'...m. (5)

Adding to Eqs.(5) their first differential consequences

0# FO(u,Du,x) = 0,

where a# FO(u,p,x) = !F + OF* Ou' ,F e one
x VxV Oua OxV OpM ax" V I

obtains what is called the prolonged system, denoted by p(F).
Similarly, further prolongations can be obtained according to
the formula pr(F) = p(-p (F)), r = 2,3...... Equations (5)
can be solved for some of the derivatives of u to obtain

u)j = .0 (u, {u,,?}, x), (6)

(j,) e n c {1_..,} {i ,..,n. ,
(J',P') es I.. .I x (1,..,.n) % n,

Now we define all derivatives on the left hand side as the
principal derivatives associated with representation (6),
whereas the derivatives on the right hand side are called
parametric. This generates a splitting of all higher order
derivatives. By definition, any derivative of a principal
derivative is principal and those which are not principal are
said to be parametric. Representation (6) is said to be
passive [2] if for any r = 1,2.... the prolonged system
p-(6) can be formally written as

Pr = §r(u,X,4r), (7)

where pr and Q; are sets of principal and parametric
derivatives, respectively, of order less or equal r. In other
words, the prolongation does not restrict the freedom of
parametric derivatives. It could happen that at certain stage
one would obtain relations involving parametric derivatives
only.

Passive systems are formally integrable: the formal solu-
tions are Taylor series. Freedom of the general solution is
given by its parametric derivatives. The above definition of
a passive system is not very constructive since it requires
an infinite number of prolongations be checked. The situation
improves, however, when system (6) is of a special form

I i
u = 2 (X,U,u ),

x 2 z i ru * (xuu ), (8)

I I I I

U x ( , , : ' ' ' ' 'U x )
n I 4

.4



i.e. when the subsets Ia c I = {1,2,--.,L} are ordered in

the following way I. c 12 c .-. c I" and where Tk = I '\ Ik
• 2 n

uI, u 2.,. u 11 and any of their derivatives are then
'X X

1 2

principal derivatives. The remaining derivatives e.g. u
,x

u 2 ... , u x, u I , uI .... are parametric. In this

case it is possible to prove that if the first prolongation
does not restrict the freedom of the parametric derivatives
then it is so in all higher prolongations [3]. There also
exists an algebraic criterion which, admitting linear trans-
formations of variables x and u, answers the question of
local existence of this well ordered form (8). This criterion
concerns the symbol of Eqs.(5), i.e. the part of the line-
arized system which is homogeneous in Du. By linearizing (5)
we obtain

A L (Uo ,Xo ) U. 0.
1)

Then we define 3 = { pJ = *p 0, p~ -- " -0-

for r = 0,1,.. ,n - 1. Similarly, we define the prolongation
of the space 3Z as the set of solutions to the homogeneous,

r

second order, part of the prolonged system:

p(3r) {(p ); ep , = 0, p = p, pji =0 for -<r}.

There exists a coordinate dependent projection

6r+ : p(3 ) - 3r (9)

defined by
6

P (Z:r ) =% 3(P.+

Definition. If there exist systems of coordinates for x and
u such that mappings (9) are surjective then one says that
system (5) has an invoLutive symboL.

One can prove that the set of such coordinate systems is
open. It follows [1,3] that

Theorem. If system (5) has an inooLutive symboL then it can
be represented in the form of (8). Moreover, if the proLonged
system can be written as

p2 = Q)
i.e. If the freedom of parametric derivatives up to the
second order is not restricted, then the system is nuoLutive
and, hence, formalty intoerabLe.

Having sketched the notion of involutive systems let us
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define the notion of generalized hyperbolicity. Let us
confine our attention to the homogeneous systems.

Definition. A first order homogeneous system Asp (U) uj  0
is hyperbolic if and only if P

10. it can be represented as

du = X 0X1 +'* + Z~
i.e. it is generated by its characteristic elements.

20. it is involutive.

In order to see how broad is the class of generalized
hyperbolic systems and what kind of patologies does it
contain let us take

rot v = 0

as an example. Let X01 = (X ) be a triple of independent

vectors in R'. Then rot v = 0 is equivalent to

1 2
d'v = f t eA + fz Xz  X2 +z  t s k

The system is involutive and generated by its characteristic
elements therefore, according to our definition, it is
hyperbolic. However, it is not hyperbolic in the usual sense.
Note, that every vector is a characteristic vector!

In order to avoid these patologies one can consider
systems obtained from the usual-sense well-determined hyper-
bolic systems by adding certain constraints (e.g. Maxwell
equations). Most natural class of such systems is composed of
systems generated by "full branches" of the characteristic
cone. Suppose that the characteristic determinant W(X) can
be factorized as follows

W(X) = W1 (X) W2 (0.

It is possible to define a system of partial differential
equations associated with the branch W (X) in the following
way

du e I X * X- AU (u) X X 0, W1 (X) = 0 }, (10)

i.e. du is a linear combination of characteristic elements
associated with W I(N) = 0.

Let us formulate a criterion concerning the question
whether the symbol of a hyperbolic system is involutive.

Theorem. Suppose that for every r = 0,1 ...... n-1 the space
e (xO ,U) gs enerated by the characteristic elements

3r  span { AXO',',f . * } such that A 0 for s =
1,....k. Then the symbol of the system is involutive.

To prove it let us notice that the elements f! * A& S A'},
s = 1,.. .,k, belong to p(3). We have 6' (X ® X ® A) =

= X 1 X 0 X. Therefore the mappings 6. P(3) 3. are
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surJective, which proves the theorem.
How to check the compatibility of the system

du (11)

provided its symbol is already involutive? Suppose X, X are
a C

functions of u only. Taking the exterior derivative of (11)
we have

where dtt X a + z0 dX at + E

where dX Xa , [X,Y] is the commutator

of the vector fields X, Y:

[x,Y3 = x j a . y - Y¥ j XuJ  auJ

Equation obtained by differentiating (11) should have alge-
braic solutions for (dtC) at any ( ,u,x). This can be

rather easily checked if (11) does not contain too many modes
(i.e. characteristic elements). For example, let X,..., , and

be independent at every u. Then one gets the
following compatibility conditions for (11)

a) E e span {X, },

b) . ka e span {AaCX} a (0.

Thus, the variation of wave-vector Xa under 1he, influence
of wave "(" must be a linear combination of X ,X . In this
case the solutions can be interpreted as interacting Riemann
waves [4,5].

For a high number of modes rather than with the Pfaffian
forms it is easier to deal with partial differential
equations.

The compatibility or incompatibility of system (10) can
be interpreted in.physical terms. System (10) involves only
such modes which satisfy WI(X) = 0. Therefore if the system
is compatible then the nonlinear interaction of these modes
does not generate modes from other branches. Particularly, if
the initial condition consists only of modes from Wi(X) = 0,
then this is also true for the solution for t > 0 as long as
it stays continuous. Incompatibility, on the contrary, leads
to the production of modes from other branches of the
dispersion relation.

As an illustration let us consider the system of Euler
equations for an ideal gas

-9--1 + v - v p(p) = 0,
3:E V (12)

+ div(p4) 0.et

In this case W(N) has two branches (4], the linear branch
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W1 (X) = X + 0 of multiplicity 2 and the quadratic
branch W (X). The system associated with W2 (X) is

compatible and it defines irrotational flows. The system
associated with W1(X) is

*+ -.:o
-t v + Vv = 0, 13at (13)

div v = 0, Vp = O.

It defines isobaric flows and it is incompatible what can be
checked by taking the divergence of the first equation. By
prolongations we obtain additional constraints for the first

4order derivatives Vv which are

Tr (V;)2 = 0, Tr (7)S = 0. (14)

Note that div 4 = Tr (V4). The full set of equations, i.e.
(13) and (14) is involutive. Thus, if the initial conditions
satisfy p = const and Tr (V4)r = 0, where r = 1,2,3, then
there exists a solution to Eqs,(13). If, however, the initial
conditions satisfy only div v =0 and Vp = 0 then, in
general, the solution of Eqs.(12) does not satisfy Eqs.(13).
This is so because this solution may, in addition, involve
the sound modes although they were not present in the initial
conditions.
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Runge-Kutta Split-Matrix Method for the Simulation
of Real Gas Hypersonic Flows

M. Pfitzner
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SUMMARY

A class of three step explicit Runge-Kutta type time stepping schemes
for use in conjunction with second order upwind and third order upwind-
biased space dlscretisations of the quasi-conservatively formulated Euler
equations is studied. The fractional time steps are optimized to yield a
second order accurate method with a maximal region of (linear) stability.
The method is incorporated in a 3-0 Euler code for the simulation of ideal
gas and equilibrium real gas flows. A pseudo space marching method is pre-
sented to deal with the supersonic part of the flow field. It uses te time
stepping scheme as relaxation procedure. The method is much more efficient
than pure time relaxation and converges to the same steady state. The
applications shown include 2-0 and 3-0 simulations of ideal and rea! gas
flows with fitted bow shock and captured embedded shocks.

INTRODUCTION

The development of new space transport systems and of hypersonic air-
craft requires the simulation of high speed air flows about realistic con-
figurations. New concepts of propulsion systems have to be studied and here
the numerical simulation of the flowfleld can lead to new insights. The con-
struction of these configurations requires an accurate prediction of flow
about three-dimensional bodies at Mach numbers ranging from 0 - M. < 30.

The high temperatures occuring in hypersonic flow fields ( M. > 4 ) cause
the excitation of vibrations of air molecules and at higher temperatures the
dissociation of oxygen and nitrogen and the creation of oxides of nitrogen.
Air then cannot be treated as an ideal gas. At low enough altitude along
the shuttle reentry trajectory ( H < 50 km ), where the density of air is
high enough for recombination reactions to take place, the real gas effects
can be taken into account by introducing a general equation of state into
the fluid dynamics equations. This implies that the gas is assumed to be
in local vibrational and chemical equilibrium. Curve fit routines can be
used to represent numerically the equation of state. The additional amount
of computational work is then approximately 30% more than in the ideal gas
case.

At those altitudes, where the equilibrium real gas assumption is valid,
the Reynolds number is high enough to make the division of the flow field
into an inviscid part with a sharp bow shock and a boundary layer meaning-
ful. At higher altitudes along the shuttle reentry trajectory, where non-
equilibrium chemistry has to be taken into account, the Reynolds numbe-
drops and a full nonequilibrium Navier-Stokes simulation has to be done,
which is at least two orders of magnitude more expensive than an equili-
brium real gas Euler - boundary layer analysis.

The relatively simple geometry of reentry bodies and the very strong
hypersonic bow shock suggests the use of a bow shock fitting procedure.
The algorithm must, however, be able to capture embedded shocks
correctly.

The time relaxation procedure must be able to deal with the very
strong transients accuring during the integration process towards the
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steady state. As a result, some of the integration procedures developed
for the subsonic and transsonic flow regimes are not applicable or have
to be modified for use in the hypersonic regime. An accurate time inte-
gration procedure avoids unphysical transients and is therefore a good
candidate. Low memory requirements, good vectorizablility and the appli-
cability of the shock fitting algorithm are also important. An iterative
Runge-Kutta type time stepping scheme meets all these requirements.

SPACE DISCRETIZATION METHOD

We integrate the instationary Euler equations in quasi-conservative
form in generalized coordinates:

+ A+& +  + A-Q(" + B+ Qn+ +

+ B-Qn " + C+QC + + C-Q- = 0

where Q = (p,pvx,pvy,pvze)T are the conservative variables.

The matrices A±,B±,C1 {41 are split according to the sign of their eigen-
values [1-31. The space derivatives of Q are calculated with a third order
accurate upwind-biased formula [31:

+
Q m . ..&- (Qm-2 - 6Qm-1 + 3Qm + 2Qm+i) (2)

1
Q- - (Qm+2 - 6Qm+1 + 3Qm + 2Qm-1)

and a MacCormack-type artificial diffusion term prevents wiggles near shocks.
The bow shock can be captured or fitted , whereas imbedded shocks are

always captured. Owing to the simple geometry of reentry vehicles and the
strong bow shocks encountered there, the shock fitting option is preferred
in this case. For hypersonic flows, where real gas effects are important, the
pressure of the gas is a general function of the density and the internal
energy. The flux matrices A,B,C can be calculated with their eigenvectors
and eigenvalues for an arbitrary pressure function p(p,s) and the shock
fitting algorithm can be generalized for this case [5,101.

TIME STEPPING SCHEME

A systematic study of three step time stepping schemes in conjunction
with the third order upwind-biased and the second order upwind space dis-
cretizations [2,31 has been conducted. The iterative Runge-Kutta scheme
for the stepping from time level (n) to time level (n+1) is of the general
form [61:

Q(l) Qn _ a, At p(Qn)

Q.2) _ Qn - a2 At P(Q(1)) (3)

Qn+1 . Qn - a3 At p(Q(2))
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where the operator P contains the space derivatives. The coefficients al,
a2 and a3 represent the normalized fractional time steps.

An advantage of the iterative Runge-Kutta schemes is that only one in-
termediate set Qf flow variables has to be stored in addition to the time
levels Qn and Q n+. In contrast to classical Runge-Kutta methods [71,
however, it is not possible to increase to formal order of time accuracy
beyond second order.

For first order accuracy a3 = I is required. Second order accuracy
is achieved by setting a2 = 1/2 regardless of the value of at. The coef-
fient at is used to maximize the region of (linear) stability of the algo-
rithm. Setting at = 0 formally yields a two step Runge-Kutta method of second
order accuracy, whereas with a2 = at = 0 the first order algorithm we used
earlier [2,3,51 is recovered.

To get an estimate for the optimal choice of the parameter al we carried
out a linear 1-0 von Neumann stability analysis of the linear advection
equation:

ft + u fx = O (4)

The analysis yields the linear amplification factor g, which depends on
the CFL number u At/Ax and on the grid wave number k Ax. Since the
resulting expressions for g are too complicated to be discussed analytically
in general, the square of the modulus of g was plotted a. a function of the
CFL number and of s = sin 2 (k Ax). Fig. I shows a 3-0 view of IgII for
the one step algorithm ( a2 = at = 0 ) with the second order upwind and the
third order upwind-biased space discretizations. The white square hiding part
of the function represents the plane Igl = 1, i.e. the stability linfit. The
plots reveal that the one step algorithm is unconditionally unstable for both
discretizations, but the region of instability vanishes quadratically and
linearly, respectively, as the CFL number approaches zero. In practice,
the one step algorithm has been sucessfully used in 2-0 and 3-0 Euler si-
mulations with CFL numbers on the order of 0.2.

Fig. 2 shows Iglz for the second order two step scheme (a3 = 1, a2
- 1/2, al = 0). In contrast to the central space diffencing scheme,

which is linearly unconditionally unstable with this time stepping, the
upwind and upwind-biased ;?m discretizations are stabilized up to
CFL = 1/2 and CFL = (2/3)' ', respectively. The three step scheme with
at > 0 can extend the stability region of the algorithm. The optimal
stability region for the upwind biased discretization is achieved for
0.25 < at < 0.3. In this region the stability limit is extended beyond CFL=
1.75. In contrast, the stability limit of the second order upwind algorithm
cannot even be pushed up to CFL=1 by any choice of al. Fig. 3 shows
Ig[z for the upwind and upwind-biased discretizations with at = 1/4.
The central differencing scheme is unconditionally unstable below
at = 1/4 and reaches a maximal stability region of CFL=2 at at = 1/2.

The three step Runge-Kutta time stepping with a3 = I, a2 = 1/2 and
al = 1/4 has been incorporated in the shock-fitting 2-0 and 3-0
ideal gas and real gas Euler codes. A CFL number of 1.25 has been found
to be adequate in practical computations.

PSEUDO SPACE MARCHING METHOD

For hypersonic flows the one-dimensional Mach number in the coordinate
direction of the main szream is mainly greater than one. The Euler equa-
tions (1) then are hyperbolic in that coordinate. In recompression regions,
however, subsonic pockets my appear. For the simulation of flows of that
type we developed a marching strategy using the instationary Runge-Kutta
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code as basis.
A zone of coordinate planes is defined in which the instationary equa-

tions are iterated toward convergence. The inflow boundary is supersonic
and the variables there are prescribed. At the outflow boundary zeroth
order extrapolation is used. Fig. 4 shows the computational grid in the
symmetry plane and indicates the marching zone.

The zone is marched downstream over the body. If local subsonic pockets
appear in the flowfield, the width of the zone is adapted such that the
subsonic part of the field is completely covered by the zone. After con-
vergence has been achieved in the adapted zone the width of the zone is
reset to its original value anti the marching continues from the supersonic
downstream boundary of the adapted zone.

The blunt body flow may be simulated using the same code with a fixed
zone width. The marching strategy saves much CPU time since it generates
excellent starting values for the instationary relaxation scheme. It does
not break down if the flow becomes locally subsonic like pure space-mar-
ching schemes do. The pseudo space marching method is, however, slightly
less efficient than pure space marching. A similar idea has been pro-
posed in 191.

APPLICATIONS

Several simulations of ideal gas and equilibrium real gas hypersonic
flows have been performed with the third order upwind-biased space dis-
cretization scheme in conjunction with the three step Runge-Kutta time
marching algorithm with (a.3 = 1, a2 = 1/2, al 1 1/4) and CFL=1.25.
Bow shock fitting was applied and the pseudo space marching method was
used where possible.

Fig. 5 shows a comparison of lines of constant temperature in flow about a
hemisphere-cylinder at M.=11. a=O, H=50 km (T.=271 K) for ideal gas ('f=1.4)
and equilibrium real gas. A local time step with CFL=1.5 was used and the
calculation was converged after 500 time steps. The standoff distance of
the shock is smaller for the real gas case and the temperature near the stag-
nation point is much lower. The wiggle in one of the real gas temperature
isolines is a result of inaccuracies of the curve-fit routine used for the
calculation of the real gas temperatures [8). It is not visible in the flow
variables. Fig. 6 contains a comparison of the ideal gas and real gas static
temperature distributions on the windward side of a HERMES like body for
M. = 10, a = 300, H = 100 km. Equal temperature increments of AT = 100
are used for the isolines. In the real gas calculation the stagnation point
temperature is 3160 K compared to 5840 K in the ideal gas case. The quali-
tative form of the isolines is similar, but in the real gas case the gra-
dients are smaller and they appear smoother than in the ideal gas case.
Fig. 7 contains the Mach number isolines and the computational grid in
a cross-sections halfway down the body of the real gas flowfield. The im-
bedded crossflow shocks are clearly seen.

In Fig.8 the ideal gas and real gas temperature,Mach number and pressure
distributions on the body in the plane of symmetry are compared. Cn the
leeside the location of the canopy shock can be clearly discerned in all
curves. Only every second grid point is shown. Taking this into account,
one can see that 2 grid points are inside the captured canopy shock in
both the ideal gas and the real gas cases. No overshoots or undershoots
occur in the solution. Whereas the real gas temoerature on the windward
side of the vehicle is much lower compared to the ideal gas case, on the
leeward symmetry line a crossover occurs and the real gas temperature
lies partly above the ideal gas result.

The reason for the lower stagnation point temperature of the real gas
flow is the energy swallowed by the vibrational excitation and the dis-
sociation reaction. The temperature crossover on the lee side can occur
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because in the real gas case the flow velocity is smaller than in the
ideal gas case.The difference to ideal gas kinetic energy is in the
real gas case divided between internal degrees of freedom and temoera-
ture. The pressure distributions of the ideal and real gas simulacions
are virtually identical since the pressure is a kinematically dominated
variable.

CONCLUSIONS

A systematic study was conducted to find the optimal choice of frac-
tional time steps of a three step Runge-Kutta time stepping scheme in
conjunction with second order upwind and a third order upwind-biased
space discretisations. A pseudo space marching method is introduced,
which is applied to the supersonic part of the flow field and which
uses the time stepping scheme as relaxation method. The algorithm has
been implemented in a 3-D.Euler code capable of ideal gas and equilibri-
um real gas shock capturing and shock fitting. The applicability of the
code to flow simulation about real 3-0 configurations at hypersonic free
stream Mach numbers is demonstrated.
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Second order upwind Third order upwind-biased

Fig.1 3-0 plot of the square of the linear amplification
factor 1g(2 for the one step first order
time steppin2

CFLnCh~2 CFL 0 S.StWfkA/2)

Second order upwind Third order upwind-biased

Fig.? 3-0 plot of the square of the linear amplification
factor 1g12 for the two step second order
Runge-Kutta time stepping
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Second order upwind Third order upwind-biased

Fig.3 3-0 plot of the square of the linear amplification
factor Igla for the three step second order
Runge-Kutta time stepping (al = 1/4)

swee zoe

H

bow Shock contour.

outflow boundary
reentry body

sweep direction

Fig.4 Computational grid in plane of symmetry with
Pseudo space marching zone
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7.,

Ideal gas Equilibrium real gas

Fig.5 Comparison of static temperature isolines t-T/T. of flow
about a hemisphere-cylinder at M. = 11, a 0, H = 50 km
for ideal gas and real gas (T. = 271 K, At 0.5)

Fig.6a Ideal gas lines of constant Fig.6b Real gas lines of constant
static temperature on body static temperature on body
(&T = LOO K) (AT = LOO K)

Min: 5.20 E+02 Max: 5.84 E+03 Min: 9,99 E+02 Max: 3.16 E 03

Fig.6 HERMES-like forebodv, M, . 10, a = 30, H = 50 km
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Fig.7a Computational grid Fig.7b Real gas lines of
constant Mach number (AM =0.2)

Min: 1.57 Max: 8.02

Fig.7 :HERMES-like forebody. M. 10, a 30, H =50 km Cross sectional view

3000__

-1.0 10.0 20.0 26.7
Raw coordinate - global z

Fig.8a Static temperature distribution
on body in plane of symmetry

Fig.8 HERMES-like farebody, M. 10, a 30. H =50 km

+ ideal gas luv side, * ideal gas lee side
x real gas luv side, o real gas lee side
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Fig.8b Mach number distribution
on body in plane of symmetry
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Fig.8c Static pressure distribution
on body in plane of syrmmetry

Fig.8 HERMES-like forebody, M,,= 10, a = 30, H =50 km

+ ideal gas luv side, * ideal gas lee side
x real gas luv side, o real gas lee side
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ON SOME VISCOELASTIC STRONGLY DAMPED NONLINEAR WAVE EQUATIONS

A. Pham Ngoc Dinh Dang Dinh Ang
Dipartemant do Mathimatiques Department of Mathematics
Universitd d'Orians Dal Hoc Tong Hop

45067 - ORLEANS CEDEX 2 - FRANCE HO CHI MINH City - VIET NAM

I. INTRODUCTION

We studj the problem of existence, uniqueness and asymptotic behaviour for I --* oo of

(weak or strong) solutions of equation In the form

u  - XLAu 1 - E'j.NI 0/axi 0i (U.l) # F(uut) = 0,(x,t) E D x(0,T)

(I)
u= 0 on 0 0 (2)

u xO)=60(x) , u ( 0,) -= 61Wx (3)

wwre ) 0 , u = Ou/Ot end u,o = Ou/ax,.

In (I ) 0 Is a bounded domain In IR" with a sulIclently smooth boundary 00 ,

01 (i I..... H) are continuous functions satisfing certain monotonic and other conditions to

be specified later. Equations of the type ( I ) with I = 0 and X > 0 , were given the [irst

systematic treatment by Oreenberg , rlacCam and Mizel 181 In the case of space dimension

N = I . thej were proposed by the authors (ioc. cit.) as the field equation governing the

longitudinal motIon of a viscoelastIc bar obeying the nonlinear Yolcjht model. For instance if we

denote by x the position of a cross-section in the homogeneous rest configuration of the bar.

bU u(x,I) the displacement at tfme I of the section from Its rest position, by x Ixi) (he

stress on the section at time I, then the equation of motion becomes (if the density Is one)

ult = , (0 ~) ((0,I1) X ( 0 .(

If a nonlinear dependence of the strain on u, Is allowed, then (4) yields the nonlinear wave

equation
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u 1 = a (u" ) u. (5)
In [9] MacCary and Mizel assumed that a satisfies the physically plausible conditions

o(O) 0 and o'(E) > 0 , E f ( -oo, oo) ; moreover a' is taken to be monotone decreasing

in I I In their paper Greenberg , MacCamy and Mizel (loc. cit.) assume the material to bea

non linear Kelvin solid, that is , they assume for the strees a relation of the following form

= (u) + Xu't (6)

where X -positive constant - is the viscosity coefficient Since the appearance of the

Greenberg - MacCamy Mizel work , there has been a rather impressive literature on

equations of the type ( I) above, e.g., Caughey-Ellison [I , Defermos [4], Clements [2],

[3],Webb [16],Yamada [17],tonamebutafew.

The case X = 0 , N = I and f(u, u) = Iulr sgn (u,) ,0 <i< 1 with nonhomogeneous

boundary conditions corresponds to the motion of a linearly elastic rod in a nonlinearly viscous

medium. For instance if we consider mud as the surrounding medium then ix is equal to 0. 1.

In section 2 we qive some results with regard to equation (I) ,first with X> 0 and

f(u1) =luj sgn(u 1 ), O<c<l . For N=I, u. in Ha' (a)fl H2 (0), u3, In L2(o),

a in C (P, Pl) with a' > 0 and locally H-lder continuous [5], there exists a unique strong

solution u(t) of the initial and boundary value problem (l.b.v. problem) (I) - (3) i.e. t -. u(t)

is continuous on t) 0 to H0' (o) fl H2 ( Qtand twice continuously differentiable on

t>0 to L2(o).

Inthecase N- 1 , X=O, a(x)= x and f(u)= iuill sgn(ui) ,o<(< 1 ,westudy

the equation ( I ) with a nonhomogeneous condition namely

u(O,t) =g(t), u( l.t)=O (7)

and we prove [7] that the i.b.v. problem (I) , (3) and (7) has a unique global solution on

(0,oo)

For the equation of the form

utt- Au = cf(t,u,u) , (x,t) E (0,1 ) x (0,T) (8)

an asgmptotic expansion of order 2 in E( E > 0) Is obtained [ IS], for E sufficiently small

and ff C1 ([0 ,oo)x P2 ).

In section 3 we consider the problem with X > 0, the function f being a function of

a
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u only: f = f(u) , then for Z. in H,0 ( 0), in L'( 0) and a certain local Lipschitzian

condition on f. a local existence and uniqueness theorem is obtained. If we strengthen the above

hypothesesandassumethat 1 4 N 43, u. E Hol (a) AH 2 (0) and u E L2 (0),with

f c C1 ( R, P ), f' ; -c, f0) : 0, then, the unique solution u(t) exists for all t a: 0 , with

the property that Au (t) and uk (t) decay exponentially to 0 as t - oo [6] ; this property

generalizes a result of Webb [161.

2. SOME RESULTS ON EQUATIONS IN THE FORM (1)
Le L L H 2

Let L' = L'(03) .Ho = Ho (03 ) = H2 H2 (03)

A- Problem I

Consider the equation

uu- u - -NI:I a/6x I ( 01 (u,d))+ iut r sgn (ut) 0 (0<(<l)

with the initial and boundary conditions (2) and (3). (9)

Theorem I (weak solution). Let a, I = 1 ..., N be real-valued functions

satisfying :

O, In C(5.I) P o0 (0) = 0

each °i : L2  L 2  where ai (f) = oi o f for f in L2 , takes bounded sets into bounded

sets and is locally Lipschitzian.

Let u, in Ho  and u, in 12 . Then, for each T >0 , the I.b.v. problem (9), (2) and (3)

admits a unique weak solution u(t) on (0,T) with the following properties:

u In L*0 (0,T; Ho ) andu, inL-(0,T; L2) n L2 (0,T; Ho )

u (t) locally Holder continuous on [0,T) to HI.
- If we consider the problem of global existence of strong solutions of (9), (2) and (3), we

shall have to strengthen conditions on the Initial data and on the c, s. The role of the space

dimension is important and we shall limit ourselves to N= 1. Then, we have the following

The em 2 (strong solution). Let N I and let

U. in H, .f H 6 in L2
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ai in C1 (P , P) ' > 0 , a, (0) 0 and a-, locally Hdlder continuous.

Then, there exists a unique solution of the I.b.v. problem (9), (2) and (3) with the following

properties:

t -* u(t) is continuous on t ;, 0 to HI n H2

continuously differentiable on t > 0 to Ho n H2

continuously differentiable on t ;o 0 to L2

twice continuously differentiable on t > 0 to L2.

The idea of the proof Is as follows. We take the weak solution w(t) of (9) , (2) and (3) which

exists as per Theorem I and then , using the analytic theory of semi-group and the uniqueness

of the solution, we prove that w(t) Is in fact the strong solution of the theorem by considering

the first order differential equation with initial contition:

= Au + ui -A,,o+O(w) +F(w) ,u(O)=Uo (10)

where

G(w(t)) = A Aw(s)ds F (w(t))= - f (wt (s))ds (II)

A being the nonlinear operator: Ho, (0) - H- ' (0) defined bU Au: - (C (u, )), and

f(ut ) the function I utr sgn (ut)

B - problem 2

tU4 - Au + JUtL I sgn(u)=0 ()

To the equation (12) are associated nonhomogeous mixed conditions (7) and initial conditions

(3). Here we shall make the following assumptions:
50oE H'(0) , f L' ( 0) , 0 z ( 0, 1)

(13)

g(t) , g'(t) E L2 ( 0,T) ;g(O) exists •

Let Y = { v E H' (0) such that v( I) = 0 ). We use here the Galerkin method associated to a

Volterra nonlinear Integral inequatlon namely:

a (t)M D,(t) + D2(t) f 0 . (s) ds (14)
with a (t)= u'e (t) C + u t(n)(t) 12  + nu)e (0,s) 12 ds

un (t) being the approximate solution on a basis (v, ....... v, ) of V and D (t) and D2(t)

two positive continuous functions. Here and elsewhere I. II stands for the L2 -norm.
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(14) allows one to get the required a priori estimates. To pass to the limit we shall use the fact

that the function I x I " sgn (x) generates a monotone operator and rely on the following lemma:

Lemma I. Let u be the solution of the following problem

utt- Au + X= 0
uN (0,0)= g(t) , U(I J) = 0

u(0) = U0o U, ( 0 ) = ut

uE LO(0, T ;V) and ut E L (0,T;L2) ,then ,wehave

1/2 a(uo,u o ) + 1/2 Iju1f2 - J0 <X, u, >dO - fo g(B)u, (0,O)d6

< 1/2 a(u(s),u(s)) + 1/2 11u (s) p2 a.e. sE (0,T)

with a(u,v) = < du / Ox , Ov/x > , < , > denoting the scalar product in L2(a)

The solution is global since the Volterra nonlinear integral equation associated to (14) has a

continuous solution V t E 1 0,1 1 for each T > 0. Finally we hae the following result.

Theorem 3. For each T > 0 , the ib.v. problem (12), (3) and (7) under the assumptions

(13) has a unique solution u E L" (0, T; V) such that u. E L ' (0, T; L2).

C- Problem 3 ,

utt - Au = ef(t,u,u,) ,(x,t) E (0,1) x(0,T). (IS)

To the hyperbol Ic equatIon are associated the condit Ions (2) and (3). Let the functions Go and

U, bedefinedby

L6o =0 , (x,t) E (0,1)x(0,T)

uo (0,t)= Uo (1,t)= 0 (16)6o (x,o) = , uo (x,o) 61

LuI  = f(t, 60,) (x,t) E (0,1) x (0,T)

G,(0,t) = a,(i,t) = 0 (17)

61(x,O) u,(x,O)= 0

with Lu= utt - Au and u t =u t .
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Under the assumptions

Uo 1 H H' , E Ho  (18)

fit,0,0)= 0 fe C' ([0,oo) x IR )  (19)

we have the following theorem

Theorem 4. The unique solution u, t) of the Ibyv. problem ( 15), (2) and (3) has the

asymptotic expansion, for E > 0 "smell":-u T2 r..o Gr I 1 ,(0.T.~ ,o4 I e r Ur IL°0 T
r 6L r 0.T2

1Iu, -T'r E" +m~j H I 6, - V..,.o E" Ur Ie .T 14CE

the functions 6, (x,t) beingdefinedbu(16)and(17).

3. ASYMPTOTIC BEHAVIOUR FOR A DAMPED WAVE EQUATION

The following equation Is considered

ur - Aut - Au + f(u)= 0. (20)

We shall associate to (20) the Initial and boundaru values (2) and (3).

- First we shall make the following assumptions

f: Ho -. H-' satisfies

for each bounded subset B of H0 , there exists K. > 0 such that

1f(u) - f(z) j.I KB IVu-Vz I V , z E B. (21)

Then, we have the following

Theorem 5. Suppose f satisfies(21)and lot 0 e He0  , uE L' Then ,there

exists a T > 0 such that the Ib.v. problem (20). (2) and (3) admits a unique solution such

that uE C(0,T; H1 )and u1 E C(0,T;12 )n L2 (0,T; H0 ).

Furthermore, u(t) Is the limit of the sequence { u,(t) ) of solutions of the following itb.v.

problems:

u -An ugn - Au n  -f(u.,) ,n ) I, u0 = 0 (22)

u, =0 on O ;u.(0) = , u(0)=
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(U" "Ut! , U, =U,

The sequence {unj converges uniformly to u in C(0,T; H, ) and the sequence (u'.

converges to u' In L2 (0, T; Ho ) and uniformly in C( O, T; L2 ).

- Second we shall consider the problem of global existence and asymptotoc behaviour for

I -- oo. To this end, we shall limit ourselves in what follows, to the case I 4 N 4 3, and

furthermore , we shall restrict some what the hypotheses on f and the initial data. Thus we

shall consider the following conditions on f :

f E C' (IRR) , f(0) 0 (23)

(f(u) + Eu)u ) 0 for all lul a, (24)

with 0< c < I satisfying EX
2 < I where cc > 0 is such that

IIuB I a II Vu 11 and I Vu I a Il~uI V u E Ho fl H2  (25)
f' - c , c>0. (26)

Then, we have the following

Proposition I. Let Uo E Ho l nH and E 2 and let f satisfies (23) - (26).

Then, there is a unique solution u(t) of the l.b.v. problem (20), (2) and (3) defined on

0, co ). Moreover the quantity

1I Au(t)I2  + II ut(t)U2  I Vu (s)e ds
is bounded on compact subsets of [0,oo.).

The main result for the problem of asymptotoc behaviour for t -* oo can be expressed as

follows:
H2  L2

Theorem 6. Let Uo E Ha, H and u, E 1

Let (23) and (26) hold. Then, the solution u(t), which exists for all t ;P 0 as per

Proposition I , decays exponentially to 0 as t -o oo in the following sense: there exists an

M > 0 and I > 0 such that

flAu(t) p2 + H ut(t) 12 4 Me-Y t forall t ; 0.

- For the proof of the Theorem 6 , first assume the constant c In assumption (26) satisfying

the following conditions

0 < c < 1/2 , coC < I ( (x being as in (25) , (27) ) We write (27)
f(u) = g(u) - cu , then g'(u) ,* 0 and hence f satisfies (24) and thus by proposition I the

solution u(t) exists on [ 0,oo). Then, we show that
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I alu(t) 12  U1 (t) N2  4 M , forall t 0 (28)
where M isa constant.

Finally taking the inner product of (20) first with u (t) e t and then with -Au(t)e t and

integrating with respect to the time variable from 0 to t, we find, taking (27) end (28) into

account, a suitable choice for § and I , choice which implies that there exists an M > 0

such that

I Au(t) 2 + Ilut (t) l2 i4 Me-V , foralI t ) 0. (29)

The restriction on c ( 0 < c < 1/2) cazn be removed by a scaling argument that is to say

=tix ,T= Uit with V >l/2.

On the other hand, on the question of global bound with weaker hypotheses on f and on

Initlaldata uo we have the following.

ProposinL2. If f E C R, P ),satisfies:

limll, f(x) .x ) 0 ,then under the sole condition 60 E H a end u, E 12

there exists a global bound on 1u, (t) I and I Vu(t) I for all t a 0.

4. NUMERICAL APPLICATIONS BASED ON THE TAU METHOD

The linear recursive schemes developed in sections 2 and 3 enables us to use the Tau method of

Ortiz [101 I.e. a perturbation technique based on the ideas of best uniform approximation by

polynomials. The approximate solution obtained with this technique Is a polynomial which

satisfies the given partial differential equation, but for a small pertubatlon term In the right

hand side ; the supplementary (initial, boundary or mixed) conditions are satisfied exactly,

provided

they are of polynomial form. Given a linear partial differential equation with polynomial

coefficients.

Lu = f(t,x) (30)

we attempt to solve a slightly perturbed form of the original problem, defined by the so-called

Tau problem.

Lur, f(t,x) + t H,, (t,x) (31)
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where H M (t,x) is the product of best uniform approximations of zero , of degrees r and s

respectively, on a given domain D. The parameter ' is chosen for urs (t.x) to be a

bivariate polynomial which satisfies the boundary and initial conditions satisfied by u.

The construction of the bivariate Tau approximation depends on two matrices of extrelemy

simple structure: only elements on one line, parallel to the main diagonal, are different from

zero. They lead to an algebraic problem for the coefficients of the Tau approximation with an

almost block diagonal matrix. The approximate solution can be constructed in any bivariate

polynomial basis. In the example given here we have chosen it to be the Chebyshev product

basis. Computational procedures for the numerical treatment of partial differential equations

with polynomial coefficients have been discussed by Ortlz and Samara [12). In [11] we have

discussed the numerical solution of semi-linear hyperbolic problem of the following type:

u,, -tAu = U2 + F(tx) (32)

with the initial and boundery conditions (2) and (3).

In (32) F E L2(o) , Q= (0,1) x (0,1)

To solve numerically ,(32) we use the linear recursive schemes defined by
2u" - t u.., - 2un un.. = -un + F , (33)

the u,, , satisfying the conditions given in (2) and (3) , but for the fact that functions have

been replaced by tight polynomial approximations, to be able to use the Tau method In the
numerical approximation of problem (33). By using this technique we effectively produce

numerical solutions of a high accuracy. Sufficient conditions for the quadratic convergence of

the equation in the form

utt - Au = f(t,u) (34)

are given in this paper.

Some other results on the applications of the Tau method to the numerical solution of nonlinear

PDEs are reported in Ref. [13] and (14].
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Abstract

Abstract : Finite volume TVD schemes derived for the Euler equations are extended to the
Navier-Stokes system. The numerical diffusion introduced in the approximation of the convective part
is chosen through a total variation analysis taking in account the physical diffusion. Two dimensional
numerical simulations are presented, using an algorithm to solve cheaply the steady equations.

I. INTRODUCTION

Finite volume schemes based on approximate Riemann solver to solve conservation laws, also
called, TVD (Total Variation Diminushing) schemes, have received considerable attention in the last
twenty years, (see, among others, Harten [9], Van Leer [28), Yee [30]), and can be said to have reached
a satisfactory degree of achievement .

These schemes were successfully extended to multidimensional problems, by reducing the equations
to one dimension, through the finite volume formulation, and applying the one dimensional techniques.
This can be done on unstructured meshes (Baba and Tabata [3], Dervieux [6], Stoufflet-Fezoui [23]).

On the other hand, several research teams have studied such algorithms on structured meshes for
solving the Navier-Stokes equations. Some 3D codes on upwind schemes have been developped by Mac
Cormack [4], tanel [22] and Chakravarthy [5], among others.

A particular class of very efficient schemes is that obtained by the combination of a monotone
flux formula, and of a second order extension through monotony preserving interpolation, christened
Monotonic Upwind Schemes for Conservation Laws (MUSCL) by Van Leer ([29]). These schemes have
been derived in order to introduce a "numerical viscosity", which will provide automatic inforcement
of the entropy condition, and to provide second order accuracy, at least in regions of smoothness.

To solve advection dominated nonlinear parabolic, or incompletely parabolic equations as the
compressible Navier-Stokes system, it is necessary to use an approximation which will preserve the
entropy condition, but which will also provide sufficient accuracy in viscosity dependant zones, as
boundary layers or wakes. In other words, one must make sure that no more diffusion than needed is
added.

A model equation for compressible viscous gas dynamics is given by{ u Of(u) 0
2 u

L+ .9 - ' = o9 (1.1)
09t Ox &xZ,(I
u = u(x, t) E R

where f is a regular function, convex or not.
In our framework, a numerical scheme to solve (1.1) is made of

• an approximation of the convection term Of/Ox, combining
- a numerical flux function h = h(u,v) with h(u,u) = fu)
- a MUSCL-like interpolation formula

* an approximation of the diffusion term
an approximation of the time derivative.

In part II, we will outline the general framework of upwind TVD schemes for multidimensional
gas-dynamics equations on triangular (tetrahedral) meshes.

The numerical formulation relying on the approximate Riemann solver proposed by Osher and
Chakravarty [13] and a multidimensional MUSCL like interpolation will be presented. Van Leer,
Thomas, Roe and Newsome in [27] have analyzed in one dimension the influence of the choice of
the upwind flux formula for the convection part in terms of accuracy, and showed that some flux-vector
splitting gave a bad representation of the boundary layer.This will not be our topic; we will only give
our arguments in favour of Osher's scheme.
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The interpolation, through which second order, or even third order accuracy for one dimensional
problems, is reached, is also an important feature of the scheme. In part III, for the one dimensional
scalar viscous conservation law (1.1), we will try to derive conditions on the interpolation which will
insure some kind of monotony property, and still allow sufficient accuracy.

In [20],the extension of the one dimensional scalar conclusions of Part III to multidimensional
systems will be detailed, together with the different possible time discretizations, including linearly
implicit methods, and accelerators for the steady case. Finally, numerical results will be presented and
discussed in part IV.

II. GENERAL FRAMEWORK OF THE FINITE VOLUME GALERKIN (FVG)
APPROXIMATION

Let Q an open set of RN (N=2 or 3) and let r = 49Q be its boundary presumed to be smooth,
1 h a triangulation of Q. Let W = (p, pu, E) be the vector of conserved quantities ; we write the
Navier-Stokes system in conservation form:

aWt- + V.F(W) = V.N(W) (2.1)

where F and N denote respectively the convective flux term and viscous term.
The formulation can be found in [24]. The space Vh is defined as follows :
Vh = {Vh E C°(fQ) ; vh is linear on each triangle } For each vertex Si E -h the cell Ci is defined

as the union of the subtriangles having Si as a vertex and resulting from the subdivision of each triangle
of Th by means of the medians (Fig. 1).

(Find WhE(Vh)m such that VS, Er T,

I Whdz.+ F(Wh).vda+ F(Wh).nd, = R.H.S. (2.2)
at JoC, .4,nr

The numerical integration of the viscous terms of the RHS is carried out in a centered way.
The scheme will be completely defined if we precise now which approximation is used to compute

the left hand-side integral in (2.2). For this, the boundary OC of the cell Ci is splitted in bisegments
aSij, joining the middle point of the segment SiSj to the centroids of the triangle having Si and Sj as
common vertices (Fig. 1).

Let us introduce the following notations

F.j(U) = F(U). j vi , and Pj(U) = V.F(U). JSvd .

Upwinding is introduced in the computation of the convection term through the numerical flux function
I of a first-order accurate upwind scheme by :

Fa f(wh).Pido = H) = OF, W,, W)

where W = Wh(Si) and Wj = Wh(Sj).
The numerical flux function used in this study is Osher's. The numerical integration with the

upwind scheme, as described previously, leads to approximations which are only first-order accurate.
We present a second-order accurate MUSCL-like extension without changing the approximation space:

Find Wh E(Vh)m{JC at ~H~+ F(Wh).nda + Is~raF( Wh).flda = R.H.S. (23
Ijex(i) atnb ~ r

where
H() = OF,,(W,,, Wi,).

The arguments Wi and Wji are values at the interface OSij interpolated using upwinded gradients
as described below.
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We define the dowstream and upstream triangles T,3 and Tj for each segment SS, as shown in
Fig. 2.

fig. 1 s8 fig. 2 I

actq

fig
as'i,

C1

Let the centered gradient be

VW., VWjTI = VWIT2

The values at interface needed to compute the flux 0 ) are now given by

Wij = Wi + Li, ('-VWITj + !+"Vwij) .Sisi
L - w + 4ss (2.4)

W, = Wj - L i -- 4- VW '7'j, + - 7v j ) .s s

where the parameter oc can be chosen to select the degree of upwinding in the interpolation and Li,
and Lj, are the limiting matrices, which are introduced to reduce numerical oscillations of the solution
and to provide some kind of monotonicity property.

A good procedure in term of accuracy is to use limiters on characteristic variables. For this, we
compute these variables by the transformation taken at midpoint of the segment. If we denote by Il i
the transformation matrix corresponding to Pi,(W( S S)), the values at interface are now given by

{Wi = W+ ij Leol I '  1 --1W1 j 1 +V , " iSf~ (!. 4$ VWtT " + 4 V~ j) -(2.5)

Wi, = w1 - ljLcjjj7.' + -VW,) .sis

where LcOj and Lc,, are diagonal matrices.

II. ONE DIMENSIONAL SCALAR ANALYSIS

,ve nrst consider the one-dimensional scalar convection-diffusion law (1.1) . We define a regular
mesh and apply the finite volume scheme defined in II to (1.1). We denote by h the mesh size, by
zj=jAz, jEZ, uj=u(zj).

The equation corresponding to j is given by:
di + (Uj + !((1 - C)(u - u- .i) + (1 + K)(uj+i - uj))

nj+1 - -((1 - ic)(uj+2 - Un+l) + (1 + -)(ujl - uj))

uj. 1 + tt_1((1 -)(U 1 _. - U_.2 ) + (1 + )(u, - U,._)) (3.1)
(. 4

-- (uj+l - 2u + uj- I) =0

For simplicity, we have denoted by ri (resp. 1j) the right limiter Lj,j 4i (reap. the left limiter Li,i~).
The numerical flux function 4 satisfies 4(u, u) = fu); we will suppose it to be monotone, i.e. 4(v, w)
is a non increasing function of w and a non decreasing function of v.
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The scheme (3.1) is defined by two parameters : the right and left slope limiters and the parameter
x defining the extrapolation. Note that the slope limiters r, and 1i are different. However, if one wants
to have the same treatment of forward and backward discontinuities, r, and 1i must be linked, see
equation (3.8).

The purpose of slope limiting is to provide some kind of monotony or TVD property [9] ; it has
received considerable attention in the recent years [25], [14], [29], [26]. However, all these studies
are designed for the inviscid (c = 0) equation. Our point is to derive a condition for total variation
diminushing taking in account the physical diffusion term C0

2 u/Oz 2 .
Following Osher [12], Osher and Chakraarty [13], Harten (9], Sanders [21], we will write our five

point scheme as

L A+ui + hi-jA-uj = 0 (3.2)dt

where
A+uj = uj+1 - Uj (3.3.a)

A-uj = Uj - Ui-i (3.3.b)

Cj+ f = cj+J-("J+2, Uj+1," j, uj-1)

Dj- J = Dj- 1(uj+l, Uj, u-1, Uj-2).

The following result, due to Osher, Chakavarty and Sanders, will be our starting point.

Theorem 1 :

if then -TV(u)<0Dj_2 > 0t

where TV(u) is the total variation of u.

For a Lipschitz continuous flux 0, we will define a local Peclet number by v = aih/2e, where ai is
the Lipschitz norm of 4, in a neighborhood 1i of uj of chosen size, i.e.

ai = Max {sup( sup 0(, X) - (z x)), sup( sup (X, ) -0(X'Z)

VEJi ,zEel y - Z xEli y,zei y - Z

which is non negative because of the monotony of 45. We denote 6j = Auj/A-uj and we take
Ii = (uj - kA-ui,uj + kA+ui) where k is a chosen positive parameter. As usual, we take r, and 1j
depending of 6, only. We have the following result:

Theorem 2. Let 0 E [0,1].

- 1 4 inf (k,O(1 + 1/2v,)) 1  (3.4)
If When I or r. < ( O C)+(1+ :)6j

- 1 4 inf((k - 1), (1 - 0)(1 + 1/2vyij)) (3.5)
When 6 +< - O r1 < (K -1)-((+ o)6,

and When 2!1+ <inf(k,0(1 + 1/2v+)) (3.6)
C 6 ( - X)bj + (I + C)

When I < 0 0 j<4 inf((k -1), (1- 0)(1+1/2i)) 6j (3.7).... - I0,% - (I,+
then C+ t and Di. are positive numbers; the scheme defined in (3.1) is T.V.D.

The proof can be found in Rostand Stoufflet [20].
Note that by using 9 < 1, one can avoid the necessity to put the limiter to zero at extremas.
To treat forward and backward discontinuities in the same way, it is necessary to have the symetry

condition
r, - 1+K+(I-C) 6i 38

V (-)+(+)6j (3.8)
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If we suppose the unlimited scheme to be second order (resp. third order), we must have to keep
the second order except at critical points,

r(z) = 1 +.- o(1: - 11) , () =1 + o(1: - 11) (3.9a)

resp.
r(X) = 1+ 0(jX - 11 )2) (= 1 + 0(1 - 112). (3.9b)

It is easy to check that the classical limiters (Van Albada's[26],Van Leer's[29], Superbee [25]) all verify
the hypothesis of theorem 2, whatever the value of v, so that they all are unnecessarily diffusive in the
viscous case.

Since we have now found the constraints that the slope limiters must verify for the scheme to the
T.V.D., we will investigate the influence of ix.

Our study will be based on truncature error, and comparison with exact solution, so we will use a
scalar steady convection diffusion equation:

au,. -Eu, -=0 , u() = 0 , u(1) = 1 , a> 0,f >0. (3.10)

In the unlimited case, equation (3.1) resumes to:

a'[I- ( ui+ L _ i,) + '"(,h_)-1 --+ 2 - U "i() - -- .-2) '(u- + - 2u, + u,-.) = 0 (3.11)

Assuming (ui)i to be the interpolation of a regular function, with ui = u(xi), (3.11) is equivalent to

e h,'a- -u - -. u s ) + 0(h s ) = 0 (3.12)
au -e'' 12 a~- 2 J 1 2 uj

taking the second derivative of (3.10), we obtain : au' = cun" so that, from (3.12), we have third order
if K = 2/3. It appears that although the approximation of u'! is only second order, third order can be
obtained in this linear scalar steady case because the errors due to convection and diffusion eliminate
each other. The exact solution of (3.10) is :

u(X) = exp(ax/c) - I
exp(a/c) - 1 (3.13)

replacing uj by u(zd)= u(ih) in (3.11) we obtain that, to have nodally exact results, we must have

2 4 f ) - ;h exp(i2-h-)- C)1 0 (3.14)

if we denote by a = ah/2c the Peclet number, equation (3.14) gives

K 1 2(cothv- 1/v) (3.15)
1 - exp(-2v)

where coth is the hyperbolic cotangent. We have K(L,) -- 2 when v - 0 and K(a') - -1 when
v - oo. We find again that when the mesh size tends to zero, the highest order approximation is
obtained with K = 2/3.

Prom this study, we conclude that in a boundary layer situation like that defined by (3.10), the
best result are obtained with K given by (3.15), at least for small values of the Peclet number. (If v is
bigger than say 2 or 3, there is no possibility to calculate correctly the boundary layer anyway).

Similar results were obtained by Hughes and Mallet [10] ; they studied the same equation (3.10) A
and concluded that only a fraction of the inviscid numerical diffusion had to be applied in the viscous
case, depending on the Peclet number, in a way very much alike to (3.15).

We now propose the following schemes for the nonlinear equation (1.1). We use (3.1) where KC is
calculated from (3.15), at least for small values of P (big values of v will yield K % -1, so we can limit
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the lower value of x to 0, or even to 1/3) ; in (3.15), we use an average Peclet number P- f'(u)h/2c,
where u is the midpoint of the considered interval (i.e. u.L to calculate Oi+z.).

We limit the extrapolation, using the value of ic obtained in the preceJing step, and one of the
following formulas :

"extended superbee":

m .( 1 4sbi 7)) if 6i < 1max(0 rain (I (1 _C) + (1 + ')CA)

rjj) - [min (((I + .) + (I - )6), 4s)] i (3.16a)
(-)(1-+i)6,) 4) if 6, _ 1

( + (1 + . ()6)

ii (6j) = 'i (oj) 1 C + (I - C)bi (3.16b)
I + X + (1 + #C)6j

where a=inf(k,1+2-L7) (3.17)

The parameter k defines vi ; usually k = 1 to avoid a too complicated evaluation of vi. This is the
most compressive limiter that will match the TVD conditions, it has the disadvantage that it is not
equal to 1 in a neighborhood of 6, = 1, impeaching third order accuracy. It does verify the symetry
condition (3.8) .

- "third order superbee"

4  s6 if 6j 1max 1 
if 1min 1, 

4s - (1 - K)

- 1+ (3.18.a)
4s if 6, > s- (1-(I - 1C) + (I + 0C)bi If 6>4.-+ -/,

1 if I > 4 (-)1-+ 1C

40)1 + -(1+ic)b if - -(1-x) (3.18.b)
rj ) 1+0C+(1-C)6j if not

where s is given by (3.17) .
This limiter preserves third order, but doesn't verify the symetry condition (3.8) for rj close to 1.

Just as the superbee limiter, the 4 limiters can be extended to an "extended 4' limiter" and "extended
third order 4 limiter". 4 = 2 gives back the superbee. 4 limiters with 4 just under 2 are useful for
systems, as we will see; 0 is then a kind of security factor.

-"oc limiter"
It depends on the viscosity through the value of ic only. It is an average of Van Leer's and Van

Albada's limiters, derived to be more compressive for high values of iC than for low ones.

046 4 ,if b 0

()- m (1 - c) + 4 + (I + -)' (I - r)(1 + bj) + (1 + r)(1 + 6?) if not

(3.19.a)

=( I = 1 0C + 1 + , r,(6j) (3.19b)

This limiter is less compressive than the two preceeding one, but has smoother variations.

IV. NUMEICAL RESULTS
We first compared the results of the unlimited scheme (r, = I, = 1) for different values of oc. A

transonic flow at a Mach number of M, = 0.85 and a constant Reynolds number of 500 was computed
on an undermeshed grid (3114 nodes), for ic = -1 and ic = 2/3. On figure 3, the iso-mach lines are
compared. The fully upwind scheme (3b) yields more numerical viscosity as can be seen in the wake,
while the third order scheme (n = 2/3, 9a) allows spurious oscillations behind the schock, although
very weak, but gives a better result in the wake and, though less obviously, in the boundary layer. This
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confirms our statement that different values of oc are needed in different zones, depending on the local
Peclet number.

The history of convergence in the case of ic = 2/3 is presented on fig. 4 ; (4 a) shows the logarithm
of the residual versus the number of time steps for the explicit scheme, (4 b) is the same for the implicit
scheme (details of the algorihm can be found in[20], (4 c) is a comparison of the two schemes in terms
of CPU time on CRAY II,using a vectorized program [2]. Machine-precision convergence is achieved in
150 time steps or 120 seconds by the implicit scheme, while the explicit scheme takes 1200 time steps
or 240 seconds to reach a residual superior to 0.001. For a steady calculation, the use of the implicit
scheme divides the needed CPU time by more than 10, although the awaited Newton-like quadratic
convergence is not achieved.

The Peclet dependent i,together with the unlimited scheme was used to compute the same flow
on an adapted mesh, still rather coarse (fig. 5, 2970 nodes), and on a thinner mesh (fig. 6, 5712 nodes).
The mesh, the iso-mach lines and the pressure coefficients on the body are compared. It can be seen
that a good solution is obtained on the smaller grid, although quite coarse.

To compare the limiters, a hypersonic flow over a flat plate was computed. The Mach number is
M. = 10, the Reynolds number Re/m = 5.10', the length of the plate is 2, the temperature at the
inflow is 83,5K the temperature at the wall is 525 K ; Sutherland's law is used for viscosity. A first
computation was made with the K limiter, and the Peclet dependent K. The mesh (fig. 7 a, partial
view), speed vectors (fig. 7 b), pressure coefficient (fig. 7 c) and skin friction coefficient compared with
laminar boundary layer theory results (fig. 7 d) are presented.

There are about 15 nodes in the boundary layer. The shock at x = 0 is captured ; no oscillation is
seen. The agreement with theory is excellent ; the same flow was computed with the Van Albada limiter
and r = 1/3, giving extremely similar results (not shown), so we consider this result as a reference,
and used a coarser grid. The same flow is computed on a mesh with 8 nodes in the boundary layer,
using K- = 1/3 and the Van Albada limiter for the non linear fields, and the viscosity dependant ic with
the -limiter for the contacts. The x limiter was experimented to be too compressive for use on the
nonlinear waves. Figure 8 shows the speed vectors. Figure 9 is a comparison of skin friction obtained
on the preceeding grid (full), using n = 1/3, Van Albada limter for the four fields (long broken), using
for the contacts the "third order ' limiter", with - = 1.6 and the Peclet dependent ic (short broken),
or the K limiter and Peclet dependent K (broken doted). Figure 10 shows the skin friction on the
second half of the plate, for schemes which all use K = 1/3, Van Albada limiter for the nonlinear fields,
and the Peclet dependent e for the contact discontinuities. It is seen that the "extended superbee",
or "extended 4' limiters", are too compressive, even for a contact, but that both the "r limiter" and
"third order extended 4 limiter" with 4 = 1.6 give results in agreement within one or two percents
with our reference result, at least on the second half of the plate. This is an improvement over the P

1/3, Van Albada limiter, which gives more than 10 % error.
Another hypersonic computation was performed around an ellipse: the Mach number is M.. = 8,

the Reynolds number is constant and equal to Re./m = 1000, the angle of attack is a = 40*. The
mesh and iso-mach lines are shown (fig. 11). There is no over shoot at the shock and with the implicit
scheme, the after body flow can be computed without any special treatment ; this cannot be achieved
with an explicit code. The mesh was adapted by an automatic local mesh refinement algorithm, due
to C. Pouletty [16] and B. Palmerio [15].

An easier calculation was performed to compare the convergence of the explicit and implicit codes;
fig. 12 shows the convergence history for a flow around an ellipse at a Mach number of 4, for the explicit
and implicit scheme.The mesh has 1378 nodes (not shown).It is seen that the implicit scheme allows
schock capturing with a courant number C=100.

V. CONCLUSION

A numerical scheme to solve the compressible Navier-Stokes equations, based on a "TVD" finite
volume formulation, has been obtained, by extending a method first derived for perfect gas. We have
obtained a condition on the limiters for the scheme to be TVD, taking in account the physical viscosity.
Different limiters have been proposed which match this condition, and compared from a numerical point
of view. The upwinding also depends on the local amount of physical viscosity. It has been shown that
laminar boundary layers can be calculated with our scheme, on a triangular mesh, with less than ten
nodes in the boundary layer.

An efficient algorithm has been proposed for the steady case, which allows cheap computation of
very stiff problems, as hypersonic flows on geometries with rear body. Really unsteady flow remain a
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challenge because of their computational coat.
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fig. 9
comparison of skin friction for different

limiters. Long broken: Van Albada limiter, fig. 10a
short broken: third order extended 0 limiter,
broken dotted: K limiter, full: reference result, comparison of skin friction for different limiters,

enlargement. Long broken: Van Albada limiter,
short broken: K limiter, full: reference result,
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comparison of skin friction for different limiters,
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short broken: r limiter, full: reference result,

broken dotted: extended third order superbee
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NCNSTATICNARY SHOCK WAVE GENERATICN IN DROPLET VAPOUR MIXTURES
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SLHM4ARY

If a piston is accelerated into a tube filled with gas, shock waves
will be generated. A mixture of droplets and their own vapour will show the
same behaviour, if the fraction of the liquid phase is small. But when the
fraction of the droplets beccmes greater, a significant shock damping may
occur. This process has been investigated by a method of characteristics,
simuitaneously taking into account mass-, mmentum- and energy transfer bet-
ween the phases. The differential equations can be formulated in a well
posed way. Local linear stability is present as well as convergence. The
method uses two grids, one for the gas phase and one for the droplet phase.
CPU-time and storage is saved by controlling the number of characteristics
to be calculated. Example calculations show that the relaxation zone con-
sists of three distinct parts as predicted by earlier stationary investi-
gations: first a fast condensation zone, then a friction zone and finally
a heat conduction zone.

INTRODUCTIN

A mixture of homogeneously dispersed droplets together with their own
vapour and no additional carrier gas is considered. The flow of such fluids
has many applications. For example in steam turbines, reactor cooling, heat
pipes, cryo-techniques etc. One most important feature of such fluids is
that they can transport a large amount of latent energy by varying the
liquid/gas mass ratio. The consideration of the phase change, vaporization
and condensation, is essential.

In this paper sae fundamental aspects of the fluid being at therm-
dynamic nonequilibrium are discussed. This situation is of practical impor-
tance since often the time scales of nonstationary effects and of transport
processes happen to be in the same order of magnitude.

As a numerical example the shock wave generation by an accelerated
piston is selected because it is a classical fundamental problem. Moreover
shock waves form an excellent tool for studying nonequilibrium phenomena at
very defined conditions, f.e. in a shock tube. Finally wet vapour shock
waves may form in practical flow situations as well, f.e. in accident sit-
uations.

Previous work is on the two phase piston-cylinder problem with solid
particles in gases or on droplets in a carrier gas (see f.e. Refs. [11,[2]).
There is also a stationary analysis of the nonequilibrium wet vapour shock
wave [3]. The present analysis includes the full nonstationary treatment
under the conditions of general phase nonequilibrium up to high liquid mass
fractions. An example will be discussed for water as the working substance.
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CCNSERVATICN- AND TRANSPOIC EQUATICNS

A number of model assumptions is necessary to arrive at a tractable
set of differential equations. One of them being the treatment of the fluid
system as two interacting continua, characterized by the volume fractions
E1 and c of liquid and gas. These give volume averaged densities if
multipliedgby the individual real densities p and p . n is the in-
verse volune of one droplet. The number of droplets pergunit Volume of the
flow field is inp

Transport of mass, momentum and energy between the droplets and the
surrounding v-Oour are considered. The transport within the single phases
like gas phase viscosity or heat conduction within the droplet is neglected.
This is possible, because there are no boundary layers in the flow field
and the surface to volume ratio of micron sized droplets is large. It is
important to consider droplet-droplet interactions if one deals with high
liquid mass loadings ( I-.p >50%, p = gas mass fraction ). Moreover a con-
sideration of the nonuniform pressure distribution around the droplet is
essential. The flow is one-dimensional in space. With these assumptions the
conservation equations are written in flux form as

droplet a/at (OpeI) + a/ax (npelVl) = 0 , (1)
number

mass a/at (egpg) + a/ax (tgpgVg) = (npe) I (2)
a/at (elpl).+ a/ax (ejipjv) = - (npel) I , (3)

momentum a/at (egpgVg) + /alx (EgpgVgVg) = - a/ax (egp) - (p- pg(V1-Vg) 2) a/ax (el1) (4)

+ (npeI) (FD+I V),

a/at (ellPlV) + a/ax (elPlVlvl) = - alaX (Elp) + (P' pg(V1-Vg) 2) a/ax (e1) (5)
- (npel) (FD+I v) ,

energy a/at (gpgvg 2 2+ug)) + a/ax (egpgvg(vg 2/2+ug)) = - alax (egpVg) (6)
- v(Prpg(vl-vg) 2) a/ax (a1)

+ (npel) (Q+FDv1+ I (V1/2+hg(Ti)))

a/at (ejP1(Vl1
2+uj)) + a/ax (ejpjvj(vj2/2+u1)) = - a/ax (eplV) (7)

+ V(P Pg(V-Vg) 2) a/ax (e1)
- (npEl) (Q+FDvl+ I (vi2/2+hg(Ti)))

Here v ,v are the liquid and gas phase velocities, u lug the in-
ternal energes g h (T ) is the gas enthalpy at the temperatreg T of the
liquid and r is d~fied below (Fqu. (24)). There is one extra equaion for
the number of droplets. The zero on its right hand side means that no new
droplets are formed by nucleation, and droplets do not vanish ccmpletely
upon evaporation. The mass equations contain source terms I for net vapo-
rization. The pressure forces in the momentum equations contain a term which
is multiplied by the change of the liquid volume fraction ( De /Ix ). Al-
though being swall, this term is essential for the numerical sLbility and
for the hyperbolic nature of the system of equations. Physically it contains
the nonuniform pressure distribution around the droplet mentioned before,
combined with the effects of cutting droplets by the boundaries of the volume
element according to Stubmiller [4]. Various source terms in the momentr-
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and energy equations depend on the net evaporation rate I . FD is the
drag force and Q is the heat flux by conduction.

After differentiation and inserting mass- into nuentum- as well as
nmaentur- into eneray equations, by furthermore assuming ideal gas with con-
stant specific heat for the gas phase, the conservation equations are written
in a characteristic form

gas (a/at + Vg a/ax) (egp) - c2 (a/a + vg a/ax) (egpg) (8)
(7-1)(Re - (c2/MRM),

(a/Ct + (Vg+C) a/ax) (egp) + c (egpg) (a/t + (Vg+C) a/ax) (Vg) = (9)

('?-1)Re+ (C2 /y)Rm)+c Ri
(a/at + (Vg- -) alax) (egp) - c (egpg) (a/Mt + (Vg-c) a/ax) (Vg) = (10)

(C-)Re+ (c2 /-y)Rm)-C Ri

where Rm= (npe1) I ,

Ri= (p- pg(vIvg) 2) a/ax (el) + (npel) (FD + I (vrVg)),

Re= - (Vl-Vg) (p- pg(VI-Vg) 2) a/ax (el) + (npe) (Q+FD (vi-vg)+ I ((V-Vg) 2/2+hg(Ti)-Ug)),

droplets (a/at + vI a/ax) (npel) = - (npel) al/ax (vi) , (11)
(a/at + vI a/2x) (elpl) = - (elpl) a/ax (v) - (npe) I (12)
or:
(a/at + vI a/ax) ((eipi)/(npe)) = - I

(elpI) (a/at + vi a/ax) (vi) = - a/ax (e1p) + (p-pg(vt-vg)2) a/ax (e) - (npe) FD , (13)

(elPl) (al/a + VI / x) (ul' - (elp)/(npel) (aat + vi a/ax) (npl) = - (npel) (Q + I hv), (14)

where c is the gas phase velocity of sound. Note that the right hand sides
contain spacial derivatives. These form small correction terms for the gas
but they are essential for the droplets. This will be discussed below.

Besides using ideal gas law, the constitutive equations contain the
temperature dependence of the gas phase viscosity n , thermal conductivi-
ty X , heat of vaporization hv  , liquid density p, , and vapour pres-
sure ps . Fran these the interhase transport equati6ns follow as

I=ld 2 pg 01C(cC (Ps(Ti)/p- 1) ([31,[5]) , (15)

0j = 1/(1+Kn((4/3Kn+O.71)/(Kn+l)-4/3+4(3aj))) ([51) , (16)
Ojl , (17)
ac=-0.26 ([3]), (18)

Fo - x d2 cDeg 2 .7 pg/2 (vi-vg)lvl-vglPf , (19)
CD const. ([6]) ,

,-'2.7: droplet Interaction ([4]) (20)

f - 1/(1/(1+0.42Kn).1.67Kn/ 1 ) ([7]) , (21)

a - 1 ,(22)
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(P- Pg(Vr-Vg) 2 ) al/ax (el) ([4]), (23)
S= 0-37CDcg' 2"7 ([8] ,[4]) (24)

(nonsynttetric pressure distribution around the droplet),

0 - (nd) Nu X (TI-Tg) P3q (25)
Pq l/(1/(l+Kn)+3.75Kn/aq) ([7]) , (26)

ctq=1 . (27)

The net mass transport is driven by the difference of vapour pressure
and gas pressure. It is not limited by diffusion in the gas phase like in
the case of an additional carrier gas. A Knudsen correction accounts for
smnall droplets (Kn = Knudsen number). For the drag force a constant drag
coefficient is used as suggested by recent shock tube data. There is a
correction for droplet-droplet interaction, Knudsen- and nonuniform pressure
corrections. Heat conduction uses standard Nusselt forrulation and a Knudsen
correction.

STABILITY ANALYSIS

As mentioned before, there are derivatives remaining on the right hand
sides of the characteristic eouations. So the system can not be of strict
hyperbolic nature. Hence one can only investigate local linear stability
from which convergence can be expected through Lax 's equivalence theorem
and by experience. This is done by applying a method described by Ramshaw
and Trapp [9] . The set of equations is written in matrix form. The co-
efficients are assumed being locally constant, including incompressibility
of the gas phase.

Scheme of the set of equations A(ov/lt) + B(Nv/ax) + c = 0 (A.Bc are constant), (28)

Eigenvalues IB-eiAI = 0, i = 1,...7 , (29)

. 5 vl, Vi, Vi, Vg, vg (all real) ,

Xe6,.Le7 are real, if Eipg, + Egpg, > EgPgEl (30)

or 0.37CDe-g2 "7 > F, . (31)

By neglecting the dynamic pressure corrections we get, as usual, real
eigenvalues for the gas characteristics, but not so for the droplets. If,
on the other hand, these corrections are included, the gas characteristics
still remain real and positive and the droplet eigenvalues are real if the
above condition for E is fulfilled. In the examples discussed, this is
the case. Thus the variable pressure distribution as well as the particle-
particle interaction ensure local stability.
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NLUMRCAL TREATr

In the following a first order nmthOd of Characteristics is defined.
For the gas the three characteristic directions v+c, v-c and v are used.
The nonisentropic changes are transpoted along these directions. The
difference scherm for the gas phase is

n

V+C V V*C

+ 0 x-direction
Fig. 1 Gas phase characteristics.

Fbr constant time steps the v+c - characteristics are cczuted to get
the new spacial coordinates. The base points of the rewaining two charac-
teristics are interpolated.

(vg)n = (((-l)R.+ (c2/7)Rm) + c Ri).Mt - ((-t1-)Rg+ (C2/Y)Rm)- c Ri).At (32)

(Vg C "gpg)+ + (Vg C E-gPg).)/((c PegPg)+ + (C e9Pg))i,

(EgP)n = (EgP)g- (C EgPg)+ ((Vg)n - (vg)+) + ((r-I)Rg+ (c2ty)Rm)+ c Rj)+,&t , (33)

(EgPg)n = (CgPg)o + ((EgP)n - (Cgp)o)/c2o -((yt-1)(R 6- (C2/Yf)Rm))OAVc 2o , (34)

R1= (p_ pg(vr~vg)2) &i/t~x + (flpel) TD + I (vrvg)) ,(36)

Re= - (vi-vg) (p~tpg(vrvg) 2) tW*jx + (flpei) (O+FD (vI-vg)+ I ((vr-vg)2/2+hg(Ti)-ug)) . (37)

For the droplets there is only one characteristic direction given by
the velocityvI

n

V

o 
x-d rection

Fig. 2 Droplet characteristic.

(flpej)n (flpej)o - ((npeq) AV/Ax) 0At ,(38)

OWPIN= (EfPI)o - ((eipi) AvV1/x) 06t - ((flpeg) I) 0At ,(39)

or:
((epjynp6~n= (ejpj) 0/(flpe1)0 t0Mt

Nn (v1)0 - ((A(ejp),tix + (pCp,(vr~v) 2 ) AIx + (fl) FD)/(e~p10o)M . (40)

OUIN - (U1 + ((EiP)o1(eqPIo ((peI~nI~pel~o - ) + ((flpe1)Iqpg) (02 +1I hv))0At. (41)
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The left side boundary is given by an accelerated piston within a cer-
tain time (40 psec in the example discussed below). Then the piston

droplets Fig. 3 Numerical grids (without
the lines t= const.).

velocity remains constant 'in the example below its Mach number is Ma=1 .25
using the upstream velocity of sound). The boundary condition is nonien-
tropic. The piston is assumed to form a thermally insulating wall. Droplets
which hit the piston get trapped. A v-c - characteristic gives information
about the pressure in front of the piston.

The right side boundary consists of a Mach wave until a shock wave is
generated by the intersection of two v+c - characteristics. Here the first
v+c - characteristic behind the shock wave is combined with the changes
along the direction of the shock front, by using a differentiated form of
the gas phase jump conditions [10]. The two families of curves shown in
figure 3 form two independent grids together with the lines t=const.

During the course of the calculations the number of characteristics
increases with each time step. In order to arrive at reasonable storage re-
quirements and computing time, the number of characteristics is reduced at
a later stage if the gradients along the characteristic lines become suffi-
ciently small. A change larger than 0.02 of the value at the base point
should not be used because of stability problems occuring. Convergence is
proved in the usual way using calculations with reduced time steps. The
order of convergence is between 0.5 and 1

For the initial condition a tube is assumed, filled with water vapour
at 20 mbar at .rpcm temperature (phase equilibrium). The diameter of the
droplets is 70 m . The initial liquid mass fraction is 65% (%-= 0.35).

Example calculations show profiles for different times up to 4 msec
In the pressure profiles the intial jump across the vapour shock front can
be seen, which is then followed by an additional strong increase due to the
acceleration of the droplets and conversion of their kinetic energy into
thermal energy of the gas phase (Fig. 4). The temperature profiles (Fig. 5)
also show the initial shock and the following dissipation of the droplet 's
kinetic energy. The dotted line is the droplet 's temperature. As predicted
by earlier stationary studies by Marble [3], it first rises behind the shock
front by condensation until the droplet 's vapour pressure has reached the
pressure of the surrounding gas. Fram this moment on any transfer of heat
from the gas to the droplet leads to a slight evaporation, thus stabilizing
the droplet 's temperature by vaporization cooling. The parameter 1-Ps/p
indicates the direction of the phase change (positive: condensation, nega-
tive: evaporation). Temperature equilibrium is not reached for the present
exaiple.
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Fig. 4 Pressure profiles for the example H 0, T = 293K, Ma = 1.25,
%o= 0.35, r = 35 in, CD 70 (x is te distance franPthe
moving pist8n).
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Fig. 5 Temperature profiles (dashed: gas, dotted: droplets).
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Fig. 6 Profiles of the paraeter 1-p /p
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The velocity profiles (Fig. 7) indicate that for the late times the
droplet's acceleration is nearly couplete before the piston is reached.

v

[Wsec] I---

40

200

100%

0 0.25 x [m] 0.5

Fig. 7 Velocity profiles (dashed: gas, dotted: droplets).

The quasi-stationary profiles are nearly the same as the ones which
can be calculated by stationary equations at a sufficient distance from the
piston.
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SUMMARY

The investigation of detonation-dynamics and its cellular structu-
re for gaseous, explosive mixtures is of importance in order to find safe-
ty-relevant criteria for the onset, respectively failure of detonative
combustion. It was shown by the author in I11 by comparing characteristic
time- and length-scales that a hyperbolic mathematical model, which ignores
dissipative transport-processes is appropriate, in order to describe the
cellular detonation-structure. The detonation-dynamics may therefore be in-
vestigated by the inviscid, non-conductive and non-diffusive model of the
gasdynamic EULER-equations together with kinetic balance-equations for the
(adiabatic) induction-reaction and the exothermic reaction. Latter descri-
bes the rate for release of chemically bounded heat. A steady solution of
the model-equations constitutes the ZELrDOVICH-D5RING-V.NEUMANN (ZDN) -
equilibrium structure. In this paper stability-criteria for the onset of
transverse waves and unsteady nonequilibrium-processes are investigated
numerically starting from ZDN - initial data for global reaction-kinetics.

The equations are solved by a two-step predictor-corrector MACCOR-
MACK-scheme, which is monotonized by adding nonlinear flux-limiters. In
the case of a linear transport-equation V.NEUMANN stability-analysis may
be performed. The stability-bound for the COURANT-number is determined by
neglecting the nonlinear source-terms. Exploiting the stability-properties
of the applied scheme a spontaneous establishment of many experimentally
observed flow-phenomena, e.g. Mach-stems, transverse waves and oscillatory
behavior can be obtained. The calculations are performed for two-dimensio-
nal channel-geametry in a shock-fixed, detonation-front oriented frame of
reference (GALILEI-transformation).

PREFACE

The author is grateful to Prof. Dr. Fritz Ebert for stimulating
his research in the attractive field of gasdynamics of combustion and reac-
tive flow-phencuena. This paper is devoted to Prof. Ebert on the occasion
of his 50th birthday in November 88.

INTRODUCTION

Coabustion phenomena occurring in jet propulsion-systems, parti-
cularly in closed cambustion-chambers and afterburners are known to be as-
sociated with self-excited nonlinear oscillations (see for instance the
well-knmn phenomenon of the singing flame). An intimately strong coupling
between the heat released due to exothermic chemical reactions and the crea-
ted preissure-waves occurs for detonative combustion.

In spite of rich experimental evidence the transition phenomenon
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of a high-speed deflagration to a shock-induced detonation still lacks a
profound theoretical explanation. An appropriate mathematical model for
studying the transition phenomenon must consider the different transport
mechanisms for deflagrative, respectively detonative combustion. Whereas
a pure flame-front propagation (i.e. a deflagration) requires molecular
transport-processes (heat conduction and species diffusion), a detonation-
process is sustained by self-ignition caused by adiabatic compression due
to a shock-wave with sufficiently high mach-number.

Since the beginning of the 80s of this century large-scale expe-
riments connected with light-water reactor safety have been world-wide
performed. The experimental results provide evidence that the detonation-
limits are geometry-dependent and no pure material-properties. They indi-
cate, however, that the detonation-limits may be scaled by the detonation
cell-size. Latter constitutes the most important dynamic detonation-para-
meter (J. Lee [2] ), since it is a reference-value for the other parame-
ters like the critical initiation-energy or the critical transmission-
distance from a confined into an unconfined configuration.

Self-sustained detonation propagation is known to be connected
with transverse wave-phenamena (cellular detonation-structure). In a dy-
namic detonation-process the transverse pressure-waves are reflected
shock-waves of a single Mach-reflexion of the precursor detonation-front.
For planar channel-geametry the right- and left-running family of trans-
verse waves must be distinguished. Additionally in rectangular, spatial
geometry the family of slapping and galloping transverse waves may be dis-
cerned (see W. Fickett & W.C. Davis for further reference [3] ). The for-
mation (birth) of a detonation-cell is caused by collision, resp. focus-
sing of the transverse waves, resulting in a Mach-stem near the focus
(B. Sturtevant & V.A. Kulkarny [4] ). The whole life (opening and closure)
of a detonation-cell can only be described by the mechanism of double
Mach-reflexion (see fig.2 on the next page). At the apex of the detona-
tion-cell Mach-stem and primary (incident) shock interchange. The trans-
verse waves move approximately with the equilibrium sound-velocity ceq of
the burnt gases.

MATHEMATICAL MODEL

The time-dependent thermo-fluid-dynamic, differential balance-
equations governing the cellular detonation-dynamics may be easily derived
from their integral form. Fig.l shows a control-volume G with capacity V.
The normal unit-vector n° is oriented in the same direction like the sur-
face-element vector dA = dA no of the control volumes envelope 34.
k stands for the vector of i7nternal (or external) sources of matter, momen-
tum, resp. energy. The integral form of the balance-equation, equation (1)
reads: +

( e It + (U)'n no dA dt dV It dV

where the temporal integration-limits are
the initial-time t and the time of imme-
diate interest t.

U = [_, 9 v, _eo, rJT (1.1) , d

denotes the vector of transport-variables in
the volume-element dV,

= [, wrq, wriT (t -TI) (1.2) Fig. 1

a source-vector containing the exothermic heat-release wrq per time-unit
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Fig. 2: Schematic sketch of dynamic phencimena occurring during a
detonation propagation-process
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due to the temporal change of the heat release-parameter, the reaction ra-
te - velocity

wr = Dr/Dt = W r(r,p,T) (1.3),

multiplied with the net-heat production per unit mass of the gas-mixture q.
In equation (1.1).9 stands for the density of the mixture, X its fluid-ve-
locity, p the thermodynamic pressure and ye the specific total energy,
which is composed of the specific internal e~ergy ge and the kinetic ener-
gy per unit-volumey),/2, i.e.:

2
eO = + v/2 (1.4).

For a polytropic gas follows fran the thermal equation of state

p=P('T_) 9 RT (1.5)

that a(T,y) = c(T) =cvT= RT/ (K - 1) = (1.6),.9 (ic - 1)

where R denotes the (universal) gas-constant, cv = (DE / T) the
constant-volume heat-capacity per mass-unit and the isentDpIc exponent

K = 1 + R/c (1.7).

According to a simple two-substance model the rate-parameter r in
(1.1) signifies the mass-concentration of burnt gas. Therefore r = 0
corresponds to fresh (unburnt) gas and r = 1 to complete heat-release.
The approach of a value r = 1 is unrealistic, since endothermic, back-
wards-directed reactions ensure the formation of a dynamic thermochemical
equilibrium (lower index eq) with vanishing reaction-rate w rP0 together
with r = req at the end of the reaction - zone.

Usually the exothermic rate-velocity wr in (1.3) obeys simple ARRHE-
NIUS - kinetics and writes:

= n-1 E2 ) - exp E2+q 1 (1.8),
RT RT

where the exponents n and m denote the order of the reaction and its con-
centration - influence. E2 stands for the activation-energy of the exo-
thermic reaction. Before any heat will be set free, a (non-exothermic) in-
duction - reaction takes place. The induction-delay is taken into account
in the source-term (1.2) by means of a temporal shift applying the
HEAVISIDE - distribution

t 1 for t 4r I  (1.9)
0 II t<T1

with the induction-delay time
E1

ZI = k 1  exp ( - 1 and -1<OC(-.5 (1.9.1).

The activation-energy E of the induction-reaction together with E2 and
the pre-constants k1 , reap. k 2 in equations (1.8), resp. (1.9.1) can be
obtained fram laboratory - experiments (see for instance Korobeinikov et.
al.'s data in [5] ).

The scalar (dot) product of the flgx - dyadic F (U (second - order ten-
sor) with the normal unit-vector A appearing in equation 1 at the beqin-
ning of this section results in a vector f of convective fluxes of the
transport - variable U according to the form:

f(U) y [v -n, v (v.n)+p/,no ,(e+p/9 ) v. n°, r v-no] = ' (U) .no (2)

533



The integral-form (1) of the transport-equations is the starting-
point for a numerical scheme based on the finite-volume method. By means
of GAUSS - GREEN s integral-law it follows directly frcm (1) that

where V deno es the Nabla (- or°gadient) operator, which reads for
two-dimensional, cartesian x,y - geometry with orthonormal basis - vec-
tors r t V=/xxe + '/yy. The flux- dyadic 7has in

this coordiate - system The form: y

F= F;e + F ; ey (3.1).

The differential-form of the balance-equations cast in conservation (di-
vergence or flux) - form equivalent to (3) now reads:

BU/ at + Fx/x+ ?F /'y = ys (4)

with U = -9, yu, ?v, Ie o ,  4 r T (.1) and the source-term

s = , q, 11 T ywr X(t -T I ) according to equation (1.2).

The semicolon in (3.1) denotes a dyadic (tensor) - product of the vector-
fluxes in the x-, resp. y-direction with the basis-vectors

F = .e = [yu, yu 2 + p, _uv, u (geo+),_rJ T
'x2 T (4.2)
F =y.2y = [yv, Pvu, Yv + p, v (yeo+p),yr]

In (4.1), resp. (4.2) u and v are the components of the fluid-velocity
v= ue + ve (4.3).

--x -y
The system (4) is of hyperbolic type, since the JACOBIAN - matrices

Jx = 9 Fx/U, Jy =aFy /U (5) have real Eigen - values (characte-

stics)Zx, resp. y with

x= u, u, u, u-c, u+c T & Ay =IV, v, v, v-c, v+cjT (5.1).

The conservation-form of a scalar hyperbolic transport-equation allows the
application of the so-called "shock-capturing'- technique. According to
this conqept a consistently formulated numerical scheme converges in a
weak (* integral) sense to the jump-conditions (see P.Lax & B.Wendroff
[6] ). I1qtter hold across gasdynamic-discontinuities (particularly shocks)
and are ealled RANKINE - HUGONIOT - relations.

The square of the velocity of sound c in (5.1) with c2 = (8p/.) s
= k (apl)a T as the (isentropic) propagation-velocity of weak pressure-
waves without change of local specific entropy s can be written for a po-
lytropic gas in the form: c = ep/ = iR T (5.2)

NUMERICAL METHOD

The system (4) is solved by means of a two-step predictor-corrector
MacCormack - scheme. In the case of a linear transport-equation the Mac-
Cormack - algorithm is equivalent to the Lax-Wendroff - scheme described
in [b]. A.Harten introduced in [7] the notion of so-called total-varia-
tion-diminishing (briefly TVD-) schemes, which combine the smoothing of
the high-frequency-oscillations with second-order accuracy and high-reso-
lution. S.F. Davis showed in [8] by applying flux-limiters in a form pro-
posed by P.K. Sweby in [9] that the spurious oscillations (wiggles) inhe-
rent of the Lax-Wendroff - method may be avoided. The critical amounts of
artificial viscosity needed to satisfy the TVD-property for schemes of
Lax-Wendroff, resp. MacCormack-type are determined in Davis' paper [8].
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The inhanogeneous term y s occurring due to the exothermic reaction-rates
is considered adopting a strategy proposed by H.A.Dwyer et.al. in [10].
The caplete algorithm for the solution of a scalar hyperbolic transport-
equation of the form

aU/SUt + aF(U)/Dx - h(U) = 0 (6)
reads: ,

CUpre : U - At/Ax (Fn -F),+ h At (7.1)
d 1 i+l i i+1/2
: Un+i [( +U.) - At/Ax (F F_* )+ h Ate2

corr 1 1 1i i-i i-1/2 t/
+ 1/8[e n n -Un) _ n (Un-Un)i+1/2 (i+l 1 i-i/2 1 -_

with h_ 1/2 = (hi + hi + 1)/2 (7.3)

The subscript (i) in (7.1) and (7.2) denotes the discretized x-position,
the superscripts n, * and n+l stand for the old, predicted and corrected
(new) time-level. The chosen mesh-size is Ax and the time-step At.
The parameter 0) is a switch, which is connected with Sweby s 'flux-limi-
ter- function (?(v ) in the paper [91 according to following equation:

Ei+1/2 = 8 t (1 -19) i - Y (V+)] (7.4),

where A =A.At/Ax (7.5) denotes the COURANT - number as the ratio of the
physical (characteristic) wave-velocities M(U) = 6F (U) / 3 U and the numeri-
cal signal-velocity Ax/A t.
The parameter Vt = (Ui- U )/(U - Ui) in (7.4) stands for the ratio ofI i-i i+1
discrete, neighbour-gradients of the transport-variable U in (6).

Cpred in (7.1) is the solution-operator of the scheme's predictor-step,

corr in (7.2) the operator for the corrector-step. Hence the value of
the solution determined at the new time-level (n+l) for the one-di-

mensional equation (6) reads: Un+l =C (At) Unwi aXtX Xcorr pred (8),
where Un denotes the solution at time x tn and at corrtp

= At. In the case of a two-dimensional transport-equation (here
equation (4)) the solution is advanced to the new time-level

tn+1 according to : Un+l = W(At/2) I( (At/2) X (At/2)

X X(At/2).U n 
, where the y (At/2) -

operators may be combined resulting in: y
Un+1 = x (At/2) X (At) Cc t/2)'Un (9).

The so-called STRANG - type operator-splitting in (9) ensures that the or-
der of the method (here: second-order accuracy) may be preserved in the
multi-dimensional case.
Figure 3 on the next page shows the computational domain and the bounda-
ries for assumed planar channel-geanetry. A numerical solution of the
hyperbolic system (4) requires an appropriate set of initial- and bounda-
ry-conditions. In the finite-volume method applied here boundary-values
are prescribed in the image-cell region hatched in figure 3.

INITIAL - CONDIT]DN

The initial-data are steady, planar solutions of the balance-equati-
tions (4). They form the well-known, stationary ZELDOVICH-DbRING-V.NEU-
MANN (ZDN)- detonation structure, which is caposed of a shock-wave sepa-
rated fran a finite-size reaction-zone of exothermic heat-release by a di-
stance resulting fran the induction-delay. The ZDN-model is of great sig-
nificance for predicting dynamic detonation-parameters like the cell-size
by applying the empirically confirmed assumption that fixed ratios exist
between these parameters and characteristic chemical length-scales.
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Fig. 4: Density-distribution of a plane ZELDOVICH - DbRING
V.NUANANN detonation - structure

~~MmijO m-209E000

Fig. 5: Transversally perturbed initial-data of the exothermic
reaction progress-parameter r -r
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K.I. Shchelkin & Ya.K. Troshin were the first, who presented in [11 empi-
rical values of a scaling-factor, in order to estimate the cell-size for
any gaseous mixture from a chemical length-scale of the ZDN-structure.
For the global chemistry according to Korobeinikov et.al. (r5J) for an
Argon (,resp. Helium) - diluted, stoichicetric oxygen-hydrogen mixture
applied here the ZDN initial-data are determined by means of adaptive RI4-
BERG - integration of the equation of motion of a fluid-element in a refe-
rence-system, which moves w.th the average (so-called) CHAPMN-JOUGLMT
(CJ)-detonation-velocity DCl. From the integral, steady balance-equations
(reaction-front equations) follows that there exists a minimum propaga-
tion-velocity, the so-called Cl-velocity, below which only deflagrative
combustion is feasible. The experimentally well-known fact of preference
of the minimum-velocity to larger velocities and corresponding thermody-
namic variables is supported theoretically by a stability-criterion given
by E. Jouguet at the beginning of this century (see chapter 3.8 in the
book of F. BartlmS f123).
The equation of motion for a plane ZDN-structure reads in a GALILEI-trans-
formed (detonation front-fixed) frame of reference Dx/Dt = D -u(r) (10),
where x denotes the distance from the precursor shock-front an-u the
fluid-velocity in the laboratory-system. It follows fran the chain-rule of
differentiation that xr) = 0[Dcj - u(*_)] / w,,4.d + 11 (10.1)

with the exothermic reaction-velocity w = Dr/Dt and the induction reac-
tion-length I T For the induction reactfon-length holds the equation:

1 = f(t)- u) dt= - (10.2),

where 'r I obeys simple ARRHEIUS - kinetics (see [ 5] ) according to equa-
tion (1.9.1). The transport-variables in the induction-zone of a pla-
ne ZN-structure are assumed to be constant and equal to the so-called
V.NEUMANN (post shock)- state (subscript VN). For the detonation mach-nun-
ber Haj = DCj co with the sound-velocity c = (xRTo)1/2 of the unburnt

(fresh) gas follows from the classical CHAPMAN-JOUGUET (CJ)-theory the
K- 2 -1 q req )1/2 K- r

relationship: 2 1 q req 1/2 + ( K(ii) q /

+ U /2 (11),
2kR o2k R T

where r stands for the exothermic reaction-rate parameter according to
thenio _ chemical equilibrium.
Experiments show that the dynamic detonation-process, although multidinen-
sion4l and highly unsteady in average, proves to be stationary and one -
dimensional in average. Algebraic terms for the velocity u, pressu-
re p, density 9 and temperature T in the exothermic reaction-zone are an
immediate outccme of the integral reaction-front equations:

u(r)/co = [(K+1) Ma~j, p(r)/po = 1 + + (Ma2j-l)

90 /f(r) = 1 /[(K+ 1) Ma and T1T = P/Po o/9 (12),

where : (Macj-) +[(Macjl) 2 - 2(OK+I)Ma2 qr/(c To)] 12

with c R RK/ ( -1) as the constant pressure heat-capacity per unit-vo-lume. P

In order to ascertain the ZDN-structure the inverse-function of x(r) in
(10.1) is determined, which can easily be done numerically by simple NEW-
TON-iteration rn+l = r n - [xn(r n ) - xij/ f(r) with f(r) = (dx/dr)n
for a monotonous function x(r) with given discretisation x. (i=, ... ,N).
Fig.4 shows the calculated three-dimensional density-distribution of the
plane ZDN-structure for the assumed planar channel-geometry.
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In contrast to the significance of the ZDN-model for predicting dynamic de-
tonation-parameters stands the fact that all previous numerical simulations
of detonation-dynamics avoided to attack the question of hydrodynamic sta-
bility of the ZDN-structure. Previous numerical studies of the cellular de-
tonation-dynamics by Oran et.al. (1982) E13], Markov (1981) [14] and Taki
& Fujiwara (1982) i151were restricted to arbitrary, blast-wave perturbed
initial data. Furthermore unrealistic, large-scale (transverse) perturba-
tions of the reaction-progress parameter r with a wave-length of the order
of the combustion channel-width were applied in order to establish the
complex wave-structure. Fig. 5 shows such perturbed initial-data of the
parameter Y = 1 - r applied by former investigators for obtaining trans-
verse wave-phenomena in a laboratory reference-system.
However, in a reference-system fixed to the detonation-front the applied
numerical scheme (7) yields a spontaneous establishment of the transverse
wave-structure (see also the author s paper [161).

BOUNDARY - CONDITIONS

According to the theory of characteristics the boundary-conditions,
which must be prescribed at the left, resp. right side of the computational
mesh depend on the underlying mathematical frame of reference. In the sub-
sequent figure 6 the characteristic planes in an (x,y,t)-coordinate-system
are drawn either in case of a laboratory frame of reference (fig.6a) or for
a precursor-shock oriented (so-called GALILEI-transformed) system (fig.6b).
The implications and advantages of the latter, namely the shock reference-
system,are discussed in [16J (p.782).

The boundary-values required for the transport-variables at the ima-
ge-cells of the solid channel-walls are corresponding to the underlying in-

(a) .C0-

x

Fig. 6a: Characteristic planes in a shock-reference system

( b) "U+ /

Fig. 6b: Characteristic planes in a laboratory reference -system
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cid wave - model non-reflecting (symmetric) slip-conditions for the velo-
city u tangential to the wall and reflecting (antimetric) conditions for
the normal-velocity v. The other variables (densityY, internal energy E
and reaction-progress parameter r) are also subject to symmetric or absor-
bing conditions.

V. NEUMANN STABILITY - ANALYSIS

An essential concern of the author was to allow only the growth of
the physically relevant wave-numbers k = 2w I of the transverse wave -
structure. Experimentally these wave-numbers are known to be harmonics,
which fulfil the standing wave-condition k = hiT / W (13) with the mode-
number 6 and the channel-width W . Since a plane ZDN-detonation-front
breaks up on the smallest scales forming a caustics (or singularity), a
rise of the highest resolvable frequencies must be admitted. The NYQUIST -
frequency with kAx =7r for a mesh-size Ax and a wave-length X = 2 A x
is the largest frequency that can be identified in any finite difference
(or volume)-method.

In order to allow an exponential increase of the state-variables U
caused by the source-term y s appearing in equation (4), the linear sta-
bility-analysis should supply an amplification-factor O, which obeys the
inequality ,,tI=ii fi'_ 1 + a(ht) A

with the amplitudes Ui according to the Ansatz: U. = U. exp(ijkAx),
where j2 = -1 and O" in eq. (14) denotes the LANDA- s)mbol. Concerning
the foundation of relation (14) see chapter III-F-5 in P.Roaches bookt_17.
The complex amplification-factor R obtained by means of linear V.NEOMANN-
stability-analysis for the Lax-Wqdroff-method is an ellipse with the cen-
ter (1 _42) and the half-axes %W, resp.a, where again denotes the COU-
RANT-nunber according to eq. (7.5). It is a well-known fact that the clas-
sical COURANT-FRIEDRICHS-LEWY (CFL) - criterion with I 1 (15) for the
numerical stability of a scalar, hyperbolic transport-equation is an inme-
diate consequence of the V.NEUMANN stability-criterion ld- 1 (15.1).
The additional terms of numerical viscosity added to the mere Lax-Wendroff
(9a) - scheme according to Davis' paper 8 lead in the region of steep
gradients to a restriction of the classical CFL-criterion IIJ#It, < 1 (16).
In the induction-zone behind the shock-wave the "viscosity-switch" 9 was
chosen equal to one. Then f in (16) becomes 4Y/2 , and the conplex ampli-
fication-factor Ct transforms for 1 into an ellipse with center 0 and
the half-axes 1, resp. . The amplification-factors for the different me-
thods are shown in figure 7 on the next page. In fig. 7 the legends Re
and Im at the coordinate-axis denote the real part, resp. imaginary part
of the amplification-factor in the ccmplex plane.
In the code Davis TVD - Lax-Wendroff-method was tested with Or 1 and a
OCRANT-number % = 0.9547/2 in the induction-zone, which is according to
(16) close to the linear stability-limits for high-frequency oscillations
with wave-number k Ax =7r.
The numerical results show that the energy of the spontaneously developing
small-scale structures is aliased to the large-scale, transverse wave -
structure with k Lx.O. Calculations performed with accuracy Real*16 in-
stead of Real*8 showed that the transverse wave-structure evolves not due
to the machine-error but by the nonlinearity inherent to the balance-equa-
tions.
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IIT, T - I mu|n

Fig.7: Coplex anplification-factors for mere Lax-Wendroff-
and TVD- Lax-Wendroff-method

RESULTS

By means of the method described above a heuristic stability-crite-
rion for the onset of transverse wave-phenamena given by Shchelkin in [iii,
chapter 1/3 could be reaffirmed successfully. The reason for the excitation
of transverse pressure-waves in a plane ZDN-structure is a highly nonlinear

dependence of the ignition-time fram temperature according to equation
(1.9.1). The instability-criterion given by Shchelkin reads:

-tI/aT "(T- TVN) u (15),

where u denotes the state of the unburnt gas expanding from the shocked
V.NEUMANN-state (subscript VN). Assuming for an unburnt pocket in the exo-
thermic reaction-zone an isentropic expansion fram the VN-pressure-level
behind the precursor shock-wave to a pressure p = p(r ) according to
thermochemical equilibrium, it follows from (1 5T that eq

E/RTVN (1-T/TVN)lu = EI/RTvN [ 1 - (peq/PvN) ( )/ 1 (15.1)

is necessary to obtain instabilities in the plane ignition-front during de-
tonation. The numerical simulations in two (recently three) space-coordina-
tes provide evidence that the ZDN-data are only stable, if either the
Shchelkin - criterion of instability is violated or the channel-width is
below a critical value, which is experimentally known to be the critical
kernel for the single head-spin-propagation (see [1i3, chapter 1/6).
In fig.8 the pressure-distribution for a detonation-propagation with mode-
number W = 2.5 is plotted after Kend = 285, 290, 300, resp. 310 time-steps
according to the CFL-stability-criterion.
Condition (15), resp. (15.1) must be fulfilled in order to obtain nonli-
near resonance-phenamena between the heat-release due to chemical reacti-
ons and the transverse pressure-modes. By varying the channel-width and
keeping all other system-parameters as constant also non-uniqueness of the
mode-number and even chaotic cell-structures could be determined. In the
latter case no resonance could be obtained.
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The shape and size of the detonation-cells agree surprisingly well
with experimental soot-tracks obtained by R.A. Strehlyw et.al. (see E1i
and [16] for further reference).
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Fig. 8/1: Pressure relief and iso-lines for dimensionless time
t = 31.049 (corresponding to Kend = 285 tirm-steps
according to the CFL -stability -criterion)
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Fig. 8/2: Pressure distribution for t =31.583 (corresponding to
Kend =290 CFL time steps)
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Fig. 8/4: Pressure distribution for t e s33.687 (corresponding to
Kend = 310 CFL time steps)ps)

542

-'1
II( (~

! ! lm
==

m • m mm mm ~ i =um 1 =*



CONCLUS ION

Besides the influence of the channel-width W on the resonance-f requen-
cy and cell-size already discussed in [I] the author tries to investigate
the effect of changes of the reaction-kinetic parameters on the regularity
of the cell-structure. Moreover the code has been extended to three space-
coordinates in order to detect other senondary flows associated with the
transverse wave-structure.
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THE DESIGN OF ALGORITHMS FOR HYPERSURFACES
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SUMMARY

The need to follow fronts moving with cukv'ure-dependent speed arises in the modeling of a

wide class of physical phenomena, such as crystal growth, flame propagation and secondary
oil recovery. In this paper, we show how to design numerical algorithms to follow a closed,
non-intersecting hypersurface propagating along its normal vector field with curvature-
dependent speed. The essential idea is an Eulerian formulation of the equations of motion into
a Hamilton-Jacobi equation with parabolic right-hand side. This is in contrast to marker parti-
cle methods, which are rely on Lagrangian discretizations of a moving parameterized front,
and suffer from instabilities, excessively small time step requirements, and difficulty in han-
dling topological changes in the propagating front. In our new Eulerian setting, the numerical
algorithms for conservation laws of hyperbolic systems may be used to solve for the propagat-
ing front. In this form, the entropy-satisfying algorithms naturally handle singularities in the

propagating front, as well as complicated topological changes such as merging and breaking.

We demonstrate the versatility of these new algorithms by computing the solutions of a wide

variety of surface motion problems in two and three dimensions showing sharpening, breaking

and merging.
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1. INTRODUCTION: EQUATIONS OF MOTION

We wish to follow the evolution of an initial surface 1(0) propagating along its gradient
field with speed F(K) a given function of the curvature K (either mean or Gaussian). The key
idea, as derived in (5), is to view the evolving front )(t) as the level set of a higher-
dimensional function *. To be more precise, let the initial surface 1(0) be a closed, non-
intersecting hypersurface of dimension N-1. We construct the function $ by letting

=(,0) = (1d) ZERN where g is the distance from 1 to IT0). with the plus (minus) sign

chosen if 1 is inside (outside) 7(0). Then, at t=O, the level set{, I 4(,0) = 11 gives 1(0). We

now require a time-dependent differential equation for $ corresponding to the evolution of
7(t). If the family of level sets 4f=C, where C is a constant, flow such that each level surface
propagates with speed given by F(K), then it can be shown (see (5]), that

, =F(K) V(1)

V,0) = given

Equation (1) specifies the complete initial value partial differential equation. Note that

1) * is a function in RNx[O,ee ) - - R , thus we have added an extra dimension to the problem.

2) At any time t, the position of the front' ̂ t) is just the level set{1l41(it) f} 100 1( )

Eqn. (1) is an Eulerian formulation of the front propagation problem. The level surface 4=l
may change topology as it moves, either breaking into multiple parts or fusing together. For
any fixed t, slicing * by the level plane at height I retrieves the position of the front.

2. HAMILTON-JACOI EQUATIONS: THE ROLE OF CURVATURE AS VISCOSITY

To see the effect of curvature on a propagating front, consider a propagating closed
curve in R2 and special speed function F (K)=I-eK. Using the expression for the mean curva-
are in terms of #, we substitute into Eqn. (1) to produce

#t -H( # [ 42-2 .4 1!a" 21
(,444.J))rz ,Y (2)

where H(V*)=($+ty2) 1 2 . Eqn. (2) is a Hamilton-Jacobi equation with parabolic right-
hand-side, which has a type of "viscosity" solution discussed in [I]. Thus, the role of curvature
(eK) is to smooth propagating fronts so that sharp comers do not develop. In the limit as E-+O
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(curvature term vanishes and F (K)=I), corners develop, and a weak solution is obtained from
an appropriate entropy condition (see (6,7,8]). Thus the role of curvature in this Hamilton-
Jacobi formulation for propagating fronts is identical to the the role of viscosity in hyperbolic
conservation laws: it inhibits the formation of comers, that is, shocks in the tangent vector.

3. NUMERICAL ALGORITHMS BASED ON HYPERBOLIC CONSERVATION LAWS

Our goal is to approximate the solution to the initial value problem given in Eqn. (1). In
[5), a class of non-oscillatory, upwind, entropy-satisfying algorithms of arbitrary order were
given to solve this equation, based in part on ideas in [3,4]. The central idea behind these algo-
rithms is to exploit the conservation form of theses schemes directly into the initial value
Hamilton-Jacobi equation. As a motivation to understand the scheme, consider the initial
value Hamilton-Jacobi equation

W, - F(KXl+Vj/2)12= o (3)

where x e R and W.R x[0,o)-R. This is a simplified version of Eqn. (1), and applies when the
propagating curve j(0) can be written as a function \v(xt) for all time. Furthermore, in the
simple case F (K)=l, we have

V, - (I+W2)1 2 =0 •(4)

Eqn. (4) is a Hamilton-Jacobi equation. If we differentiate with respect to t, and let u=, we

have

Ut + [G (U)]z -O (5)

where G(u)=-.(l+u 2)lr2 . Eqn. (5) is hyperbolic conservation law which may be solved by a
variety of methods. The key lies in an adequate numerical flux function

gj+l= g (uj..p+l ......... uj,+) which approximates the flux G (u). Rather than differentiate the
numerical flux function to achieve an approximation to Eqn. (5), we work directly with Eqn.
(4) and write

a= +1 -Atg. (6)

A wide class of flux functions are described in [5], leading to a collection of upwind, non-
oscillatory, entropy-satisfying algorithms in several space dimensions for the original
Hamilton-Jacobi initial value problem (Eqn. I). The upwind nature of these schemes is crucial
in the formulation of far-field boundary conditions. Finally, parabolic right-hand-sides
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(resulting from the curvature component of F(K)) ame approximated by might-forward cen-

tral differences.

4. EXAMPLES

A. Level Curve, Burning out, Development of Corners

We consider a seven-pointed star

l(s) W(.+(.065) sin(7.2xs Xcos(2=r ),sin(2= ))

se[0,11

as the initial curve and solve the initial equations with speed function F (K) = 1. The computa-
tional domain is a square centered at the origin of side length 1/2. We use 300 mesh points per
side and a time step tt.0005. At any time nAt, the front is plotted by passing the discrete
grid function #A to a standard contour plotter and asking for the contour 4=1. The initial curve

corresponds to the boi idary of the shaded region, and the position of the front at various
times is shown in Fig. 1. The smooth initial curve develops sharp corners which then open up
as the front brms, asymptotically approaching a circle.

B. Level Curve, Motion Under Curvature

We consider the initial wound spiral

I(s) = (.e(- I Y  
()) - (.1-x (s))/20)(cos(a (s)), sin(a (s)))

where a(s) = 25tan-t(lly (s)) and

x(s)=(.l)cos(2xrs)+.l y(s)=(.05)sin(2r)+.l se[O, 11.

and let F(K)=-K, corresponding to a front moving in with speed equal to its curvature. It has

recently been shown (see (2]), that any non-intersecting curve must collapse smoothly to a cir-

cle under this motion. With Np=200 and At=.0001, Figure 2 shows the unwrapping of the

spiral from t=O to t=0.65. In Figures 2a-d we show the collapse to a circle and eventual disap-
pearance at t=.295 (The surface vanishes when < I for all ij.)

C. Level Surface, Torus, F (K) = 1--eX

We evolve the toroidal initial surface, described by the set of all points (xy,z) satisfy-

ing
z = (R o)-((x +y 2)12--R i)I

where R o=5 and R t=.05. This is a torus with main radius .5 and smaller radius .05. The com-

puatioml domain is a rectangular parallelpiped with lower left corner (-1,-,-.8) and upper
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right comer (I.,I.,.8). We evolve the surface with F(K)=I-e, e=.001, At=.Ol, and

Np =90 points per x and y side of the domain and the correct number in the z direction so

that the mesh is uniform. Physically, we might think of this problem as the boundary of a
torus separating products on the inside from reactants outside, with the burning interface pro-
pagating with speed K=I-eC. Here, K is the mean curvature. In Figure 3, we plot the surface

at various times. First, the torus bums smoothly (and reversibly) until the main radius col-
lapses to zero. At that time (T=0.3), the genus goes from I to 0, characteristics collide, and the
entropy condition is automatically invoked. The surface then looks like a sphere with deep
inward spikes at the top and bottom. These spikes open up as the surface moves, and the sur-

face approaches the asymptotic spheroidal shape. When the expanding torus hits the boun-
daries of the computational domain, the level surface V=l is clipped by the edges of the box.
In the final frame (T=0.8), the edge of the box slices off the top of the front, revealing the

smoothed inward spike.
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FIGURE 2: SPIRAL COLLAPSING UNDER ITS OWN CURVATURE

F (K)=-K
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FIGURE 3: EXPANDING TORUS

F (K)= I- EK, e= .01

T=0.0, 0.1, 0.2.0.3
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Prediction of Dispersive Errors in Numerical
Solution of the Euler Equations

Richard A. Shapiro
Computational Fluid Dynamics Laboratory

Massachusetts Institute of Technology, Cambridge, Massachusetts

1. ABSTRACT

Dispersive errors in the discretization of the steady Euler equations describing the flow of
a compressible, inviscid, ideal gas can produce low wave number oscillations near regions of
high gradient. A linearized analysis is presented which allows one to predict the location and
frequency of these oscillations. This analysis is applied to three numerical schemes: Galerkin
finite element, cell-vertex finite element, and central difference finite element. Numerical ex-
periments are presented verifying the analysis. An example showing the applicability of the
analysis to a problem with significant nonlinearity is given.

2. INTRODUCTION

Numerical solution of the Euler equations describing the dynamics of an inviscid, compress-
ible, ideal gas is becoming an important tool for the practicing aerodynamicist [1]. In many
solutions, low wave number oscillations have been observed in the vicinity of rapid flow vari-
ations [21. These oscillations cannot be explained by problems in artificial viscosity, as their
frequency is very low, and the amplitude is relatively independent of the amount of artificial
dissipation used.

In this paper, the dispersive properties of three particular algorithms are examined. Each
of these algorithms is derived from a finite element formulation, discussed in detail in [31 and
briefly discussed in Section 3.1. These three algorithms are the Galerkin finite element method

(4,5,6], the cell-vertex finite element method, and the central difference finite element method
[7]. The cell-vertex algpithm is identical to the node-based finite volume method [8] or the
first-order step in Ni's Method [9]. On grids with parallelogram elements, the central difference
method is equivalent to Jameson's cell-centered finite volume method [10].

The approach taken is to analyze the dispersive properties of the linearized, steady Euler
equations on a regular mesh, using the spatial derivative operator for each of three meth-
ods discussed below (Galerkin, cell-vertex, central difference). This analysis is applied to a
model problem, and the prediction of the frequency and location of the dispersive oscillations
is demonstrated. Finally, the analytic theory is validated by comparison with numerical exper-
iments.

3. SOLUTION ALGORITHM

In this study, the two-dimensional Euler equations describing the flow of an inviscid, com-
pressible fluid are considered. To allow the capture of shocks and other discontinuous phenom-
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ena (such as slip lines), the Euler equations are written in conservative vector form as

a f7 j7V +a p FY p"V + - (1)8t pv az puts + 0 pl,2 +p

pe puh pvh

or
ail af ad (2a-T a = °(2)

where e is total energy, p is pressure, p is density, u and v are the z and y flow velocities, U
is a vector of state variables, ? and d are flux vectors in the z and y directions, and h is the
total enthalpy, given by the thermodynamic relation

h = e + . (3)

P

In addition, one requires the equation of state

p ~ 1) [- (U 2+ V2)] (4)

where the specific heat ratio -y is taken as a constant (1.4) for all calculations reported.

3.1 Spatial discretization

The finite element approach to discretizing these equations divides the domain into elements

determined by some number of nodes (4 in this report).

Within each element the state vector U(e ) and flux vectors F(e) and G(e) are written

Uc = N"e)U (5)

-W = N}"F,(" (6)

GWe) = )NG)o (7)

where Ui'), ,(,and GO)" are the nodal values of the state vector in element e and the N.'e
are a set of bilinear interpolation functions on that element. These interpolation functions are
expressed in terms of local coordinates ( , q), which are related to (z, y) by an isoparametric
transformation. Thus, inherent in the formulation that follows are some transformational
metrics, which are not shown for clarity.

These expressions can be differentiated to obtain an expression for the derivative in each
element in terms of the nodal values (shown here for the state vectors)

aU(e) = 4 aN ')u(C)a, "' a, , .(8)

The flux vector derivatives are calculated the same way.

The expression for the derivatives is substituted into equation (2) and summed over all
elements to obtain

ad =  aR Y (9)
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where # is now a global vector of interpolation functions, determined by summing the inter-

polation functions for each element.

The next step can be thought of as a projection onto the space spanned by some other
functions N1, called test functions, such that the error in the discretization is orthogonal to
the space spanned by the test functions (for more detail on the mathematics involved see I111).
To do this, multiply Eq. (9) by IV' and integrate over the entire domain. This results in the
semi-discrete equation

o AJJ + -R a, (10)

or

dt

where M is the consistent mass matrix and R. and P, are residual matrices. The mass matrix
M is sparse, symmetric, and positive definite, but not structured, so it is replaced by a lumped
(diagonal) mass matrix ML in which each diagonal entry is the sum of all the elements in the
corresponding row of M. This allows Eq. 12 to be solved explicitly. The lumping does not
change the steady-state solution, but does modify the time behavior of the algorithm. Finally,
this set of ODE's is integrated in time to obtain a steady solution. The details of the time
integration, artificial viscosity formulation, and boundary conditions are not critical to the
understanding of dispersion, and can be found in [3].

3.2 Choice of Test Functlons

Various choices for N' are possible, each giving rise to a particular discretization. If one
choses each N ' ) to be the corresponding N!,) , one obtains the Galerkin finite element approx-
imation. If one chooses each N46) to be a constant, the "cell-vertex" approximation [8] results.
This approximation is identical to a node-based finite volume method. Finally, if the Ni" are
chosen as

Nr (1-3t 1-3n (+~15) 1S(~~) 5)1) (13)

one obtains the central difference or collocation approximation [7]. On a mesh of parallelograms,
this is identical to a cell-based finite volume method.

4. LINEARIZATION OF THE EQUATIONS

This section describes the linearizations of the Euler equations. The 2-D Euler equations
(Eq. 1) can be rewritten

+ Auaz B = 0 (14)

where
p u p 0 0 V 0 p 0

u 0 U 0' 0t 0 0
U A B(15)

v 0 0 u 0 0 0 V

pYP 0 u 0 0 1P V
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The equations are linearized by "freezing" the A and B matrices. In the steady state, the time
derivative vanishes, so we can write the linearized Euler equations in operator form as

(As. + Be,)U = 0 (16)

where s. and a. are the z and y derivative operators. If we desire non-trivial solutions to this
equation, the operator matrix (As, + Be,) must have zero determinant. This is the statement
that

USZ + V8V Pet P8i 0

0 Us, + Vay 0
P = 0. (17)

0 0 us. + v8 !L

0 ypsz "lpsif Us8 + Vey

Define

8 
(18)

V/"..2 + e/2

- 8V  (19)

and Eq. (17) can be expanded to

(ru + SV) 2 [a2(r" + 82) - (ru + SV)2] = 0 (20)

where a is the speed of sound. This has solutions

S0

ru + ev =(21)
±a

Now let

r[u]
8 L V

so that Equation (21) becomes

#. { = (22)
±a

Since i has unit norm, the non-zero solution will exist only if the flow is supersonic. So far, no
restrictions have been placed on the derivative operators s. and sv. The analysis above applies
to the exact derivative operators as well as any of the discrete operators. The next section
introduces the discrete equations and their solution.

5. FOURIER ANALYSIS OF THE MNEARIZED EQIOATIONS

This section introduces the spatial discretisations of the equations into the linear model,
and discusses the consequences of the truncation error in the approximations. Many of the
ideas used here can be found in 112], but those analyses were performed for a scalar problem
involving only one spatial direction and time.
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Table 1: Spatial Derivative Operators for Various Methods

Method ASO

Exact Derivative f 9

Galerkin j sin 0f(2 + cos 0) sin 0(2 + cos 4,)

Cell-Vertex I sin (1 + cos 0) sin 0(1 + cos 4)

Central Difference sin g sin 0

For purposes of analysis, assume that the equations are discretized on a Cartesian N. x N.
mesh with grid spacings in the z and V directions of Az and Ay. Let z = jAz and y = kay,
then assume the state vector is of the form

N 2f-1 N'J,-1

U(jAz, kAy)= E E expi(j4O + k0,)U , (23)
m=O n=O

where 0,, and 9, are spatial frequencies in the z and V directions and U ,, is some eigenvector.
The spatial frequencies are related to m and n by the relations

2irm
S= 21m (24)

2rn
On = N-" (25)

Now consider a model problem in which Az = 1, Ay R and v << u, and u = Ma. Then
Eq. (21) has the solution

2 + M (26)

For a particular choice of spatial discretization, there is a particular dispersive character for
a given Mach number M. Table 5 shows s. and a. for the Galerkin, cell-vertex and central
difference methods, as well as the exact spatial derivative, assuming that 0 and 0 are continuous
rather than discrete. Now introduce a1 = s. and s2 = As,, square Eq. (26) and solve for s/s2
to obtain

$I = , i - 1. (27)
82

This representation of the dispersion relation has the properties that a and 82 are functions
only of the non-dimensional spatial frequencies 0 and 0, and all the problem and grid dependent
terms are contained in the quantity ,RVA 1'-I, which will be called i. Problems with similar
values of x should have similar dispersive behavior.

One can obtain useful information from these plots of 0 vs. 4. The slope of a curve on which
ic is constant is the spatial "group velocity", or the angle at which waves propagate. Waves
with large spatial group velocity (the angle on the 0/4, plot is close to vertical) will travel at a
shallow spatial angle (the wave will move a long way in z for a little change in y). This allows
one to predict where the dispersed waves will appear. For the exact spatial difference operator,
the curves of constant ot are straight lines, indicating that all frequencies travel at the same
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angle. Moreover, for A = 1, the waves have angle tan-(1/V' -) = sin-(1/M), which is
just the Mach angle, as expected.

Figure 2 shows the contours for the Galerkin method. Note that the curves are multiple-
valued. In practice, the high-frequency branch is of no consequence due to the presence of
artificial damping in the solution scheme. Note also that the curves depart from the exact
Euler solution much later than all the other methods. This is due to the fact that on a
uniform, Cartesian mesh, the Galerkin method is fourth-order accurate for the linearized Euler
equations [13].

Figure 3 shows the dispersion plot for the central difference method. Note that the character
of the diagram is similar to the Galerkin plot. One would expect the dispersive behavior to be
similar to the Galerkin dispersive behavior, and to some extent, this is the case.

Figure 4 shows the dispersion curves for the cell-vertex scheme. Note that the curves are
single-valued. Also note that the curvature is opposite the curvature for the Galerkin and
central difference methods. For a particular choice of i, the dispersion curve for the cell-vertex
method will lie on the opposite side of the exact dispersion line than the curves for the Galerkin
and central difference methods. This implies that the oscillations due to dispersion at a feature
(a shock, for example) should appear on the opposite side (ahead or behind) of the feature
compared to the Galerkin and central difference oscillations.

An important application of these curves is the prediction of oscillations due to disconti-
nuities such as shocks. In some problems, oscillations before or after a shock can cause the
solution algorithm to diverge. For example, in a strong expansion, a post-expansion oscillation
may drive the pressure negative, while a pre-expansion oscillation may not be harmful. The
dispersion curves allow one to predict the location of these oscillations and choose a solution
algorithm which will place them in a safe place. The location of oscillations may be predicted
by the following rule: If the 0 vs. # curve is concave up, the oscillations will be behind the
feature (they travel faster than the exact solution), and if the curve is concave down, the os-
cillations will be ahead of the feature. For the cell-vertex method, this means that one will see
pre-feature oscillations for ic > 1 and post-feature oscillations for r < 1. For the Galerkin and
central difference methods, this is reversed: K < 1 implies pre-feature oscillations, and K > 1
implies post-feature oscillations.

6. NUMERICAL VERIFICATION

Flows over a 1/2 degree wedge in a channel were used to verify the dispersive properties
numerically. Figure 1 shows the geometry and flow topology for a typical problem. All the
calculations were performed on 50x20 grids, and result in similar flow topologies.

The first set of experiments demonstrates the validity of the similarity parameter x. Three
numerical test cases were run: Mach 2 flow with A = 1; Mach 1.323 flow with AR = 2 and
Mach 3.606 flow with A = 1/2. A quick examination of the flow geometry gives the physical
significance of r. as the ratio of the number of z grid lines crossed by the feature per g grid line
crossed. In the Mach 3.606 flow, the shock lies at a much shallower angle, so that for a smaller
Av the same crosing ratio is obtained. A similar argument holds for the Mach 1.323 flow.
Figure 6 shows the Mach number at mid-channel for the central difference method, scaled by
the free stream Mach number for the different Mach numbers above. The central difference
method is used here because it exhibits the most oscillation with the greatest amplitude. The
exact Mach number ratios (M/Mo.) for these shocks are 0.991 for Mm = 2 and Moo = 3.606
and 0.986 for Mo, = 1.323. These compare well with the actual data, and explain why two
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of the curves lie on top of each other. Note that the frequencies of the oscillation are nearly
identical. Also note that the frequency changes slightly as one moves further downstream
of the shock. This is as predicted by the dispersion curve. As one moves downstream the
spatial group velocity increases, meaning 0 increases slightly. The wavelength predicted by
the dispersion relation at (z,y) = (1.5,0.5) should be about 10.5 points, and the measured
wavelength (crest-to-crest) is either 10 or 11 points, depending on where one defines the crest.

The next set of data shows the use of the dispersion curves in predicting the location of the
oscillations. Figure 5 shows the dispersion curves for all three numerical methods and the exact
spatial derivatives on a single plot for ic = Vf. Here it is apparent that the Galerkin curve
stays much closer to the exact curve. Numerical examples were computed for the Mach 2 case
above using all three methods. In following figures Mach number at mid-channel is plotted.
Figure 7 shows the plot for the Galerkin method, Figure 8 for the central differen-e method
and Figure 9 for the cell-vertex method. Note that both the Galerkin and centrQl difference
methods exhibit post-shock oscillation, while the cell-vertex exhibits pre-shock oscillation. Also
note that the frequency of the Galerkin oscillations is much higher, and with a lower amplitude
than the central difference approximation. This is expected since the Galerkin method group
velocity errors occur at higher spatial frequencies, (see Fig. 5). As an interesting aside, note
that in Fig. 9 the pre-shock oscillations from the reflected shock are visible at the right side
of the plot. These examples verify the use of the dispersion curves to predict the location of
dispersive phenomena.

7. CONCLUSIONS

The primary conclusion of this study is that the low frequency oscillations sometimes seen
near shocks are due to dispersion in the numerical scheme. The linearized analysis presented
gives one a method for predicting the location and frequency of these oscillations. The linear
analysis is effective in predicting the location of oscillations, even for problems with significant
nonlinearity. The central difference finite element method is shown to be inferior to the Galerkin
and cell-vertex methods due to its poor dispersive behavior. For the practical analyst, either
Galerkin or cell-vertex provides adequate performance.
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SUMMARY

The ability of the piecewise-linear method of accurately
predicting the shock wave focusing process in air is demons-
trated by comparing the numerical simulations with available
experimental results. After proving the grid-independence of
the numerical results comparisons are introduced for the shock
wave pattern evolving during the focusing process and the
pressure histories at different location in the flow field.
The agreement between experiment and calculation is found to
be very good for the considered weak and strong shock cases.

INTRODUCTION

In recent years shock wave focusing by means of different
types of concave reflectors has received increasing attention
/I - 7/. The reason for this increasing interest is the use of
converging focusing shock waves for the non invasive treatment
of kidney stones /8/. Due to the convergence of the shock or
blast wave reflected at the reflector surface, very high peak
pressures are attained in the focal region, whereby the kidney
stone is broken by the resulting strpsses. For the focusing of
spherical blast waves, ellipsoidal reflectors are used /2-4/,
which produce a focal spot. By reflecting plane shock waves at
a parabolic reflector, a line focus is produced /I/.

The first attempt to numerically predict the shock wave
focusing process was carried out by Olivier and Gr6nig /5/
applying the Random Choice methode based on operator
splitting. Due to the operator splitting however, this method
looses the great advantage of representing shock waves and
other discontinuities within one mesh and strong oscillations
are found behind shock fronts. The agreement of the pressure
histories with the experimental results of Sturtevant and
Kulkarney /l/ was reasonable inspite of the above mentioned
oscillations in the calculated pressure traces.

Recently, a second order extension of Goudunov's method,
called piecewise-linear method /9/, was applied tc the numeri-
cal prediction of the shock wave focusing process in air /6/.
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Since the experiments conducted by Nishida et al. /6/
gave rather low pressure amplifications in the focal region,
the agreement with the numerical calculations is very poor.
The comparison of the shadowgraphs with numerically simulated

shadowgraphs, however showed quite good qualitative agreement

/6/.

Numerical simulations of shock wave focusing in water for
plane and axisymmetric configurations were recently performed

by introducing an equation of state for water, namely the Tait

equation /7/. The calculations which are also based on the

piecewise-linear method, showed good quantitative agreement in

the pressure histories when compared to experimental results

obtained with an ellipsoidal reflector /3/. In the region
close to the geometrical focus however, the calculated peak
pressure is about four times smaller than the measured value.
A test of the dependence of the maximum peak pressure at the
focus on the mesh size showed that by decreasing the mesh size
the peak pressure still was increasing further /7/. This indi-
cates that for the numerical simulations of the shock wave
focusing in water, a very fine mesh is necessary in order to
obtain a grid-independent result.

Besides the importance of testing numerical schemes
against experimental results, the above mentioned problem was
a reason for performing further numerical studies on the shock
focusing in air and testing the grid dependence of the re-
sults. As a basis of the numerical simulations the experiments
of Sturtevant and Kulkarny /I/ were chosen.

BASIC EQUATIONS AND NUMERICAL SCHEME

The basic equations are those for a compressible in-
viscid, non-heat conducting fluid, namely the Euler equation&
for two dimensions written in conservation form.

U, + F, + G,= I

U= F

or Q U 1
cr I -QV

[,'(eE~p)[u(QE+p)

were the variables p, u, v, p and E are the density, the velo-

city in x- and r-direction, the pressure and the specific
total energy per unit mass which may be expressed by

E = Pt- - +0.5(u 2 +V,2 ).
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The equation of state is given by

p = eRT.

Since the above equations are written for both the two-
dimensional and the axisymmetric form, we have to set the
parameter j accordingly (j = 0: two-dimensional plane flow;
j 1 1: axisymmetric flow). For the present calculations the
two-dimensional form of the equations is used and the solution
to the two-dimensional equations is obtained by a second-order
accurate operator splitting of the form

which results in three one-dimensional sweeps to yield the
solution at the next time level n + 1 from a given solution or
initial condition at time level n. The one-dimensional sweeps
are solved by the piecewise-linear method (PLM) which was pro-
posed by Colella and Glaz /9/. The PLM basically consists of
four steps which are successively carriel out for each sweep:

(i) The calculation of interpolated profiles which are
taken to be piecewise linear for the dependent vari-
ables by applying some monotonicity constraints to
avoid physically unrealistic oscillations.

(2) The construction of time-centered right and left states
(Vr VI) of the dependent variables at x .. ,2 (Fig. )
by taking into acsount the direction of Wie associated
characteristics (A , J ° and X-).

(3) The solution of the Riemann problem for the right and
left states (V r , V1 ) to give a solution at n+1/2,
i+1/2.

(4) Conservative differencing of the fluxes, which are cal-
culated from the solution of the Riemann problem.

Further details of the PLM may be found in the paper of
Colella and Glaz /9/.

n+1

SL.
L U R

A+ XO X

i-I i +1
Fig. 1: Construction of the time centered right and left

states

INFLUENCE OF MESH SIZE AND BOUNDARY CONDITIONS

The calculations were done according to the experiments of
Sturtevant and Kulkarny, where a parabolic plane reflector was
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placed at the end wall of a shock tube. The reflector width
was 203.2 mm and hence the geometrical focus is located
60.3 mm ahead of the reflector (Fig. 2).

NY

b=10l.6mm
incident
shock

S_ _wve Fig. 2:
Reflector configura-

tion and dimensions

geomtrical focus

f =60.3mm

\refLector

1 NX

Due to the symmetry of the flow field only one half of
the whole domain of Fig. 2 was calculated. The boundary con-
ditions employed are reflection conditions at the reflector
axis and the reflector surface, inflow conditions at the right
hand boundary and outflow conditions at the upper boundary.

In order to prove the grid-independence of the numerical
results, the shock wave focusing process was calculated by
employing several different mesh sizes ranging from 1.5 mm to
0.75 mm. Smaller mesh sizes yield of course a better resolu-
tion of the discontinuities and shock waves and, by decreasing
the mesh size, the calculated value of the maximum pressure at
the focus approaches a limiting value (Table); which is close
to the experimental one. Comparing the result obtained using
the coarsest and finest mesh shows that the difference
is about 7%. Further numerical tests were run to optimize

the number of grid points
Table 1: Dependence of peak above the reflector edge

pressure in mesh size (Fig. 2), which are
necessary to guarantee
the appropriate predic-

mesh size peak pressure peak pressure tion of the expansion
mm P /Pl ratio eminating from the re-

flector edge. As a cri-
terium to judge the pro-

1.5 2.405 0.915 per number of meshes
above the reflector edge,

1.0 2.540 0.97 the maximum pressure on
the reflector axis ob-

0.75 2.629 1.0 tained throughout the
focusing process is com-
pared (Fig. 3).
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Fig. 3: Effect of the choice of the computational domain on
the maximum on-axis pressure distribution

When increasing the number of nodes in the y-direction
from 75 to 90, no considerable difference in the pressure
distribution is observed. Since quadratic meshes are used, the
mesh number of 90 x 75 in x- and y-direction is taken to be
safficient for simulating the expansion waves from the reflec-
tor edges. In order to qive a good resolution of the shock
waves the final calculations were conducted with a finer mesh
of 180 x 150 nodes in x- and y-direction, respectively.

NUMERICAL RESULTS IN COMPARISON TO THE EXPERIMENTS

The efficiency of the shock wave focusing, namely the
amplification of the pressure at the focus and the size of the
focal region, are strongly dependent on the strength of the
incident shock front. The pressure amplification decreases
with increasing incident shock strength due to non-linear
effects in the focusing process.

The numerically simulated evolution of the wave pattern
during shock focusing for a relatively weak Mach number of 1.1
is shown in Fig. 4 at four different instants. In Fig. 4a, the
center part of the incident shock wave is still propagating
towards the reflector, while the outer parts are already re-
flected and defracted at the reflector edge. When the whole
shock wave is reflected, the concave part of the reflected
shock front converges towards the focal point whereby its
strength is amplified (Fig. 4b). This converging shock is
overtaken by expansion waves eminating from the edges of the
reflector, whereby the outer parts of the converging shock
fronts are weakend. When the intersection of the converging
shock front with the head of the expansion meets the reflector
axis (Fig. 4c), the maximum pressure is attained during the
focusing process. This exhibits an important non-linear
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effect, since for a finite shock strength, this happens before
the converging shock front has reached the geometrical focus.
The expansion waves colliding with each other are reflected as
outward propagating compression waves (Fig. 4c). At a later
stage (Fig. 4d) the outer parts of the converging shock fronts
are seen to be reflected from each other in a regular way,
which is due to the small angle between the upper and lower
part of the fronts. The outward propagating compression waves
have steepend to form a shock front which follows the crossing
of the outer parts of the converging shock fronts and form a
three shock intersection with the reflected parts behind the
crossing.

A direct comparison of the numerical predictions (density
contour lines) with the shadowgraphs obtained by Sturtevant
and Kulkarny /I/ for a Mach number of 1.1 is shown in Fig. 5.
The times given in this figure are counted from the instant
when the incident shock front hits the reflector edge and are
identical for experiment and calculation. The length scale is
the same for the shadowgraphs and the density contour plots.
The calculated time evolution of the shock wave focusing pro-
cess is found to be in very good agreement with the experiment
and the evolving wave pattern at the different stages coincide
very well. The resolution of the shock fronts and slip lines
in the numerical simulation is comparable to that seen on the
shadowgraphs. In Figs. 5c and 5d, the wave pattern after
focusing are shown in more detail. In the shadowgraphs a dark
elongated spot is visible in the focal region which is a
region of hot gas. This region is connected by slip lines to
the three shock intersection of the outward propagating,
nearly spherical shock and the reflections of the outer parts
of the converging shocks. All these details are also found in
the numerical simulation. Since the slip lines are very weak
discontinuities they appear only as small kinks in the density
contour lines.

At a higher Mach number (MS = 1.3) the shock wave pattern
at the different stages after focusing are much different to
the weak-shock case. The situation before focusing is com-
parable to the weak-shock case (Fig. 6a). As soon as the
intersections of the head of the expansion waves with the con-
verging shock wave meet each other at the axis of the reflec-
tor the maximum pressure is attained in the focusing process.
This occurs earlier than in the weak-shock case and the loca-
tion of maximum pressure is closer to the reflector surface.
Since the angle between the converging shock fronts is larger
than for the weak case, a Mach-type reflection is evolving
having a rather plane stem shock (Figs. 6b and 6c). The three
shock intersections between the outward propagating steepened
compression waves, the outer part of the converging shock and
the Mach stem are connected by two slip lines with the hotspot at the focus (Fig. 6c). All the details of the wave
pattern seen on the shadowgraphs are found in the numerical
simulations and the agreement at the different stages is very
good. Also the slip lines and the rolling up of the slip line
near the focus at a later stage comes out very clearly in the
calculations (Fig. 6d).
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The plot of the triple point trajectories originating at
the reflector edge for the weak and strong-shock case gives a
more quantitative comparison between experiment and simulation
(Fig. 7), and the agreement is quite good. For the weak-
shock case (MS = 1.1) however, the triple point seems to pro-
pagate slower outward in the numerical result. Furthermore,
the measured pressure histories for the weak-shock case mea-
sured at two locations near the focal spot and at two loca-
tions between the reflector and the focal spot /I/ are com-
pared with the numerical predictions (Fig. 8). The agreement
is again found to be very good for both the pressure ampli-
tudes and the arrival times of the different shock waves. At
the locations between the focus and the reflector surface the
pressure traces exhibit that the expansion wave originated at
the reflector edge and the associated reflected compression
waves propagate a bit slower in the numerical simulation.

Finally, the maximum pressure attained on the reflector
axis throughout the whole focusing process is compared for
both considered shock strengths, Fig. 9. This clearly reveals
the non-linear effects with increasing shock strength, whereby
the amplification is reduced and the location of maximum
pressure is shifted away from the geometrical focus towards
the reflector. The pressure is normalized with the pressure
jump of the reflected converging shock as it leaves the re-
flector surface and the distance is normalized by the focal
distance. In the calculated pressure distribution the pressure
decay after focusing is not so pronounced as in the experiment
which may be due to boundary layer effects. The maximum
pressure location of the calculation is identical with experi-
mentally found location for the higher shock strength and
closer to the geometrical focus for the weak-shock case.

7 y/f

/j - Experiment Sturtevont
7 /,'/ -- unobserved ports

,' / , a Calculation

Fig. 7: Trajectories of the triple point (comparison of mea-
surement and calculation)
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CONCLUSIONS

The numerical simulation of the shock wave focusing pro-
cess in air by the piecewise-linear method (PLM) gave a very
good agreement with the experimental results obtained by
Sturtevant and Kulkarny /1/ for both the developing shock wave
pattern and the pressure histories during the focussing pro-
cess. The resolution of the shock fronts and slip lines by the
numerical calculation for a mesh of 180 x 150 (mesh size
0.75 mm) was found to be comparable to the resolution on the
experimentally obtained shadowgraphs even for very weak shock
waves. The associated mesh size was found by testing the grid-
independence of the numerically predicted results.
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SUMMARY

The nonlinear scalar constitutive equations of gases lead to a change in sound
speed from point to point as would be found in linear inhomogeneous (and time
dependent) media. The nonlinear tensor constitutive equations of solids introduce
the additional local effect of solution dependent anisotropy. The speed of a wave
passing through a point changes with propagation direction and its rays are
inclined to the front. It is an open question wether the widely used operator
splitting techniques achieve a dimensional splitting with physically reasonable
results for these multi-dimensional problems.

May be this is the main reason why the theoretical and numerical Investigations
of multi-dimensional wave propagation in nonlinear solids are so far behind gas
dynamics. We hope to promote the subject a little by a discussion of some
fundamental aspects of the solution of the equations of nonlinear elastodynamlcs.
We use methods of characteristics because they only integrate mathematically
exact equations which have a direct physical interpretation.

INTRODUCTION

Many characteristic-based methods have been devised for the solution of
hyperbolic problems with more than two independent variables (e.g. two- and
three-dimensional wave propagation). Most of them (e.g. GODUNOV-Type-Methods
and GLIMM's Random-Choice-Method) use schemes developed for one-dimen-
sional wave propagation by various operator splitting techniques. May be this is
the reason, why promising results are only known for nonlinear media with
scalar constitutive equations so far.

The mechanical state variables for solids are second order tensors, and thus
only physically one-dimensional problems can be modelled by scalar laws,
whereas tensor constitutive equations describe the material behaviour in multi-
dimensional problems. Thereby a strong coupling of the different spatial
directions may result, and, if the material is nonlinear, local effects of anisotropy
may occur. Such effects are probably beat known from magnetohydrodynamics
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and from optical and mechanical waves In linear anlsotropic solids [I. 2]. Due
to the dependence on the solution, the situation is even more complicated for
nonlinear elastic and plastic waves in solids. A scalar nonlinear constitutive equa-
tion introduces a solution dependent inhomogeneity . Nonlinear tensor constitutive
equations cause the additional local effect of solution dependent anisotropy.

For a numerical treatment of these nonlinear problems, methods of nearcharacte-
ristics have been devised, which become methods of bicharacteristics. if the local
scheme uses the axes of symmetry of the local wave fronts of point distur-
bances [3. 4]. The complete set of PDE's describing a general nonlinear elastic
solid can be solved numerically for arbitrary large deformations and large displa-
cements. For convenience we restrict our discussion to hyperelastic materials .
One can easily dispense with the lengthier treatment of CAUCHYelastic materials
as Included in [4]. since In a purely mechanical theory every stable passive elastic
material Is hyperelastic (or GREEN-elastic) [5]. Furthermore we exclude all
physical situations for incompressible solids that do not permit longitudinal
waves. e.g. plain strain problems but not plain stress problems.

BASIC EQUATIONS

The material points of a body are denoted by their coordinates in a possible
reference configuration 1* and the actual configuration B* in space and time by
point-coordinates a and x a (a 0, 1, 2, 3). respectively. The time-like
coordinates are ° 0 c r and x0 = ct with time r = t. and some constant

speed c. Co- and contravariant basis vectors are introduced in both
configurations in the usual manner. The material points with position vector
P* = F + E.o . in B* are moved by a displacement field u(f*) into their
position r + = i + x 0 g o with r a F * u. The dyadic notation of the material
displacement of a field f (0) over U* is given by

f: 0 + 7 -fo 13 , (ot = 0, 1. 2. 3). 1

The local approximation of the bijective mapping In space xi(o1 , , 3; c0),

i - 1.2.3, is the deformation gradient

F := 7r. (2)

Other useful kinematic tensors are the displacement derivative R. the
positiv definite right CAUCHY-GREEN-tensor C or the GREEN-deformation
tensor G. With the purely space-like unit dyadic B we have

H=7 u=F- U, H=FF, (3a)

C - T- II I det C = det 2 F t 0, (3b)

G:.; (C- E) (H+ iT iTH). (3c)
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To ar of these deformation tensors, there is a conjugate stress tensor which is
a single valued tensor function of the deformation for elastic media. For hyper-
elastic materials the simultaneous Invariant of the pairs of conjugate tensors is
the stored energy density.
For an elastic material the stress tensor is a single valued function of C and
thus also a deformation measure. This makes the theory of elasticity mathema-
tically attractive, although in the nonlinear theory there is no analytical presen-
tation for the inverse function, [6]. For an Isotropic elastic solid the second
PIOLA-KIRCHHOFF-stress i is an Isotropic tensor function of C. In three space
dimensions we use the following presentations for compressible or incompressible
solids, respectively-

3(G) = fB 'G+ G2  (4a)

3(C) = Fo'E .C-pC -1  (4b)

Here .6 " . 4 and 0', t14 are scalar functions of the invariants of G and C,
respectively. Note. for an incompressible solid only the deviatoric stress is
determined from the deformation in three dimensions, since III = 1. In this case
the hydrostatic pressure p can be calculated as the solution of a boundary value
problem. Furthermore, the incompressible solid allows no longitudinal waves in
three dimensions. We therefore exclude this special case from our discussion.
For the plane stress problem of a plate one can calculate p(l, 1 ) - where 1,11
are principal invariants of C - and thus obtain for the compressible and incom-
pressible solid the formally similar representations

3 (0) 'Po E+ )I , (4c)

i(C) = os+%tC (4d)

It is understood that now G, , C are tensors In two-dimensional space. The
one-dimensional stress = roilf may be calculated from a scalar law
o f() with E : = 0 . But G is still three-dimensional (with cylindrical
symmetry). Only the trivial hydrostatic stress reduces the constitutive equation
to a scalar law, where both S and G are spherical tensors. There are longitudinal
waves in an incompressible plate, due to the variation of Its thickness. Therefore

we exclude plane strain for those materials. In the local balance of momentum,

written in the reference configuration (multiple dots denote multiple trans-

vection),

c(i *v)E- (0'*):E - b z 0, (5)

appears the first PIOLA-KIRCHHOFF-stress 6,

66T # (6)
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which is a single valued tensor function of F by eqs. (3), (4). V, 5, b arethe
particle velocity, the mass density in the reference configuration and the density
of body force, respectively. The material is called hyperelastic if the stress
function can be derived from a stored energy density U. This imposes some
integrability conditions upon eq. (4). With the fourth order stiffness A(P),
the constitutive equations may be written in the form

86 = A: s7 , (7a

where A can be derived from U for hyperelastic solids:

SF:A :8Fu a 8 2 U . (7b)

From eqs. (3a), (S) and (7a) we have the final balance of momentum

I= 0, l:. c ( v}E- A! : i T- b . M8al

In addition, RICCI's lemma on the second covariant derivative of an Integrable
displacement field u(P1) = u(r*) reduces to SCHWARZ's lemma if the
RIEMANN-CHRISTOFFEL-curvature tensor vanishes everywhere. Then it holds
also for the jumps on an acceleration wave front. It reads

EL= 0. L : (0V')e- c(MH)1 6  (8b)

and

(; g " D (jR 0o7- 1Yo if,) -" 0, k, I = 1, 2, 3 (8c)

on a purely spatial and a time-like manifold, respectively. Given initial fields of
displacement and velocity, ua (r ) and va (F), at time T = ta we have the
conditions

uaff,ta) - u a = 0 , v ( .ta - v. = 0. (8d)

Boundary conditions shall be given for place on the part 1v (points with
= r,) and for traction on the part of cB 0  (points with F = r. ) of AB,

aB = A, u3 , a f lgnA = f.

The boundary condition of place at a point F, :, + ko to shall be

v(r v ) - Vb = 0 (8e)

with velocities v (Fv) prescribed on aB*, for all values of time. With a load
vector kr(F-) prescribed on c)I(F := 0 + k° o ) the typical boundary value

condition of traction is the nonlinear equat'on
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(armb) IfF* k (detF rb
-

:7 bb )If*= (8f

where ib Is the outer normal on A. Eq. (8f) calls for an Iterative solution, [4].

A is strongly elliptic for materials that are infinitesimally stable in
HADAMARD's sense in statics. Then the boundary value problem derived from
eqs. (8ab, c,ef) is elliptic and the initial-boundary value problem eqs. (8a - f)
is hyperbolic. Therefore we apply the theory of characteristics to derive exact
qualitative results and to develop numerical solution schemes.

METHOD OF CHARACTERISTICS

It is well known that systems of hyperbolic equations exhibit undetermined
derivatives In certain normal directions fi* In space and time. These normals
define singular surfaces (so-called characteristic manifolds), on which interior
derivatives are continuous, but Jump discontinuities of certain exterior deriva-
tives are admitted. The conclusive equations - the characteristic condition and
the so-called compatibility equations - may be derived from the general
eigenvalue problem associated with the PDE's. We make the ansatz

S + n (9)
c

for the system (8a - c) and find the characteristic condition

C =12 det (Q (I) -- v 2 (i) E) E = L,T t , T2  (10)2 0 pE ,T(0

where Q(fi) is the acoustic tensor, defined by

Q(i):= (g>oh : A: g oi)gxog . (11)

The condition (10) may be taken as the equation for the time-like component v
of I , with an arbitrary choice of all components of the spatial normal fi,
&* 0.

Besides v. = 0 one obtains solutions v,(i) of eq. (10) from the eigenvalue
problem of the acoustic tensor Q which, in contrary to the locally isotropic wave
propagation in compressible fluids, depends on the spatial direction fi.

Therefore, for every spatial direction i one has a specific elgenvalue problem.
For hyperelastic materials Q(i) is symmetric and positive definite, and thus
v e Is positive. The eigenvectors q e(i) of Q (I) are real and orthogonal for
any normal fi at a point. This situation holds even for multiple eigenvalues.
i and q,(fi) are normalized. Then in three-dimensional space h has two
independent components. Furthermore, the v. , v are first order homogeneous
functions of it. If one varies the components of F as parameters at a material
point, the vectors

0o F n - - 5 (12)
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generate the normal hypercones N" , N:. The according local characteristichyperplanes envelope the local MONGE-hyercones M* o .M* . The lines oftangency are given by the bicharacteristics rn, i* ( generators of M o , M,*).The local characteristic hyperplanes represent plane wave fronts and theMONGE-hypercones represent the wave fronts emanating from a pointdisturbance at their apex. For two space dimensions and time the situation isdemonstrated in Fig, 1. it shows typical calculated wave fronts emanating frompoint P9 in an isotropic plate under pure stretch.

T L

HL

P9( 
e M

9 Initial-value plane
Fig. I I

The normal fio* Is purely spatial and thus defines a material singular surface.Crossing it the lowest order discontinuous derivative is purely spatial. Theaccording MONGE-cone degenerates t6 the particle path line. The normalsie define acceleration waves with possibly discontinuous time-like derivatives(7 T, V fi* From the orthogonality of the eigenvectors q,(A) onededuces that the jumps on different MONGE-hypercones through a point areorthogonal to each other. But these waves are purely longitudinal and trans-versal only on the axis of symmetry of the cones, because only there q (i) isparallel to A. These axes are called acoustical axes, and waves propagating inthese directions are called principal waves, in a deformed Isotropic elasticmaterial the eigenvectors of A and C or G are collinear with the acousticalaxes i . Transformation into the actual configuration Is via 0 - P i I P a -_. Ifsome initial amplitude of the jump discontinuity is known, its future magnitudecan be calculated from the transport equation, C 7].
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Definition (11) allows A to be written in terms of principle wave speeds,
which can be found from ultrasound wave speed measurements. Unfortunately,
not al components may be measured from sound disturbances superimposed
on the standard uniaxial tension test. There are two principal axes i I I 2 in two-
dimensional stress given bei eqs. (4c, d). Taking care of VT ('1) = VT (12) =: VT

we have

-A := 2  *(i' 2 o (i )a2o

S1 101 Gll * 2 202 2'2

+ (2o61002o1 + @102o1o2)

+ X2 (eloiloe 2 o 2 + e2oI2oelo01il). (13)

In three-dimensional stress fields the values of vT are different in different prin-

cipal directions generally. The component x2 can neither be interpreted as wave
speed nor be calculated from wave speeds (except for special constitutive
equations such as for linear Isotropic elastic material bin small deformation
theory). Both local effects, the difference v L (i) - V L(e 2) and the rotation
of e have been used for a pointwlse measurement of stressfelds C 8 ]. A small
point disturbance in a deformed istropic elastic body will only propagate on
sherical wave fronts if the underlying stress is hydrostatic (or the body Is made
form a material with a special form of the constitutive equation).

The anisotropy of the local wave propagation depending on the local defor-
mation may lead to self-intersections of the quasi-transversal MONGE-cones
and to crunodes and cusps with local focussing on their conics. These pheno-
mena result in gaps which were called lacunae by PETROWSKY (9] and lie
like islands in the domain of dependence. For linear anisotropic media, various
criteria for the existence of lacunae behind the wave fronts of point distur-
bances have been found [1, 4, 9, 10 ]. But no direct results are known for the
nonlinear case except by arguments for the locally linearized equations (11].
Further information on anisotropic wave propagation in solids may be found in
[12J for linear elastic deformation and in (13J for compressible plastic defor-
mation.

There are infinitely many ways to describe the propagation of a plane wave.
We use the bicharacteristics m o* and m, with the rays lk In space,

in' = ca. , (14a)

FA- *. o -. r0*2- qeo (14b)
a= 0n4rn. U+;j 0 P2 E q Fq acY

and the near-characteristic 1: with the normal velocity i1
I

sV * a O *- + i u M° vsf= m°--+-=- qFOqE:QO i. (IS)
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Any other time-like vector in the characteristic hyperplane tangent to the
MONGE cone M* is also called near-characteristic, but will not be needed here.
For plane problems the space-like tangent i and either r-*o span the
characteristic surface elements. By the vectors Ms and sE two total time deriva-
tives in a characteristic hyperplane can be introduced,
0 Of ) -.; := ff aV (16a)

and the so-called 8-time derivative

(*f} i*: = 'f  (; f)i (16b)
E 8T

also known as displacement derivative. The discussion was only local so far. In
finite time a point disturbance propagates along MONGE-conoids which may be
twisted. For the integration of some function f on M. one may use the canonical
HAMILTON equations for the HAMILTONian v • With i normalized and v as
a function of FI, F, T we derive the special form of the HAMILTON equations

( fi)--= (hoF -E)V , , (17a)

W VE (17b)

Different proofs of these equations were given in [4.14] . Instead of
eqs. (17a,b), we get for i 1

0 'k ;= (rio f - E V 1a

(V i E = Vefn. (18b)

Different proofs of the famous HAYES-THOMAS-formula (18a) may be found in
[4,lS ,16,17,18]. It Is assumed that the equation of the wave surface in space and
time has continuous second derivatives in space. Thus eqs. (17a), (18a) do not
hold on cusps. In [4] it is shown that no torsion of the wave front occurs in
plane problems.

The purpose of the discussion of point disturbances is to replace the Initial set
of PDE' s (8a b) by a linearly independent set of so-called compatibility equations
in which no undetermined derivatives appear. These equations only hold in cha-
racteristic surfaces. On M* one gets for i = a

0 ='_t, (19a)

and on M, for r

0 = q ef)(v, ()I- A: (I o L)). (19b)
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In a more extended notation for plane problems,

o (V H): i o i o - (;V )1, (20a)
0

(q o W qo 7n+: A io.Ai - (in- q o  : A  E . '

- V q b , (20b)

one can see that only interior derivatives remain. These are the cross derivatives
in direction of i and the derivatives In characteristic directions W, which may

be replaced by i In a near-characteristics method. Using i E =0 eq. (20b)
becomes

0 ( svqeo V+ qoi : Aio D: v

- (qEoi: A o v q oi:A°o)'7 -vq~b (20c)

To this end all equations are exact and hold for arbitrary large deformation and
large displacement of a general isotropic nonlinear hyperelastic body. The
assumption of the existence of a stored energy density was a mere simplifica-

tion of notation. Its only effect is the symmetry imposed upon A by eq. (7b).

NUMERICAL SOLUTION

Given the inital data at points of a suitable mesh on the inital value plane at
time - = t, , the solution at a point P0 on the plane r = to + At may be

computed numerically by integrating the HAMILTON equations (17 a, b) and the
compatibility equations, which are given for the plane problem by equations
(20a,b). We actually integrate the simplified equations (18 a, b) and (20a,c). From
Fig. I it is clear that a near-characteristics method uses points outside the

analytical domain of dependence. Therefore, we integrate in characteristic hyper-
surfaces which are principal waves at point Po. For principal waves. the two

integration paths are equivalent in the limit A t -> 0, since "= - .Thepr-
cipal axes at P0 depend on the iterative solution. Therefore, we have to rotate
the local basis in each iteration step. This expense is compensated by the
condensed presentation (13) of A. In the initial value surface all functions and
the cross derivatives may be calculated from a constrained least squares appro-
ximation with constraints following from eq. (8c). If the cross derivatives at Po

are considered as additional unknowns, eqs. (18a,b), (20ac) contain only total
time derivatives in directions i* and . These ODE's may be integrated by
HEUN'a second order method. It can be shown that the number of linearly
independent difference equations derived from eqs. (20a,c) Is less than the number

of unknown functions including the cross derivatives at Po. Therefore, we
integrate the non characteristic balance of momentum (8a) along the path line to
get two additional equations. This was suggested for problems of linear elasto-
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dynamics In [19) and for gas dynamics in [20]. On the path line all derivatives
in (8a) are continuous because it is a material singular surface. Fig. 2 shows the
scheme we use for an interior point of the plate. The numbers of the points in
the scheme correspond to the indices written in the difference equations. Fig. I
and Fig 2 indicate that the CFL stability condition is satisfied. Note that the
iteration may be started with the first order EULER-CAUCHY-integration of
(8b) along the path line to give H O at Po , since a first guess of v, is not
needed in elastodynamics. The algorithm may be read from Fig. 2 and the
following formulas:

"P6

Praedictor (first guessh: I -- 1(1) 9 with o -0 for I =9

and from the compatibility equation along the path line

* (O). g * I9 +A 9  (22a)

o 
3

Corrector (k-th iteration step):

t;(,_ - -[ (vi ) ,V o )]( - (21b)

o U [ - , ok- ) . (22b)

Fig 2E

Pi(0) =-- -(( E(010,(1

f9

an rmtecmaiiiyeuto ln h ahln

mlllT, (0) ai a +lml~l ATl7l 9 
(22a)illllll



We derive the difference equations for principal waves arriving at point Po (see
Fig. 2) from the compatibility equations on the quasi-longitudinal cone MZ and
the quasi-transversal cone M. The appropriate choices of A.1 (I = 1 (1) 4) and
A., Q - 5 (1) 8) are A. 1 62 at. - 6 2 . We give an example of the difference
equations on each cone.

Fnm the compatibility equation on the quasi-longitudinal cone M* with oi := i:
and i.o:= i2 andqLj = qUf(I1 ) for I 1 it follows:

- 1)-(
(V i ) e2 a. oli ) q ] X2 0 ) i + 0 L

- Wv .(i 1) 0 1 +x 0 0 202 LI () Oil: A,

-AT [_ (. 2 0 &)(k -1): 1V
( k)

" (o()(VT0o 102062 0 2o02 111 0& 2 )) o

" (VLO (d ebo)(k
- ) ]

: LO(ide t + VLI(i) qLI 2  :V

- V 20 (i )e10il + X2 0;i2 + ~ ( qLI0 it : All :R

- A [ LqL I ' :A I i 2 0oi 2 : 17V

+M lt(it) qLt (il) 0 i 2 : A t 0 i 2 - 17 HI + VLI (it) qL, bil } ( k - ) ( 23)

From the compatibility equation on the quasi-transversal cone MT with
Floi := andto := 62 and qTj = qT (i) forj = S it follows

[Vo2 T+ kqT)I]k-') Vk)

- O ~~ 10 1 vjJ0 1  A 1 V]k-1) :E0c)

*.(vTO(vPo(e)=o 2eoi 2 *x 010110t i))(k-1) " fl;c)

. "'TO 02 b0)(k - )]

= {1T 024 6TI q0J]vj

- 2 17V&. [_ o 2 o 0 s &2 0 o+ .  o s ^] n

' VO2~ 01 p VTJ qTJ 1

" AT [I-q~r 0oi s : A i o i  : ' V

).2 2 .- j
*vTqT ° 2 :A 1 i 2  + T RJ ~qTb}(k-. (24)
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We complete the difference equations with the balance of momentum

(k) AT [(A )(k- 1): (17gT)(k) . bo] = v +_AT(I A9 :!71T. b) (25)
(1 T A0 0 92 9 b9 )

if we are not interested in the gradients at P0 we may eliminate them by linear
combinations of the difference equations and just calculate vo and n o . After the
solutions at all points at time T = t a + AT are calculated they may be used as
initial data for the following time step.

On boundaries some difference equations are not needed. But only in linear
problems they may be replaced by boundary values. The schemes for the nonlinear
problem use the approximation of H 0 at Po [4 ]. They also need some iteration
to solve (8f). The only reason for both disadvantages 1st the nonlinearity of the
boundary condition (8f).

NUMERICAL EXAMPLES

Fig. 3a shows the simple elongation strain path of a typical rubber-like material
using TRELOAR' s approximation with data from [21]. The functions t and
in eq. (4b) are approximated by second degree polynomials in the elgenvalues of
C. Up to point 3 lower degree polynomials would result in roughly the same
curve since the geometrical nonlinearity Is predominant. But this is not the case
for the wave speeds [4]. Obviously only vL (6 .) can be deduced from the uniaxial
stress-strain curve. Fig. 3b represents the related principal wave speeds. For
three different homogeneous states of stresses ( unaxial pressure (1). no stresses
(2), uniaxial tension (3)) Fig. 3c shows typical wave fronts of infinitesimal
point disturbances in a plate. i.e. lines of intersection of the MONGE-cones with
a space-like plane. The state (3) was used for a numerical test, where a small
shear deformation was superimposed by an Initial disturbance of the velocity

component Ve2 . Both of the MONGE-cones come out nicely and the two wave
types seem decoupled. The amplitudes of ve2 are approximately ten times higher
than those of Yet . In another example, for a plate made of a compressible
material, we found a strong coupling of the two types of waves [4].

Since at the state I VL(O ) increases steepely with growing pressure one expects
pressure waves to form shocks quickly. The initial profile of the wave in Fig. 4
changes in the predicted way while moving to the right. Clearly, there is also an
equallsation in the transverse direction.
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ON A NONLINEAR TELEGRAPH EQUATION WITH A FREE BOUNDARY

I. Stra~kraba

Mathematical Institute of Czechoslovak Academy of Sciences,
9itnA 25, 115 67 Praha 1, Czechoslovakia

SUMMARY

An existence result for a nonlinear telegranh eauation
with a free boundary problem in one space dimension is given.
The model is applied to two (separated) fluids flow in a tube.

INTRODUCTION

The present contribution concerns the followin nroblem:

For given functions fo,f1 ,u0 ,u1 to find functions

u = u(x,t), = (t), (x O,t], tEF-[o,T] , t>o, T > 0)

such that

ut- c 2 Ux~ +f o(U) t =0 , 0 < x < U(t) , (1'

2
-tt c uxx + f ( t = 0 , (t) < x < t, tE.(O,T) , (2)

u ( (W)-, t) = u ( (t)+,t) , u x(O(t)-,t) = u x( Wt+, t) ,(3)

Ux (Ot) = Ux (t,t) = 0 , t 0 [O,T] , (4)

u(xO) = U0 (X) , ut(xO) = u 1 (x) , x F [o,L (5)

t

(t) = G( J U(&(T),T)dr) ,(6)

0
where c is a positive constant and

0 Oy < 0

G(y) =- y, 0 < y < t (7)

e, y < .

This problem is motivated by a model developped in [Il
describing flow of two fluids separated by a free boundary in
a cylindric compartment. The purpose is to find a velocity u
and a pressure p (which can be recovered from u as soon
as the problem (1) - (6) has been solved) as functions of a
space variable x along the axis of the cylinder (the cross
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sectional derivatives being neglected) and a time t , as well
as a free boundary x = F(t). A particular technoloaica an-
plication consists in using this model to describe the fillin
the compartment of the machine feeding a nipeline by ash-water
suspension to be transported away from classical power stations.
The original governing Euler equations of a compressible fluid
flow with a lower order friction term (cf. [3, ,7J), are sinr'lv-
fied to the equations (1), (2). The nonlinear functions fof

f describe the friction of the respective fluid near the wall

of the compartment.
In the next Section, after necessary preliminaries, we

define a solution to (1) - (6), impose some natural assumpt-
ions on the functions f ,f ,uou 1  formulate the existence

theorem, present its proof using Faedo-Galerkin approximations,
apriori estimates and a method of compactness and finally, add
a few remarks.

MAIN RESULT

In the seauel we use the usual notation of function

spaces. Namely, for a region QC Rn, k > 0 integer or k

we denote by Ck (0) the space of functions continuous toTether

with their derivatives up to the order k in Q , C(k)+ (P) ,

0 < a < 1 the subspace of Ck () of functions which are Filder

continuous in Q with the exponent a togethier with all their

derivatives up to the order k , Hk(g() (k > 0) the snace of

functions which are square integrable together with their

(fractional order) generalized derivatives up to the order k

in 2 , LP(Q), 1 < p < the usual LP-spaces, W k'(0) =

{u6Lm() ; DueC (Q) 1 < Iji < k}. If B is a Banach spa-

ce, T > 0 then L (0,T;B) denotes the space of functions

u:(O,T)- B such that esstsup ilu(t) IB < -. For a reaion with

a Lipschitz continuous boundary M we shall make use freouent-

ly the following embedding theorems:

Hk (0) ,, LP( ) for k < ! , < p < 2n
-2 ' n-2k

1
for k > - the the operator of traces is continuous from

kk-1

H () into H (0Q)

Hk (9) G (M) for any k > t > ;

H0 ) C C (Q) 1k
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(o) +k- 1Hk(0) (; C (0) , 2CR, < k < 1

These results can be found e.g. in [21 , [4]1

Assumptions

(i) The functions f ,f are continuously differentiable

in R with locally Lipschitz continuous derivatives

(ii) there exists a constant a 6 R such that

fo (u) > a , f; (u) > a for all u cR

(iii) u0 e H1 (o,1) I U L2(O,0)

DEFINITION. By a weak solution of the problem (1) - (6) on

[O, T1 we call a couple (u,)6 F (O,T; H (O,1)) X W 1 (O,1)

such that ut r L (O,T; L 2(O,) , u(x,O)= U0 (x) in the sense

of traces and

T t T C(t)

J j (c2Ux~x - ut4 t) dxdt + J J fo(u) t4dxdt +

o 0 0 0 (8)

T Z

f J f1(u)tdxdt - J u 1 (x)4)(xO)dx = 0

o (t) 0

for all 4 6C 1 (O,]X CO, TI) satisfying 4(x,T) = 0, x F 10, el.

THEOREM. Let the functions f ,f ,u ,u satisfy the assumptions
(i) - (iii). Then there exists a{ lasl one weak solution of
the problem (1) - (6)

P r o o f . For the construction of a solution we shall make
use of Faedo-Galerkin approximations and a method of coi'mnactness.
Let

-1/2 2 /2
VX) = -12 ( x ) cos ( 1/ , j = 1,2,...,

x 6[ol]-
The functions f{v.}= form the orthonormal basis in L2(OA

of eigenfunctions of the problem

- c 2 v "(x) = Xv(x) , 6(0,t)

v"(O) = 0, v'() =0

The corresponding eigenvalues are given by
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J c~ 22IT 2 =012

F in it e-d ime n sional1 a pp ro x ima t ion s

The finite-dimensional approximations are sought in the form

n ~ n n
u (x, t) E u u(t) v.(x), (x, t) C Q [o, te -[0, T]

j=0 (9)
n = 0,1,2,..

The coefficients u n (t) ,denoted simply by u.(t , are to be

chosen so that

n

f lu n (x,t) - c 2 Un (x,t)>k(x)dx + f f(un (x, t)) vk(X) dx +

00
(10)

+ f 1 (urix.,t) ) vk (x) dx = 0, k. 0,.1 ,..n, t F_ 0, T],

n (t)

*n
u (x,0) = E j u(y)v (y)dy v()=1 x

j=0f00
0

un(x,,0) = F JU (Y) v y) dy (7j W u W E x re[0

where the approximations x = C n (t) of the free boundary

are given by

t

n(t) = G( fJ u(&n (T),T) dT) , n =0, 1 011)

0

The equations (10) , (11) yield the following integrodifferen-
tial system:

U ktM + X k uk tM +

&nM n n
+ fJ 7( u M.t v.(x)) 2 ix(t) v.()v(x) dx + (12)

f0 0 __ vk~
0

+ f2; v.(x) ) uEt 2 I ~1(t)v.(xW v k(x)dx =0
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k = 0,1,...,n, t F (O,T]

uk( 0 ) = uo(x) vk(x) dx, ik(O) = J u 1 (x) vk(x)dx

0 0 (13)

k = 0,1,...,n

tn

En(t) = G f T 0 uj(T)vj( (&())dT) , t F [O,T], n = O,1.
0 j=0

(14)

It is almost standard that this system has.a maximal solution

(u0 (t),...,u n (t),E n (t)) and that it is defined on [0,T] if

u (t), u.(t), En (t) are bounded on [0,T] . The details are

given in [5]

Apr ior i e s t imat e

Denote

En) 2 2 n 2 = 2 2En(t) [Ut (X,t) + c n(x,t u(t) 2+Xuj (t) 2.

0 j= 0

Then multiplying (12) by 1k(t) and summing up for

k = 0,1,...,n we get

Cn(t)

Et) (un(x t))un(xt) 2 dx - (15)

0

- 2 f f;(un(x,t)) un(xt) dx <

En(t)

- 2a n(x,t) 2dx < 21ci En(t)

0

where we have used the assumption (ii). We have from (14)

icn (t) i < max G(n) = . Using in (15) the Gromwall inecTuality
neR

we get the estimate ensuring the global existence for the sys-

tem (12) - (14) namely, we find

[un(x,t) 2 + c 2 un(x,t) 2jdx < (16)

0
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1e f[U l(x) 2 + c 2 uo(x) 2]dx < ., t E [O,T] , n = 0,1,2 ...
0

Convergence

From (16) and the above mentioned embeddings we qet that given

p 1,-) , there exists a subseauence of {un}n denoteO aaainnn=
by u such that

u n u weak *(, in (O,H (O,)) ;
u t  u u t weak *'  in L (O,T;L2 (O,)) ;

u n u weakly in H (Q), (Q = (O,/)x(O,T)) ; (17)

u u strongly in Lp ( Q)  (18)

Un u a.e. in Q , (19)

where u4ELw(O,T;H1 (Ot)), utE.L (O,T;L2 (Ol))

From (16) and (10)2 it may be easily seen that

sup {[I un(.,t) I H ; t e[0,T] , n = 0,1,2 ....

This together with the embedding HI (Ot) 4 C([O,/]) yields

sup{u n (x,t) I; xc [0,], tC [0,T], n = O,1,2 .... }<. (20)

In particular we have

Iun ( n ,t) I < k < w, t CO,T], n = 0,1,2 ..... (21)

Let tl,t 2 [O,T] be arbitrary. By (11), (7) and (21) we

have

1Rn(tI) - n (t 2 ) I _ i u(&n(T),T)dTI < K It1 - t21. (22)

t2

Hence, by the Arzel&-Ascoli theorem the choice of the subseuen-

ce can be done so that
En converges uniformly to a E6C([O,T]) (23)

By the helP of (22) and (23) it is easy to show that E is

Lipschitz continuous and E 4 WI'(0,T) 1

Further, by the embedding H (O,Z)4 C (and
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the boundedness of un in L'(O,T;HI (0,)) we find

Jun (C (t) ,t) -un (E(t) ,t) <n '

un (. ,t) (0)+ 1 (En(t) E(t)112 <
C ( qeJ)

H Oo + (< const. Ijun (.,t)J IH1(ot) I n(t) - (t) (i/2 <

< const. ri(t) - C(t)1I/2

what together with (23) yields

lim Jun(En (t) ,t) - un(E(t) ,t) I = 0 uniformly for t 6[0,T]

Besides, for any rE{I,) the operator of traces maps
HI ({O < x < &(t); tE (0,T)}) compactly into

Lr(fx = &(t); t (O,T)}) , (see [4] , Theorem 6.2). Thus we ha-
ve proved that

un u((.) ,.) strongly in Lr(O,T) , (24)
un( n(t)) u((Ot) ,t) a.e. in (0,T) (25)

Limiting process

Now, let FC I( ) ,O(x,T) = 0 for xe[olJ
Put n

n (x,t) E ( 4(y,t) vj(y) dy) v (x)
j=0 0

Then
T n strongly in H'( ) (26)t

Multiply (10)I by f (y,t) vk(y) dy , sum up over k from 00

to n , integrate over [O,T] and then integrate by parts.We get

T t T n(t)C2 
u n - utnt) dxdt + f,(u n ) ut dxdt +

0 0 
O 0
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r - - ___-1 '

+ J J f;(un) unn dxdt - n u(X) 4 n(x,O0) dx 0

0 C(t) 0

From (17) , (26) it is clear that

TZr (c 2 dxdtj (c 2 u~ ut) dxdt

0 0 0 0
Show that

T n ()T E(t)

lrn f f f,(un)uyj dxdt f f f.(uMut4 dxdt
n-0 0t0 0

We haveT n Tt T )J f'-(u) uyn~d - (uut~dxdtl

0 0 0 0
T Cnt) T it)

< IJ fJ fo,(u,)un dxdtl +1 f { f(un)un(n_4 )dxdtI +
0 (t) 0 0

T1 J T f( n) ( - u ) d tI + T C (t)
00 00

I n~ + In + In + In

Clearly

T ma{C~),Cn ()

In<const.J Ju x~~ dxdt -~ 0, (n v)

0 min{ (t), Mt)

Further, by (20) , (16) , (26)

I T it f(n)2 (u )2 dxdt) 1/2( (0 n_0)2 dxdt) 1/2<
2-J f f~ u (t) ~ (f

<const_1jHn _ j 2 0 , (n - -o).

From (19) and (20) we have f (Un) _~ f-(u) a.e. in S1 and

If,(un) I < const. in Q Hence by the Lebesgue theorem

f(un) f(u)4 in L(2 0)
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nn2O
Besides from (17) ut U t weakly in L2 (). Thus 13 0

(n -+w ). Finally, by the Schwartz inequality and the Lebesaue

theorem In _, 0 (n - ) as well. A similar reasoning with
4T t

f j f n(un) u dxdt and the obvious relation

l ln

lim J un ndx = J u14dx yield- (8). Since it is easy to show

that u(x,O) = U(X) in the sense of traces and by density (8)

holds for all as in the definition, the couple (u,&) is a
weak solution of (1) - (6).

REMARKS

1. The free boundary equation (6) corresponds to the ori-

t

ginal physical problem only if u(Ct),T)dT belongs to [0,z].

0

In general instead of (6) a variational inequality

W6) Q (t) - u (C(t) , t) ) (71 W 0(t) T1 F, [0,] ,I

(t) e0C, t] , t Q[0, T]

should be employed. The arising problem can be solved as well
but for the lack of space we cannot present it here. This result
will be published in 16)

2. Although we are not able to prove the uniqueness of the

solution to (1) - (6), it seems that the uniqueness can be ob-
2

tained for more regular (strong) solutions, namely for uE I2 (0),

C W 1'm(O,t) . Unfortunately, we are not able to show the
existence of a strong solution.

3. An interesting problem is how to show the existence
of t}'P solution in the case of different (but still constant)
sound speeds c c,1 in separate fluids. In that case the second

interface condition in (3) should be replaced by an appropriate
interpretation of the continuity of the pressure accross
x = (t)
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"TVD" Schemes

for
Inhomogeneous Conservation Laws.

Peter K. Sweby
Department of Mathematics, University of Reading,

Whiteknights, Reading, England.

Summary.

Many schemes have been developed for the numerical solutioui of homogeneous
conservation laws giving high resolution, oscillation free results. However the TVD
criterion used in these schemes is inappropriate for inhomogeneous problems. Despite
this, there have been various attempts to apply such schemes to these problems. We
review here one such empirical technique which has been used successfully, although
we demonstrate that its successful behaviour cannot be guaranteed. We then utilise a
change of dependent variable to reduce the inhomogeneous problem to homogeneous
form and thus suggest a correct way to apply TVD schemes to such a problem.

1. Introduction.

In recent years much effort has been devoted to the design of numerical schemes
which give high resolution, oscillation free, solutions to systems of homogeneous
conservation laws,

ut + f()=o. (1.1)

All such schemes are non-linear, their coefficients being data dependent (see e.g.
[11,[21,[31), and all use as a criterion to monitor oscillations the total variation (we
consider here the scalar case)

TV(un) . .n)

of the numerical solution at time nAt. This mimics the total variation of the analytic
solution

,Vu t)) -f lu,(.- ,t) I .d)

which has the property of being non-increasing for scalar equations of the form (1.1).
Schemes are designed therefore to be Total Variation Diminishing (TVD, i.e.

TV(u n+t ) _<'(qu n)  (1 .4)

(Harten [3]).

Solutions to inhomogeneous conservation laws
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ut + f (u)x = b, (1.5)

however, do not possess this total variation non-increasing property, indeed the right
hand side of (1.5) often represents a source term which will actively increase the
variation of the analytic solution.

The problem therefore is how to obtain high resolution oscillation free
numerical solutions to (1.5) without inhibiting any natural growth in the variation of
the solution due to the inhomogeneity of the problem.

In the next section we look at one empirical technique which performs well in
many situations, but whose performance we show cannot be guaranteed. In section 3
we utilize a transformation of dependent variable to reduce (1.5) to an homogeneous
equation which does possess the TVD property and in section 4 we suggest how this
can be used to apply TVD schemes to inhomogeneous equations. In the final section we
make concluding remarks, highlighting the need to develop better techniques for the
treatment of the source terms themselves.

Throughout the paper techniques are illustrated by the use of Flux Limiter
schemes [11 coupled with Roe's approximate Riemann solver (41 to extend them to
systems.

2. Roe's Approach.

In [51 Roe proposed an empirical technique for applying high resolution TVD
schemes to inhomogeneous problems. His approach employed the application of the
TVD scheme to a modified flux derived from a Lax-Wendroff like Taylor expansion.
An outline of the process is as follows:

1. Calculate un+ using a low order scheme with time increment JAt.
2. Use this to compute bn+j , the source term evaluated at the half time

step.

3. Define a modified flux (bn+ - fn ) where a suitable difference is used

for the derivative.
4. Apply the TVD scheme to the modified flux to obtain un+l from un.

This technique has been successfully used in various situations (see [5],[6])
although Roe himself observed some slight over/under shoots due to its empiricl
nature. We now explore this further.

Consider the following test problem, to which an analytic solution is available

[ u + Hu(- x). (2.1)
leit lu(e+p)Jx h

where p, u, p, e h, and a are density, velocity, pressure, energy, enthalpy and sound
speed respectively , H(.) is the Heavyside step function and C is a constant. The
situation therefore is the Euler equations with a source term in the left hand half
plane.
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Figure 1. Modified flux and superbee limiter.
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Figure 2. Modified flux and minrnod limiter.
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Results of the problem using the superbee flux limiter are shown in Figure 1,
the solid lines denoting the analytic solution. It can be seen that the numerical solution
is free from oscillations whilst still giving good resolution. In Figure 2 .however. which
displays results obtained using the 'safer" minmod limiter, it can clearly be seen that
overshoots are occurring. Indeed if we use this approach to solve the linear advection
equation with a constant source term, as in

ut + ux =, (2.2)

Figure 3 shows the oscillatory behaviour which occurs.

L?

0.6

L3

L2 a a

0.6

A.S

L anoaoao aa a aoaaa a
a

0.1

.,

Figure 3. ut + u. = 1 using modified flux and superbee.

We need therefore to determine a criterion, analogous to TVD, for
inhomogeneous equations which will allow us to successfully implement existing high
resolution schemes. In the next sections we use a transformation of dependent variable
to investigate such a possibility.

3. Reduction to Homogeneous Form.

Consider the scalar inhomogeneous equation

ut + f(u)x -b(x,t) (3.1)
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which can equivalently be written as

ut + a(u)u x = b(x,t) (3.2)

where

a(u) = f '(u). (3.3)

Note that we are considering here functions b(x,t) for algebraic simplicity, however
the following analysis can be shown to hold for the more general source b(u,x,t).

The characteristics of (3.2) are given by

dx a~u) (3.4)

along which

du b(x,t). (3.5)

Since u is not constant along the characteristics they are no longer straight lines as in
the homogeneous case. By integrating back along the characteristics we can write the
solution u(x,t) as

u(x,t) =u(xo,O) +0b(x,t;r)dr (3.6)

where xO is where the characteristic crosses the x axis and where

(x't; r) -b [- ads. i] (3.7)

the integrations being along the characteristic.

Now define a new variable v by

v(x,t) =u(x,t) -Jb(x,t; r)dr (3.8)

and substitute into (3.1). We have, using (3.7),

u aV t v+ l - (x,t; r)dr

M=Vt + b(x.t) + J tb(x.t:r)dr
0' 0

0 = + b(xt) - a(u) dlb dr (3.9)
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and similarly

t - + b(x.t; r)dr

t= vx  + j lab dr ( .0=v+0  1 br(3.10)

and so
t

ut + a(u)ux= V + a(u)v + b(x,t) + {a(u)-a(u)lOlbd r

from which we deduce

vt + a(u)v x = 0. (3.12)

If we label the integral in (3.8) as c(x,t) , and so v = u -c, we also note that
the above analysis gives us

+ a(u)c x =b(x,t)

(3.13)

c(x,O) - 0

i.e. c(x,t) is a "particular integral" of (3.1).

Notice that the homogeneous equation (3.12), which will have the same initial
data as (3.1), does possess the Total Variation non-increasing property, and in the
next section we will see how we can use this to indicate how to correctly apply
TVD schemes to inhomogeneous problems.

4. Application of TVD Schemes.

We now use the homogeneous form obtained in the previous section to apply a
TVD scheme to an inhomogeneous problem. For illustration we use the class o Flux
Limiter schemes, which may be written in the homogeneous case as a first order
scheme plus a limited antidiffusive term, i.e.

u1+l . un - ,a(un)Aun - e(un) (4.1)

where A = At/Ax the mesh ratio, Au n is an upwind difference and Y encompasses
the limiter terms.

If we now apply such a scheme to (3.12) we have

Vn+1 = vn aa(un)Avn - (vn) (4.2)

or, putting v = u -c,
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u n+t= un _.. a(u n)A(u n _c n ) _ (u n _cn)+c n +1 -c n. (4.3)

We can also solve (3.13), viz

c n 1 . c n _ Aa(u n)Ac n + V(c n ) + of(b n )  (4.4)

where X is some high order operator and af is the treatment of the source term.

If we now combine (4.3) and (4.4) we obtain

un *l . un - A a(un),jun _-e(un -_ cn ) + X (c n ) + ol(b n )  (4.5)

which still risks contamination through the X term - however if we reset time in

(3.13) at each timestep, i.e. take cn = 0, we obtain

u n-~a(un)Aun - -(un) + (bn), (4.6)

that is the TVD scheme is applied only to the flux of the homogeneous equation. the
source term being treated separately. Figure 4 shows results, using both minmod and
superbee limiters, of the above splitting with upwinded second order treatment of the
source term. Alternatively, multistage splittings could be derived form (4.3) and (4.4)

by application of the technique recursively to (4.4) and setting cn - m -- 0.

12
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ISO0 -0.25 0.030 0.25 0.50

Figure 4a. Superbee applied to homogeneous part only...
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Figure 4b. Minmod applied to homogeneous part only.
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Figure 5. As Fig 4a but using pointwise application of source.
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5, Concluding Remarks.

We have devised a technique for applying TVD schemes to inhomogeneous
problems which is sufficient to prevent spurious oscillations whilst not adversely
affecting any natural increase in variation. However there is still a large question
remaining - what is the best treatment of the source term itself? Figure 5 shows
results of-the test problem using a pointwise application of the source term as opposed
to the upwinded average used in Figure 4. For this example the pointwise appears to
be the better treatment - however this is not always the case, see [6],[8].
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The L1-Norm Distinguishes the Strictly Hyperbolic from a Non-Strictly

Hyperbolic Theory of the Initial Value Problem

For Systems of Conservation Laws

Blake Temple

Department of Mathematics

University of California, Davis

Davis, CA 95616

Abstract

We discuss recent work of the author in which he proves that solutions to systems of two
strictly hyperbolic genuinely nonlinear conservation laws are weakly stable in the global L'-norm.
We contrast this with the theory of the initial value problem for a nonstrictly hyperbolic system in
which weak stability in L1 is shown to fail. This is understood from a study of the asymptotic wave
patterns to which solutions in this problem decay as t -. +w. Since solution in both cases have been
shown to be stable in the total variation and sup norms, we conclude that the L1 estimate is the
first stability result in a norm that distinguishes the strictly hyperbolic from a nonstrictly
hyperbolic theory of the initial value problem.

In this talk we compare the theory of the initial value problem for a 2x2 non-strictly
hyperbolic system of conservation laws to the corresponding strictly hyperbolic theory. In terms of
the total variation and supnorms the theories look the same. Here we demonstrate that the theories
diverge at the Ll-norm. In particular, recent work of the author gives a proof of the weak stability
in the global Ll-norm for systems of two strictly hyperbolic equations. In contrast to this, a study
of the asymptotic wave structures in a nonstrictly hyperbolic system leads directly to the conclusion
that no such stability result holds in a special nonstrictly hyperbolic problem. We first discuss the
weak stability result (see "Weak Stability in the global Ll-norm for systems of conservation laws"
by Blake Temple, Davis preprint), and then we discuss the asymptotic wave patterns in a simple
nonstrictly hyperbolic system with an eye toward seeing how LI stability falls (see "The structure
of asymptotic states in a singular system of conservation laws" with E. Isaacson, Davis preprint.)

We consider the initial value problem

l t + F(u) x = 0, u = (u l , u2), u(x,0) = u0 (x) F = (F1, F2 ) . (C)

In the strictly hyperbolic case, Glinim demonstrated in his fundanental paper of 1965
(3) that solutions of (C) generated by the random choice method are stable in the
supnorm and in the total variation norm. Indeed, it is stability in the total variation that gives
compactness of the approximate solutions, and this resulted in the first existence theory for systems
of conservation laws. (We remark that in general we have no proof of uniqueness or continuous
dependence for solutions generated by this method.) We state Glimm's result precisely [25].

Theorem (Glimmn 1965): Assume (C) is genuinely nonlinear and strictly hyperbolic in both
-2characteristic fields in a neighborhood of a state i e R . Then V V > 0 there exists 6 << 1 suchthat if

TV (u0 (0)) < V, Iu0 (0) - Illsup < 6,

then there exists a solution to (C) satisfying

*This work supported by the NSF under the grant NSF-DMS-86-13450.

608



TV {u (.,t)] < C V, (TV)

Ulu (-,t) -asup < C 6, (SUP)
I(' ,t) - %-As~ll I S< Ct-sl (LIP)

Here C denotes a generic constant, TV denotes the total variation and iisu denotes the supnorm.

Note that (LIP) implies that tihe data is taken on in tie L1 sense.

The author recently proved t ke following weak stability result in the global LI-norm for

solutions generated by Glimms method [24):

INu (. ,t) - rIilI <_ G (t, 1111o(.) - aIl )  (L' )

where G is an explicitly constructed smooth function satisfying G(t,4) - 0 as -, 0 for every fixed

t > 0. Here we assume that u0 (+W) = i.
We now contrast this with a corresponding existence theory for a non-strictly hyperbolic

system in which (TV), (SUP) and (LIP) have been shown to hold (cf 1201), but (L1 ) fails for every

smooth function G satisfying G(t,4) -. 0 as -. 0. We conclude that (L 1 ) gives the first stability

result in a norm that distinguishes the two theories. That (L) fails in the next example follows
directly from an understanding of the asymptotic wave structures to which solutions decay as
t -. +w. This was studied in joint work with E. Isaacson, Dept. of Math., Univ. of Wyoming.
Consider the 2x2 system of polymer equations:

+f(s,c) x = 0, u = (s, cs), (sc)t + (cf(sc)lx = 0, F =(f, cf). (P)

In general, system (P) is not strictly hyperbolic when f(. ,c) is non-convex. E Isaacson first derived
(P) from a simple two component flow problem, and he solved the corresponding nonconvex
Riemann problem 14). In 1S], B. Keyfitz and II. Kranzer earlier solved the Riemann problem for a
system formally equivalent to (1'). In [20] time author proved a global existence theorem by
Gimm's method. We state it here in order to compare it with the strictly hyperbolic case:

Theorem (CT. If u0 (.) is initial data for (P) satisfying

TV {(.O()) < V < ®, llu0(,)- alsup < ,

then there exists a global weak solution of (P) with initial data u0 satisfying

TV fu(.,t)} < C V, (TV)

liu(.,t) - illsup < 6 , (SUP)
flu(.,t) - u(,,s)ll Ll < Clt-s] . (LIP)

Here total variation is measured in the singular coordinate system of Riemann invariants, and this
leads to a modified convergence proof, but formally, the results look the same as in the strictly
hyperbolic case of Theorem (Glimm). In joint work with E. Isaacson, we determine the asymptotic
waves that these solutions decay to as t -' +o., and this leads directly to the following result which

implies that the two theories diverge on the level of the L -norm (cf. (51).

For the solutions u(x,t) of (P) generated by Theorem (Te) and satisfying u0(*w) = 0, the LI-norm

at time t cannot be controlled by the Li--norm at time t = 0, through any nonlinear function; i.e.,
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Theorem -Li): The estimate (L1) FALLS in general for every smooth G satisfying G(t, ) -. 0 as
-. 0 for each fixed t. Specifically, there exists a sequence of solutions u(x,t) of (P), 0 < < 1,

such that ug(+') = uL,
i "u(.)- uLII L = 0, (-L1 )

but lhn 1lu"(,',t) -u L10 (-L' )
u-sO - LI

at any t > 0.
In the next section we discuss tie asymptotic states for solutions of (P) with an eye toward

seeing (-,L1). We comment on the interesting role played by the admissible solutions of the
Riemann problem in this nonstrictly hyperbolic problem. In section 3 we return to the strictly
hyperbolic case, and discuss the proof of (L 1 ). The estimate (L1 ) is a consequence of the author's
decay result [22] which states that

fu("-t) -U sup -F [[u0 (.) t LIH '

where F( ) is all explicitly constructed function satisfying F(C) -' 0 as C -+w, together with the new
estimate

11U(.,I0)- illL1 _1H Iu0(.)- 0 LI + C bt (E)

where 6 denotes the supnorm of the initial data u0(.). The details of the proof of this new estimate
(E) together with a further discussion can be found in the author's paper [24].

§2 The structure of asymptotic wave patterns for (P).
We view (P) as modeling the polymer flood of an oil reservoir in one space dimension as first

developed by Isaacson in 14]. By a polymer flood we mean a two component flow of immiscible
fluids, oil and a mixture consisting of water together with polymer. The polymer is a thickener
which moves passively with the water and which is assumed to affect the mutual flow of the two
components in the porous media. Here, s = saturation of the aqueous phase, c = concentration of

polymer in water, 0 _ s 5 1, 0 < c 5 1, and g(s,c) = fc) is the particle velocity of the water. In
this way (P1) represents conservation of water plus polymer, (P2) represents conservation of
polymer, and f(s,c) gives the fraction of the total flow associated with the aqueous component at
each position x of the reservoir. The system is determined once the constitutive function f(s,c) is
specified. Properties of the flow are determined by quantitative properties of f, and we assume only
that f(.,c) is S - shaped for each fixed c, and that X < 0. (See Fig. 1, cf. [4,201.) These

assumptions can be justified by an argument based on Darcy's Law [4].
In this section we describe the structure of the noninteracting waves to which the solutions

constructed in 1201 decay as t -' +.. We then discuss the relationship between the admissible
solution of a given Riemann problem (P),

AL for x < 0
Uu R for x >0, (RP)

and the asymptotic waves to which a given solution u(x,t) of (P) satisfying

u0 (') = u0 (+®) = uR  (AS)

decays as t -4 +w. In this problem the admissible solution of the Rierann problem is the solution
shown in [4] to be unique) constructed from waves which satisfy the Lax characteristic criterion.
lternatively, these are the solutions which do not spontaneously Introduce "extra" polymer into

the flow over and above that accounted for in the states uL and uR. The noninteracting waves to
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which a general solution satisfying(AS) decays as t -. +w represent an alternate solution of the
Riemann problem (P), (ftP) which in general is inadmissible by the Lax characteristic criterion.
This is because the asymptotic state must account for tlhe "extra" polymer contained in the initial
data between x = - and x =- +w. The conclusion then is that in contrast to the classical strictly
hyperbolic theory, the asymptotic states do not depend on uL = u0 (-=) and uR = u0 (+w) alone, but

on

Cmax = Sup {c0(x)}
X

as well. The analysis leads to the result that the solutions are not well-posed in the LI-norm (i.e.,

(-L I ) holds) even though the admissible solutions of the Riemann problem depend continuously on
%I

and uR in Lloc, and despite the fact that the solutions are Lipshitz continuous in time in the

Ll-norm. Moreover. the two component flow interpretation indicates that the lack of well-
posedness in one dimension may be related to fingering instabilities in higher dimensions. It also
appears that well-posedness is retrieved when viscosity is not neglected. In this problem, the
admissible solutions of the Riemann problem play an interesting and special role.

We first review the solution of the Rienann problem as first presented by Isaacson [4]. One
can easily verify that the eigenvalues of dF (the wave speeds for system (P)) are given by

ar

s =  (8,c) ,  Ac= s

and the integral curves of the corresponding eigenvectors through a state il are given by

ft (U) = {u: c(u) = c()) , t (a) = (u: g(u) = g(i)}.

Because f(. ,c) is S - shaped, it is clear that As = A c on a curve in state space labeled T for the

transition curve (see Fig. 1, 2).

/\

I \

f g z constant c /
S

-= s- = A ' ..

fcs.E

Fin.!1Fig. 2 =91

For this system, the shock and rarefaction curves coincide, and the elementary waves which
satisfy the Lax characteristic criterion consist of s-waves and c-waves. Here, s-waves solve the non-

kconvex scalar conservation law which (P) reduces to when c = const., and c-waves are contact
discontinuities at g = const. The Lax condition for the c-waves translates into the condition that
c-waves cannot cross the Transition curve. The solution of the Riemann problem is summarized in
the following theorems (see (4,8]).
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IhMM (Is): For each UL and uR in the region 0 < 5 < 1, 0 < c < 1, there exists a unique

solution to the Riemann problem (P), (RP) in the class of s-waves and c-waves. The solutions are
diagramed in Figures 3 and 4. Moreover, these solutions depend continuously on UL and uR in

Lc at each time.

c Ri C Region Ill I
C Ruqaon [l[ 7 - - - - k (SOLN.scs,

(SOLN.SCS) - T 1T

Region 1 g Rgion If

Te eT sOLN. Sby eann fr o

(SOON.NS

j (SOON..SCS)

S

Fig. 3 Riemann problem solution Fig. A Riemann problem solution

for u L left of T for UL right of T

The existence Theorem (Te) is obtained by extracting a convergent subsequence from

approximate solutions constructed by the random choice method using the solutions of the Riemann

problem generated in Theorem (Is). The proof relies on a positive non-increasing function F(t)

which is defined on the approximate solutions, and which dominates the total variation of the

approximate solutions at time t as measured in the singular coordinate system of lemann

invariants. Because the total variation in the conserved quantities cannot be bounded, a modified

convergence proof must be given (see (201 for details). We now ask, what are the noninteracting

elementary waves to which these solutions decay as t -o +w? We answer this by means of the

following claim:
Let u(x,t) denote a solution generated by Theorem (Te). For a given u, let x(t) satisfy

dx

so that x(t) describes a particle path of water in the solution.

CLAIM: The particle paths are continuous curves defined and nonintersecting for all t > 0, and the

value of c is constant on each particle path.

We do not give a complete proof of the CLAIM, but we argue for it as follows. Since c-waves move

with speed g, we argue first that the particle paths do not cross c-waves in the weak solutions.

Since the particle paths are nonintersecting in smooth solutions and Lipshitz continuous across s-

waves, we conclude that the particle paths are defined and nonintersecting throughout the weak

solutions. Moreover, for smooth solutions,

d =ccx c x xt + c  = c +gcx 0

because equations (P2) gives

0 =cts+ cst +cfx+ fcx
= s (ct + g c) + c st -+ fX)
= s (ct + g cx);
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and since c is constant across s-waves and we have argued that particle paths don't cross c-waves,
we conclude that c is constant on particle paths of the weak solutions. An actual proof of this is
made difficult by the fact that the claim is false for approximate solutions of the random choice
method. We conclude from the claim that the total variation in c is passively transported along
particle paths. Thus in particular, the value

= sup CO(X)
x

satisfies
= sup u(x,t)

x

for every t > 0. We now determine the asymptotic waves through the following theorem:

Theorem (Is, Te): for each r, uL and uR in our domain, there exists a unique set of noninteracting

waves taking uL to uR, and taking on the value Z as the maximum value of c at each time. In
general, these waves correspond to an inadmissible solution of the Riemann problem. Moreover, the
positive nonincreasing function F(t) used in the existence theory is minimized on these waves
among all sequences of elementary waves taking uL to uR and taking on C as the maximum value of
c. These waves are diagramed in Figures 5 - 9 according to whether uL ties in regions A, B or C

determined by the value of d (see Fig. 5).
We conclude from Theorem (Is, Te) that the solutions generated in Theorem (Te) decay to

the nortinteracting waves determined by u0(-) - uL, u(+®) a uR and d = Max c0(x). A proof
x

here would be complete were one to show rigorously that F(t) decreases to its minimum possible
value in each solution.

In order to contrast the situation here with the classical strictly hyperbolic case, consider the
example of the asymptotic state corresponding to the values ult - uL and C = c(i) diagramed in
Figure 8, and corresponding to uL in Region B. This is the region for which the structure of
asymptotic states differ strikingly from the structure of asymptotic states in a strictly hyperbolic
problem. For example, assume that the initial data is given by

uL x< 0,
U1o(X 5 0 < x < a ,

uL x> o.

The exact solution, which corresponds to the asymptotic state u0(-w) = uL = u0 (+m), C = c(Q), is
drawn in Figure 10. In a strictly hyperbolic problem such a solution would decay to zero, because
the admissible solution of the Rienann problem for u0(-) = uL = u0 (+w) is the constant solution
u - uL (cf [2, 11-14[). For (P), however, the solution decays to a solution containing two strong

nonlinear s-waves separated by a contact discontinuity. We can now observe Theorem (-L1) by
taking the limit a -. 0. Indeed, when a = 0, the solution is the constant state u a uL but for a > 0

the solution at times t > 0 is far from the solution u - uL in the Ll-norm. This occurs despite the

Lipshitz continuity of the solutions in L1. We conclude that a small amount of polymer at x = 0,
t = 0 drastically alters the flow in this model.

The admissible solutions of the Rieniann problem play a different role in the theory of this
non-strictly hyperbolic problem than they play in the classical strictly hyperbolic theory of Lax.
We explore this difference in the following comments.
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(1) The classical strictly hyperbolic theory of conservation laws is a generalization of the theory
of Euler's equations in gas dynamics. One can take the point of view that the Riemann problem is
relevant because it represents the local asymptotic state in a general flow. By the scale invariance
of the equations, the flow should locally look like an asymptotic state, and Glimm's theorem can be
viewed as a justification of this picture; the random choice method replaces the solution locally by
an asymptotic state. For system (P), the asymptotic solutions are rnt the admissible solution of
the Riemann problem, but i fact one can speed up the convergence of the random choice method
by replacing the solution of the Riemann problem by the asymptotic solution in each cell. Since the
limit solution in this case conserves c-values, we expect this to generate the same solution as that
generated in Theorem (P). The admissible solutions of the Riemann problem are special in that all
asymptotic wave structures are concatenations of these. Thus the admissible solutions can be
characterized as the only solutions of the Riemaun problem which give convergence to the polymer
conserving solution by the random choice method, but which require only the values of uL and uR

in each cell, and not the further information of E.

(2) From the example above, it appears that continuous dependence in Li is recovered when
diffusion is not neglected. For example, if c uxx is added to the right hand side of (P), then we

expect the spike in Fig. 10 to diffuse away as t - +®, and the solution to decay to the constant state
U UL ' Moreover the rate of decay would increase as a -. 0, so we expect continuous dependence in

L as a-4 0.
(3) We believe that the weak solutions generated by Theorem (Te) are limits of the viscously
perturbed equations as (-' 0. If this is indeed the case (we have no proof, then we can also

characterize the admissible solutions of the Riemann problem as followst Let uf(x,t) denote a
solution of the initial value problem for the visrnus equation

tit + f(u) x = C Uxx, (P()
where u and f are given in (P). Let Q, and Q2 denote the asymptotic states defined by

Q l im lill u( ,

t-4 W -40 (*)

Q2 -l lira u .
(- 0 t- OD

If solutions of (P) are limits of solutions of (Pt) as c -4 0, then Q, is the actual asymptotic solution

determined by u0 (--w) = UL, u 0 (+w) = uR and C = Max c0 (x). However, our example indicates

that the limit Q2 should be the admissible solution of the Riemann problem [uL, uR]. In this case,

the adnissible solutions of the Riemaun problem are special because Q2 only when the

asymptotic state is the admissible solution of the Rieniann problen. Thus the admissible solutions
are the ones for which it is valid to interchange the limits in (*). (This comment was suggested to
the author by Philip Collela of Lawrence Livermore Laboratories).
(4) In the polymer flood interpretation of (P) it is clear that the narrow "spike" in the example
of Figure 10 is unstable to figuring in higher dimension. We wonder whether a lack of continuous
dependence corresponds to the presence of higher dimensional instabilities in some general setting.

In conclusion, we comment that system (P) probably represents the simplest setting in
which one finds a singular hyperbolic problem. It is surprising that one can give an almost
complete analysis of the initial value problem in this case. We hope that this study of the Riemann
problem and the structure of asymptotic states can help to shed light on the role of admissibly
criteria and the non-uniqueness of Riemau problem solutions in more complicated problems in
which strict hyperbolicity is lost.
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Box 4348, Chicago, IL 60680, USA

SUIHKff

The governing equations for plane waves in isotropic elastic solids
are a 6x6 system of hyperbolic conservation laws. It is shown that. for
the Riemann problem, the system is equivalent to a prototype 2x2 system
of hyperbolic conservation laws. We then discuss simple wave curves,
shook curves, umbilic points and umbilic lines for systems which possess
a potential. This is the case for hyperelastic materials which possess a
complementary strain energy. For the third-order hyperelastic materials
it is shown that one may have (i) a straight umbilic line, or (ii) an
umbilic curve which is a hyperbola, parabola or ellipse. The case (ii)
is studied in detail here.

INTODOCTION

In a fixed rectangular coordinate system xl, x 2 . x3 , consider a
plane wave propagating in the xl-direction. Let 0, TV, T2 be, respec-
tively, the normal and two shear stresses on the plane x, = constant.
Likewise, let u, v1 , v 2  be the particle velocity in the xl-, x 2 -,
x 3-direction, respectively. The equations of motion and the continuity
of displacement can be written as a 6x6 system of hyperbolic conservation
laws [1,21,

-x VU)t.-

U (uvlv2,U(1)

F(U) - (pu-,Pv'Pv 2.,71*7 2 )

In the above, x = x 1 , t is the time. p is the mass density in unde-
formed state, a, Y1- Y2 are, respectively, the normal strain and the
two shear strains. For isotropic elastic materials, 0, 1', T2 are
functions of a, Y1, Y2 and

1/T2 - Y1/Y2•

Hence we may let
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T1 = ToosO . T2 -vsinG
(2)

T - Toone , T2 - Tsin ,

in which T and y are, respectively, the total shear stress and shear
strain. If we regard (Tl,T2 ,a) as a reotangular coordinate system in the
stress space, (T.9c would be a cylindrical coordinate system.

NIrYALU TO A 2z2 SYSTEM

It is shown in [1,2] that the characteristic wave speeds of (1) are
+el° t = 1,2,3. The simple waves associated with 02 are circularly
;ofarized because along the c wave curve a and v are constant

while 0 is variable. On the other hand, the simple wave curves associ-
ated with c and 03 are plane polarized. Along the cl or 03
simple wave curve 0 is a constant. (See also 13]). The system is lin-
early degenerate with respect to 02. Therefore, the simple wave
associated with 02 is in fact a shook wave. Thus, for the Riemann
problem, it is sufficient to consider wave curves associated with o1
and 03  only. Without loss of generality, we consider wave curves on
the radial plane 0 - 0.

With 0 = 0 in (2), (1) reduces to a 4x4 system

U x - (U) t = 0 -

U - (= ,V ,u~ v) ° (3)

F(U) = (pu,pv..y) .I

We consider the domain of a, v in which the stress-strain laws are
invertable. We then consider a, y to be given functions of a and v.
In fact a is an even function of v while y is an odd function of v
[1]. For the Riemann problem [4-7]. U depends on one parameter X =

x/t only and (3), reduces to

(I + LA)U' - 0 , (4)

I G 0 1 : y , (C)

where the prim denotes differentiation with X, the subscripts a and
v denote partial differentiation with these variables and I is an
identity matrix. Equation (4) tells us that X - a is the characteris-
tic wave speed and U' is the associated right eigenvector. The four
equations in (4) can be reduced to two by eliminating u' and v' oom-
ponents of U'. We have

(a - CI)'- 0 (6)
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= (CT) a(7)

If X = x/t is the shock wave, U is discontinuous at X and ()
is replaced by

[U] + V[F(U)] = 0

in which [*I denotes the discontinuity across the shook wave and V is
the shock wave speed. Again, elimination of the [u], [v] components of
[U] leads to

[p] - 4[s1 = 0 (8)

P = (Sy) q = (PV) 1  (9)

Equations (6) and (8) are identical to the Riemann problem for the 2x2
hyperbolic system [8-11]

Rt +  (U )
- 0 

(.... (10)

U - a = (a.0) o p = (Soy) .

Therefore, the 4x4 system of (3) and the 2x2 system of (10) are mathemat-
ically identical. The only difference is that if e and V are,
respectively, the characteristic wave speed and the shook wave speed for
(3). the corresponding quantities for (10) are 4 and T1.

Before we close this section, we present below the characteristic
wave speeds c of (3) which is related to through (M)2:

1 = I(60 + 7 - = (Pei)

43 - 2 "a + 1) + Y (Pc;) 1 (11)

Y I(s, - 1/)22 4a 7oI 1 2

Assuming that c1 and 0 3  are real. we have

c I  03 2 0
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SYSTHS WITH A POTUTIAL - SDUL% WAYV AND SHOCK WAVES

For hyperelastic materials, there exists a complementary strain
energy W(a,T) [121 such that the strains a and y are obtained by
differentiating W with respect to a and z. i.e.,

s=Wo. , = WI . (12)

The matrix Q in (5)2 now becomes

G=1 a W] 
(13)

which is symmetric. The eigenvalues of Q are, from (6) or (11).

1 1
= IN( 00 + W") - Yl = (PC,)-

43 = (Wo" + W + Yj = (PC;)-' (14)

Y = I(Wc0 - WI)
2 + 4Wv 1/2 .

Substituting Q and C of (13) and (14) into (6), the differential

equation for simple wave curves is given by [13]

de (Wa, - W ) Y 2WO

dT 2WT -(W4. - W ) ( Y

in which the upper (or lower) sign is for the c1  (or c3 ) simple wave
curve. The equation for shook wave is, from (8),

[WI. [WI
NO- [.- (16)

[a] [NI

To insure that c1  and c3  of (14) are real, G must be positive
definite, i.e.,

a

woo > 0 , W1 1oa1 v -w > 0.

We notice from the theory of differential geometry that the eigenvectors

of Q are lines of curvature of the surface z = W(a,z). By (6), this
means that the simple wave curves on the (a,c) plane are lines of curva-
ture of the surface z = W(a,T) [8].

At an umbilie point, 01 = 03 and. by (14), we have

We = 0, W .0 =WV . (17)

When (17) hold, the eigenvalue 4 of Q is - W, =W and the
eigenveotor of Q is arbitrary. Therefore, at an umbilic point, the
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the simple wave curve can be directed towards any direction. It follows
from this argument that, if we have an umbilic line on which (17) hold,
the umbilic line is itself a simple wave curve.

DNILIC LIMU FOR THIRD-ORDER BRPERELASTIC KTERILS

If we expand W in powers of o and v of order up to four,
noticing that the constant terms and the linear terms have no effects on
simple wave curves and that W is even in v, we have

a a d a b s e 1 1 4 1 2 1 a
W 2 2 6 - O + T2 810 + ij2 8 +j 5 3 0v .(18

in which a, d, b, e, 61, 62 63 are constants. The stress-strain laws
are then obtained from 112) and we see that a and d are the elastic
constants for linear materials, b and e are the second order material
constants while 61. 62° 63 are the third order constants. The wave
curves for the second order materials. i.e., for the case when 61 = 62 =
6 = 0 have been discussed in [I] for special initial and boundary con-
ditions and in (21 for arbitrary combinations of initial and boundary
conditions. There is one umbilic point at which c 1 = o 3  and, if e -
0. there is one umbilic line [1]. For the third order materials given
by (18), the existence of more umbilic points and umbilic lines are dis-
cussed in [21 but the characteristics of the umbilic lines and the wave
curves associated with the umbilic lines are not studied.

With W given by (18), (17) lead to

S(e + 2630) = 0, 
2 s (19)

a + ba + 610 + 63c T d + ea + 83 6 - (19

For the umbilic lines, both equations must be satisfied for a one parame-
ter family of points. Equation (19) 1 is satisfied if (a) - = 0, (b) 63
# 0 and a = -e/283 , or (c) 6 = 0 and e - 0. Consideration of (19)2
shows that only (b) and (c) lead to an ubilic line. They are:

(i) 63 = 62 A 0, and, letting a* = -e/283,

2 aa + ba, + 61a# = d + ea* + 63a.

We have an umbilic line at a = a*, v arbitrary.

(i) 63 = 0 and e 0 0. We have the umbilic line given by

a + ba + 81a - d + 62T3 (20)

Assuming that 62 A 0, this is a parabola, hyperbola, or ellipse depend-
ing on whether 6162 is zero, positive, or negative, respectively. The
case (ii) appears more interesting and is discussed below.
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WAVE CUR=S FOR a3 - 0 AUD • - 0

When 63 = 0 and e = 0, we have the umbilic lines given by (20).
The stress-strain laws are, in this case,

b 2 1 a
a = ao + - +- 3 q , (21)

= dv + 6 . (22)

We see that the normal stress-strain law and the shear stress-strain law
are uncoupled. Thus, instead of a 2x2 system we have two Ixl systems.
The simple wave curves are therefore straight lines parallel to the
a-axis or the v-axis. However, the wave speed associated with a is not
always c. the fast wave speed. Likewise the wave speed associated
with r Is not always c 3 , the slow wave speed.

We first examine the stress-strain law for shear given by (22) which
is shown in Fig. 1. For 82 < 0. To is the point at which the wave
speed becomes infinity. For lvI > yo the wave speed becomes imaginary
and hence the range -of validity for 62 < 0 is limited to IlvI < o"

We next examine the stress-strain law for the normal stress given by
(21). We see that if we change the sign of b, a and a, (21) remains
the same. Therefore we consider

b> 0

62 >0 6 2 < 0

A xd 2 Y To 0

-,.-T

Fig. 1 Stress-strain curves for shear: y = dT + 316I3
3F2
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0

0*0
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Fig. 2 Stress-strain curves for normal stress:

2 31 3
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only because the case for b < 0 can be obtained from that for b > 0
by reversing the sign of a and a. There are four different stress-
strain curves depend4.ng on the value of 6 In Fig. 2, of is the
reflection point.,. a the limits beyond wiich the wave speed becomes
imaginary and a* are the points at which the wave speed for normal
stress equal to the wave speed for shear stress (Fig. 1) at zero shear
stress. These quantities are given by

Of = -b/261 .

o u ~ (/2 ) 1/2
o f ± -

a* = o f ± Of + (d-a)I6 1 }1 1 2

For the lxl system, regardless of the stress-strain law of Fig. 1 or
Fig. 2, the solution to the Riemann problem in which the initial and
boundary conditions are constant can be represented by one of the four
possible wave patterns shown in Fig. 3. In the figure, C stands for
the simple wave and V for the shock wave. Combination of normal and
shear stress together as a 2x2 system means simply the superposition of
the two solutions. Since we have two possible stress-strain laws for
shear stress and four for normal stress, the combination leads to eight
different cases for the simple wave curves and umbilic lines as shown in
Fig. 4. The solid (or dashed) lines are for 01 (or 03) simple wave
curves with the arrow indicating the direction of decreasing wave speed.
We see that the simple wave curves for a are not all a1 simple waves
and the simple wave curves for v are not all 03 simple waves. The
dotted lines are the line of inflection while the umbilic lines are rep-
resented by an alternate long line/dashed line combination. The value
vo in Cases I- and III+ represents the height of the elliptic umbilic
line while that in Case IV- represents the distance from the a-axis to
the hyperbolic umbilic line. It is given by

C V

t VCt

Fig. 3 Wave patterns for the Riemann problem with

stress-strain law given by Fig. 1 or Fig. 2.
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s a b

) (da) b, 1/2
= 1 6 + 2 (-a)

It should be pointed out that there are degenerate cases which have
quite different geometry from that shown in Fig. 4. For instance, for
62 = 0 and 61 > bs/4a, which is the degenerate case between Case I +

and Case I- (and will be denoted by Case I /I-), the umbilic line degen-
erates into two vertical lines. The same is true for Case III+/III -

while for Case II+/II - we have one vertical umbilic line. There is a
parabolic umbilic line for 6 = 0. For Case III-/IV-, however, the
umbilic line degenerates into wo straight lines which are the asymptotes
of the hyperbolic umbilic line.

Although the simple wave curves and shook curves for a and v are
all straight lines, the wave curve for the Rimann problem which connect
any two points in the (av) plane is not as simple as one might expect.
The complicated part is to determine at what point one switches from,
say, the horizontal line to a vertical line. We also have the unbilic
line to take into account. To show the complicacy involved, we use Case
I + for an illustration. We assume that the initial condition is pre-
scribed at the point B which is located to the left of the left umbilic
line, Fig. 4. The boundary condition can be any point in the (ov)
plane. Depending on where the boundary condition is located, there are
14 different wave curves as shown in Fig. 5. The associated wave pat-
terns in the (x,t) plane are also shown in Fig. 5. As in Fig. 3, C and
V stand for, respectively, the simple waves and shock waves. The sub-
script a and v identify whether the wave is normal stress wave or
shear wave. The subscript * implies that the wave has both normal and
shear stress and hence the associated wave curve is an umbilic line. In
the (a.,) plane, QPE and SRF are the umbilic lines. The curve PT is the
locus of points at which the shear wave speed is identical to the normal
shock wave speed. The curve RN is the locus of points at which the wave
speed of the normal stress is identical to the shear shock wave speed.
The curve TM is the locus of points at which the shear and normal shook
wave speeds are identical. Finally, the point L is the point at which
the shook wave speed for the shock from point B to L is identical to
the normal wave speed for the normal stress at L. One can show that

of- B -2(a - of) ,

where of is the stress at the inflection point.

If point B is at a different place, the wave curves will have a
different geometry. One could also consider wave curves for other oases.
What is Interesting is that the wave patterns are, If one considers the
uncoupled lx1 systems, simple and are given in Fig. 3 but become compli-
cated if one considers the 2x2 system. Also, the shook wave for the lx1
systems shown in Fig. 3 is the Lax shock (41, meaning that

+

0 +2V a
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Fig. 5 Wave curves and wave patterns for Case I+ for the Riemann
problem for a fixed initial condition given by the point
B in the (a, i) plane with arbitrary boundary condition.
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where c+ and c- are, respectively, the wave speed in front of and
behind the shook wave. But for the 2x2 system one finds non-Lax shocks
which do not satisfy Lax stability conditions. For example, the shock in
wave pattern 10 in Fig. 5 has the relations

o+ < 0+ - V = c- <oi

The shock has the double roles of being a V1 as well as a V3  shock.
In the Riemann problem considered in (2] we iave the situation in which
the shock is stable under the lxl system but when imbedded in the 2x2
system, the shock wave speed V has the relation

a- ,a < V < a-cj

The shock wave violates Lax stability conditions for both V1  and V
shocks. We have thus the paradox that the shock is stable under a lxi
system but unstable when it is imbedded in a 2x2 system.
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ABSTRACT

Two hybrid methods applicable to the unsteady Euler equations in
one or more space dimensions are presented. Each method consists of a
smooth solver for smooth parts of the flow and the Random Choice Method
for discontinuities. The solution of the Riemann problem (approximate
or exact) gives sufficient information for switching between the smooth
solver and RCM. In I-D the hybrid methods give very accurate results
throughout the flow field. Discontinuities are of zero width. In the
multidimensional case shock waves are compromised, but contact discontin-
uities are still of zero width.

1. INTRODUCTION

We are concerned with numerical methods for solving the unsteady
Euler equations in one or more space dimensions. Emphasis is placed on
accuracy for both the smooth part of the flow and the discontinuities
(e.g. contact discontinuities, shock waves).

Traditional finite difference methods (La:z-Wendroff) are accurate
for smooth flows but discontinuities are smeared over several computing
zones; they also give rise to over/under-shoots followed by spurious
oscillations that can lead to stability problems.

Modern finite difference techniques (e.g. high resolution methods)
such as Roe's Method [1] are accurate in the smooth parts of the flow
and discontinuities are more accurately represented than by traditional
methods. Shocks are typically smeared over 3/4 zones and contacts over
6/7 zones. Contact discontinuities are more difficult to deal with when
utilising these methods. Shock waves, unlike contacts, have a natural
compression mechanism (converging characteristics) that helps their sharp
numerical resolution. In some fields of application, such as reactive
flow, the accurate representation of contact discontinuities is as impor-
tant, if not more, than that of shock waves; for they carry discontinuities
in temperature and energy.

The Random Choice Method (RCM) is capable of producing discontinui-
ties with infinite resolution (zero width). This statement is true for
the unsteady Euler equations in one space dimension, for the steady two-
dimensional Euler equations (steady supersonic flow) and some other special
unsteady multi-dimensional problems. RCM however, is inaccurate in smooth
parts of the flow; randomness is a feature of the method (for details
about RCM see Refs. 2-7). Randomness is not an important issue in homo-
geneous problems (no 'source' terms) but can be intolerable if problems
of technological interest are to be solved.

In this report we present two hybrid methods for the unsteady Euler



equations in one or more space dimensions. The idea is to identify the
discontinuities (e.g. shocks, contacts) at every time step and deal with
them via the Random Choice Method and utilise another method for the rest
of the flow field. The resulting solution is accurate in smooth regions
(unlike RCM) and discontinuities are of zero width (unlike all difference
methods).

These hybrid methods are an attempt at combining the best features
of available methods.

In Ref.8 we presented a hybrid method consisting of SORF (Second
Order Random Flux) and RCM and illustrated applications to 1-D problems.
In this report we extend the SORF/RCM hybrid method to 2-D problems and
use updated monotonicity procedures for SORF as well as switching mechan-
isms. We also present another hybrid consisting of Roe's Method and RCM.
ROE/RCM is applied to I-D and 2-D problems. There is a clear distinction
between 1-D and multidimensional problems. Not all 1-D features of the
hybrid methods extend to the multidimensional case. In particular, shock
waves must be compromised, i.e. solved by SORF or ROE. This is in part
due to space operator splitting, which is the procedure considered here
to solve multidimensional problems (see Ref.9).

The rest of this report is organised as follows: §2 contains the
Euler equations and discusses the associated I-D Riemann problem; in
§3 we briefly review the component methods to be used in the construction

of the hybrid methods; in §4 we describe the SORF/RCM and ROE/RCM hybrid
methods for 1-D problems; in §5 we present extensions of the hybrid methods
to two or more space dimensions; in §6 we draw some conclusions and point
out aspects of possible further development.

2. EULER EQUATIONS

We are interested in hyperbolic conservation laws

Ut + F(U) +G(U) = 0 (1)

where U = U(t,x,y) with t denoting time and x and y denoting space. U,F
and G are vectors; subscripts denote partial differentiation. For the
Euler equations the vectors U,F and G are

U = pu , F = u2 + p , G = puv (2)

Pv Puv jrpv + p

E u(E + p) Lv(E + p)

where p is density V = (u,v) is velocity, p is pressure and E is total
energy given by

E = lp(u
2 

+ v
2
) + pe (3)

with e denoting the specific internal energy. For closure, an equation
of state is used. Here we take the ideal gas case with

p = (y - l)pe (4)
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where y is the ratio of specific heats.

The non-linear system of partial differential equations (1) - (4)
can be solved analytically or in closed form only for very special circum-
stances. An interesting special case is the Riemann problem, that is
system (1) in I-D with piece-wise constant date for initial condition.
The corresponding I-D initial value problem can be solved exactly, but
not in closed form, not even for the simple equation of state (4).

The 1-D Riemann problem is an important subproblem that can be util-
ised locally for finding global solutions to the general multidimensional
initial value problem for system (1) - (4). The solution for the 1-D
unsteady Euler equations can be represented as in Fig. 1. There are three
waves. The left and right waves can be either shock or rarefaction waves
and the middle wave is always a contact discontinuity. Hence there are
four possible wave patterns. Cavitation is not considered.

t

0 2-0-X

0p

Fig.I- Solution of the Riemann problem for the I-D
unsteady Euler equations

Modern numerical methods for systems of type (1) use the solution
of the 1-D Riemann problem. Thus an important aspect is the efficiency
with which the solution is found. Finite-difference type methods use
approximations to the exact solution. The Random Choice Method uses the
exact solution. An efficient exact Riemann solver can be found in Ref.7.

3. REVIEW OF METHODS USED

The basic techniques used in this paper are: The Random Choice
Method (RCM), the Second Order Random Flux (SORF) and the Flux Difference
Splitting Method due to Roe (ROE).

3. 1 The Random choice Method (RCM)

This method is based on an existence proof by Glimm [2) and was
first successfully implemented by Chorin (3]. The method has been further
developed (e.g. Refs.4-7) to provide an efficient computational technique
which is directly applicable to the unsteady 1-D Euler equations.
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RCM approximates general data by piece-wise constant functions so

that for a sufficiently small time the global initial value problem can

be replaced by a set of Riemann problems RP(i,i+l). Fig.2 illustrates

the two Riemann problems affecting cell i.

n+1

i-Ii

Fig.2: Riemann problems RP(i-1,i) and RP(i,i+1) affecting cell i

The solution at the grid point i at time level n+1 is obtained via

n+1 = (5)

where

= (x i + OnAx,tn + AT) (6)

with 0 l(0,11 a member of a pseudo-random sequence. In (5) U. denotes

the solution of the Riemann problems RP(i-l,i) and RP(i,i+l) inside

cell i of length Ax, at time level n+1. Qi is a "random" position inside
cell i. This is the non-staggered grid version of RCM. More details
about RCM can be found in Refs.2-7.

The Random Choice Method uses the exact solution of the Riemann
problem. Here we use the Riemann solver presented in Ref.7. As for the
sequence {On} we use the van der Corput sequence VDC(kl,k 2 ) as done by
Colella [4].

The most important feature of RCM is that discontinuities are of
zero-width (infinite resolution). A disadvantage of the method is the
randomness present in the smooth parts of the flow.

3.2 The Second Order Random Flux Method (SORF)

The basic form of this method was presented by the author in Ref.10.
The method uses

n+1 n AT In+ n+i
U. U - (F - Fi )  (7)

i X Ax -i i-

mn+ito update the solution. The intercell flux F i+ is evaluated at the random-

choice solution of the Riemann problem RP(i,i+1) where the sampling length

Ax is centred at the intercell boundary. In Ref.8 the method was shown
to be 2nd order accurate, for the linear advection equation.
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The method produces overshoots and spurious oscillations near dis-
continuities. To remove these overshoots one can sample the fluxes over
a restricted sampling interval of length TAx. The original scheme [10]
has T=1; T=0 gives the Godunov's scheme. This is similar in spirit to
the monotonicity procedures employed in 2nd order Godunov-type schemes
and flux limiters [11-12]. An interesting analogy with flux limiters
is given by the relation

T 1 (8)

where T is the restricted sampling length (normalised) and B is a flux
limiter. Equation (8) is valid for the linear advection equation

ut + au = 0 (9)

XA

and v = ATa/Ax is the Courant number (a is constant).

Generalisation of (8) to 2x2 linear systems is direct but for non-
linear systems the situation is not yet clear to us, although use of (8)
with some empiricism gives quite satisfactory results.

SORF as described, is applicable to the unsteady 2-D (or 3-D) Euler
equations via operator splitting in space, i.e. the 2-D initial value
problem (1) is replaced by a sequence of 1-D problems. The simplest form
proceeds as follows.

(i) Solve U + F 0 (x-sweep) with data U for a time step of
size AT. Denote the solution by Unx.

nx
(ii) Solve Ut + Gy = 0 with data U for a time step of size AT

again. The resulting solution is the solution Un+l to (1)
with data Un.

This procedure works quite well for methods that compromise dis-
continuities, but fails for methods that give zero-width discontinuities
(e.g. RCM). Pef.9 is useful in this respect. For 3-D one proceeds in
an analogous fashion.

3.3 Roe's Method

This method approximates the Jacobian Matrices A and B corresponding
to the flux functions F and G in equation (1) by A and B, which are cons-
tructed to safisfy some desirable properties. One property is

AU = AF (10)

where AU = U i+ - U. and AF = Fi+ 1 - F. Projection of AF onto the eigen-

vectors of A gives

4
AF = Z 0ie. (11)

j=1 3 3

The corresponding 1st order upwind scheme for equation (7) is
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n+1 n AT 4
= U1, - Z o .jjej (12)

x j=1

=Ii if Xj < 0

i+ if X. > 0
J

In equation (11) XA. are eigenvalues of A (wave speeds), ej are the associ-
ated right eigenvectors and OL are the wave strengths. For the x-sweep
these are

=u-a, = u , A = u , X4  u+ a (13)
[ Ia-a al [!= [u + a

el = , e. [ e. [ e4 (14)v v v
H-u Jq v+ ual

a, = r (Ap - 5Au)

a2 = Ap - Ap/ 
2  

(15)

0.3 = P
AV

0W = (Ap + Au)

where q2 = u2 + v2 and a, p are the Roe average values. For details on
the 1-D basic scheme consult Ref.I.

To the ist order scheme (12) higher order corrections can be added,
preserving monotonicity. This involves the use of flux limiters [I and 11).

4. HYBRID METHODS IN ONE DIMENSION

The intention is to combine the methods described in sections 3.2
and 3.3 with RCM to produce zero-width discontinuities and accurate repre-
sentation of the smooth parts of the flow. RCM is used only at 'large'
discontinuities (may be once or twice per time step). In one space dimen-
sion we identify shock waves and contact discontinuities from the solutions
of the sequence of Riemann problems RP(i,i+1) at every time step n. If
cell i is transversed by a discontinuity (see Fig.2) then the solution
at time level n+1 is found from equation (5). Elsewhere one uses another
method (SORF or ROE).

4.1 The ROERCM Hybrid Method

This method results by combining Roe's method (§4.3) and RCM (§4.1)
in the manner just described. In order to assess the performance of the
methods we consider a shock tube problem with data

=1.0, u = 0, pi = 1.0, Pr 0.125, u r = 0, pr = 0.1, y = 1.4 .(16)
In all computed results shown we took a Courant number coefficient

C = 0.4, and 100 grid points on a tube of length 1.0. The initial dis-
continuity is at xo = 0.5.
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Fig.3 shows the computed solutions and the exact solution using
Roe's method alone after 140 time steps. By current standards this is
an accurate solution to this problem. The shock is resolved within 3/4
zones (see velocity plot). The contact discontinuity is resolved within
7/8 zones (see energy plot).

Fig.4 shows the computed result using the ROERCM Hybrid Method.
Notice that the shock wave and contact discontinuity are absolutely sharp,
as we expected.

4.2 The SORFRCM Hybrid Method

This hybrid method was presented in Ref.8 for 1-D problems. The
present version contains some improvements. Fig.5 shows results for prob-
lem (16) with data at t = 0. Compare with Fig.4.

5. HYBRID METHODS IN TWO SPACE DIMENSIONS

In order to test the performance of the hybrid methods against an
exact result we used the shock tube problem (16) with the initial discont-
inuity placed at an angle a to the computing x-y grid. Then, along the
normal direction of propagation of the resulting waves the problem is
one-dimensional and thus the exact solution can be used again.

An important remark here is that since RCM fails in 2-D via operator
splitting we do not expect to preserve all the good features of the hybrids
that hold in 1-D problems. To illustrate this we show a computed solution
using RCM alone for data at an angle a = 45'. The results are shown in
Fig.6. They are unacceptable. The oscillations are caused by the shock wave.

The hybrids in 2-D will therefore compromise shock waves. They
will be treated by either ROE or SORF. Contact discontinuities however,
will be absolutely sharp as in I-D problems.

Fig.7 shows the solution obtained by ROERCM for the mesh 100xl00
after 180 time steps. Notice that start up errors give inaccuracies near
the tail of the rarefaction and just in front of the contact discontinuity
(see internal energy plot). Fig.8 shows corresponding results obtained
by the SORFRCM method.

6. CONCLUSIONS AND FURTHER DEVELOPMENTS

Two hybrid methods which are directly applicable to 1-D Gas Dynamics
have been presented. Results are accurate in smooth parts and discontin-
uities are of zero width. Two or three dimensional extensions are imple-
mented via space operator splitting. Shock waves must be compromised,
but contact discontinuities are of zero width as in I-D problems.

Further developments are possible for the SORFRCM hybrid. One aspect
is monotonicity for SORF. Another is use of approximate Riemann solvers
for SORF to increase computational efficiency. Some preliminary tests
show that a two rarefaction approximation is sufficiently qood. Further
experience from applications to problems of scientific and engineering
interest would also be valuable.
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1. DENSITY 1.0 VELOCITY DENSITY VELOCITY

0 1.0 0 1.0 0 I.€ 0 1.0

1.0 PRESSURE 3.5 NTERNAL ENERGY 1.0 PRESSURE INTERNAL ENERGY

.0 L 1.0 0 1.0 0 .

FIG. 3 : COMPUTED (SYMBOL) AND EXACT FIG. 4 : COMPUTED (SYMBOL) AND EXACT
(LINE) SOLUTIONS. ROE METHOD USED. (LINE) SOLUTIONS. HYBRID ROE/RCM USED.

1.0 DENSITY 10 VELOCITY 1. DENSITY 1.3 VELOCITY

O 1.0 0 1.0 0 1.4 0 1.4

PRESSURE INTERNAL ENERGY PRESSURE INTERNAL ENERGY
1.0 3.5 1.0 4.0

0 1.0 0 1.0 0 1.4 0 1.4

FIG. 5 : COMPUTED (SYMBOL) AND EXACT FIG. 6: COMPUTED AND EXACT SOLUTIONS
(LINE) SOLUTIONS. HYBRID SORF/RCM USED. IN NORMAL DIRECTION. RCM USED.
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DENSITY VELOCITY DENSITY VELOCITY

o 1.4 0 1.4 0 1.4 0 1.4

PRESSURE INTERNAL ENERGY PRESSURE INTERNAL ENERGY

0 1.4 0 1.4 0 1.4 0 1.4

FIG. 7: COMPUTED AND EXACT SOLUTIONS FIG. 8: COMPUTED AND EXACT SOLUTIONS
IN NORMAL DIRECTION. ROE/RCM USED. IN NORMAL DIRECTION. SORF/RC USED.
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for Supersonic Flow Computation
around Wings of Lifting Vehicles
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Moscow

Summary

Some features of numerical algorithms for supersonic flow computation around
wings are considered. It is supposed that wings have various planforms without

cranked edges. Three main cases of the flow around wings are considered depending
on the bow shock wave location. The flow domain around wings is divided

into subdomains. In each subdomain there is a local coordinate system, a local

computational mesh and separate algorithms. All algorithms are based on the

inviscid gas model. Principal features of the algorithms and ways of their combination

for the whole wing in various cases are described. Some computational examples are

presented.

Wings of lifting vehicles have various planforms. Let us consider profiled wings
without cranked edges. Three main cases can be isolated according to the nature of

supersonic flow around them:

a) wings with a shock wave attached to the leading edge (supersonic leading edge)

(Fig. 1)

b) wings with a shock wave attached to the apex but detached from the leading

edge (subsonic leading edge) (Fig. 2)

c) wings with a shock wave completely detached from the leading edge (Fig. 3)

Case a) appears, as a rule, on sharp-edged trapezoidal wings. The tip edge of

those wings is usually parallel to the axis OX. The flow on the upper side of the wing
can be that of compression or expansion depending on the freestream Machnumber,
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angle of attack, the sweep angle and the opening angle of the airfoil nose. There is

always compression flow below the wing.

In case b) the wing has a rectilinear or curvilinear leading edge and a sharp-

nosed profile. The tip edge, as in the previous case can be parallel to axis OX.

Detachment of the bow shock wave from the leading edge is determined by freestream

Machnumber and the sweep angle.

In case c) the wing may have any planform with a curvilinear or rectilinear

leading edge. The wings airfoil has a blunt or a sharp nose .,nd the opening angle of

the sharp nose is overcritical.

Computational meshes must be introduced for the finite-difference method of

the flow computation. The construction of the mesh based on the universal coordinate

system for all cases leads to unjustified difficulties. It is expedient to divide the

flow domain around the wing into subdomains according to geometrical parts of

the wing such as: fore part, tip-side part, central part. Local coordinate systems

and local computational meshes are introduced in all subdomains isolated by some

characteristic surfaces; it is more convenient to compute the flow around seperate

parts of the wing.

In all subdomains the surfaces of the wing and the shock wave become

coordinate surfaces and therefore the physical domains of the solution with

complicated geometry are mapped on simple rectilinear computational subdomains.

For each subdomain there are separate problems and corresponding algorithms based

on the flow features. The general algorithm consists of these particular algorithms

and depends on the computational case. The solution of the whole problem must be

continuous.

Case c) is the most complicated. Let us first consider case c) as it is also the

most common. Three subdomains can be isolated here. At first the Cartesian co-

ordinate system is used with axis OX directed along the central chord of the wing

(Fig. 3). A local curvilinear coordinate system is introduced in each subdomain.

Some parameters for a convenient description of the wing geometry, including aero-

dynamical deformation, can be introduced into the coordinate transformation. The

subdomains are separated by .space type surfaces. Characteristic cones emanating

from the surfaces of this type will touch them only with their apexes. From this con-

sideration the conclusion is drawn that on the space type surfaces there are no bo-

undary conditions.

The first subdomain corresponds to the front part of the wing (Fig. 3). It is

restricted above and below by wing and shock wave surfaces and downstream

and from the tip-side by the space type surfaces T and Q.
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The second subdomain corresponds to the wingtip section. It is also restricted
by wing and shock wave surfaces and on the sides of the upper and lower parts of
the wing by space type surfaces Q and P.

The third subdomain consists of two parts - upper and lower. It covers the
central part of the wing down the flow behind surface 1T up to the trailing edge.

The same subdivision is preserved for case a). In case b) there is the second

subdomain only, which is restricted on the side by a symmetry plane.

II

The solution of the whole problem is based on the inviscid gas model. For case c)

this solution combines a pseudo-unsteady approach for the elliptic-hyperbolical
problem in the first subdomain and a steady-state approach for the hyperbolical

problems in the second and third siibdomain. Gasdynamic functions on surfaces 1T

and Q are obtained by the solution of the first subdomain problem. The functions
on surfaces Q are initial in the second subdomain and the functions on surface U in

the third subdomain.

Unsteady gasdynamic equations are utilized in the first subdomain. A curvili-
near coordinate system is introduced by transformation:

t =r X =X(r,C,0~C; Y =Y(r,,'i,() ;z =zrC70

Wing surface G = G(r, 77, () and shock wave surface F = F(r, q, () become then

coordinate surfaces. In new coordinates these equations are C = 0 and = 1,
respectively. The calculation domain is now enclosed in a rectangle:

0_<C __1; -7r/2<q!_<r/2; 0_,(<1.

Surfaces 1T above and below the wing have the equations 17 = ±7r/2. Plane XOY

and surface Q have equations C = 0 and C = 1, respectively. The wing surface is

approximated by local cubic splines in a time-dependent steady-state process. The

final computational mesh is also generated in this process.

There is a steady flow in the second and third subdomain. The coordinate

transformation is simpler here. In the second subdomain variables are now enclosed

in rectangle:

0<2r<l; 0<C_<I; -7r/2<7_ir/2,
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where r is one space coordinate. Surface Q has the equation r = 0 and surface P
the equations 1 = ±r/2.

In the third subdomain the variables alteration is:

0<r<l; 05c_<1; O0_ <1.

Surface iT has equation r = 0 here, plane XOY has equation (= 0 and surface P

has equation C = 1.

Computation in the second and third subdomain is carried out along axis Or
simultaneously. On surface P which separates these subdomains the functions are
smoothly completed from the inside of the second subdomain. In all subdomains
numerical algorithms with implicit second-order finite-differences schemes are

used [1].

III

Let us consider features of the first subdomain algorithm for case a). In this
case the shock wave is attached to the leading edge when the velocity component
normal to the leading edge is greater than sound velocity and the sum of the angle of
attack and semi-angle of the airfoil nose opening is smaller then the critical deflection
angle. In this case the mutual influence of the flow fields above and below the wing
is absent. The flow domains are restricted by the shock wave or the characteristic
surface above. This surface appears when the angle of attack is greater than the
semi-angle of the airfoil nose opening.

There are two variants in the problem formulation. The first variant is for

weakly swept wings (X < 30). Here gasdynamic functions in the first subdomain
on the leading edge are calculated asssuming that the flow around each element of
the leading edge is the same as the flow around a sliding wedge. For calculation
the freestream vector is decomposed into two components: normal and tangent to
the leading edge. In compression region with the shock waves the functions are
computed using relations for the flow around a wedge. In expansion region within a
characteristic surface the functions are computed using Prandtl-Meyer relations. The
functions on the leading edge represent initial data on surface 1T for computations

in the second and third subdomain.

In the second variant - for highly swept wings, it is convenient to use the
algorithm of the third subdomain only. Here axis Or coincides with axis OX and
the initial data are on surface z = x 0 near the apex of the wing. The presence of
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the self-similar flow around the conical surface near the apex of the wing makes it
possible to apply the self-similar stationing principle along coordinate Or for the

flow computation on surface x = X0.

In this case (a) the problem of the supersonic flow around the wingtip side
takes a special place (Fig. 4). The solution of this problem represents initial data on
surface Q, for the flow-field calculation of the downstream tip-side of the wing which
is done by the algorithm of the third subdomain. The formulation of this problem is
based on the assumption that the surface of the wingtip side is conical and the flow
around it is self-similar. The flow under consideration and also the solution domain
are separated from the freestream by the conical surface of a bow shock wave F, with
the apex in point 0 and by characteristic surfaces L., Ll emanating from the same

point. The self-similar flow makes it possible to apply the self-similar stationing
principle with the algorithm of the second domain to the solution of that problem.

The flow around the tip-side of the wing is very complicated. The tip-
edge vortices with large gradients of gasdynamic functions are generated here.

This requires a careful choice of the computational grid and of local clustering of

computational points.

IV

The algorithm of the second subdomain is used in case b). Axis Or coincides
here with axis OX and the initial data on surface x = x0 are obtained in the same
way as in the second variant of case a). For highly swept wings there are vortices on
the leading edge such as on the tip-edge of the previous case.

V

Computation examples

According to the complete set of algorithms some examples were computed
[1-3]. In Fig. 5 the wing of the elliptical planform with aspect ratio A = 2.56 and
thickness ratio of the blunted nose airfoil i = 0.3 are shown. The boundaries of all

subdomains are drawn as heavy lines. The bow shock wave forms corresponding to
airfoils are shown here for Moo = 2 and a = 5° .

The pressure distribution at Moo = 2; 3.5, a = 50 along the two cross-sections
of the same wing on the lower (solid lines) and on the upper (dashed lines) surfaces

are shown in Fig. 6.
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The pressure distribution on the lower (solid lines) and upper (dashed lines)
surfaces of the delta wing with a detached shock wave is shown in Fig. 7. There is a
sweep angle X = 700. On plane XOY the symmetrical airfoil is generated by arcs of
a circle. The thickness ratio of the airfoil is F = 0.038. The cross-sections of the wing
are ellipses. The freestream parameters are M,, = 1.5, a = 3. The algorithm of the

second subdomain is used. The stream-surfaces cross-section cut by plane z = 0.7

(the length of the central chord is x = 1) for the same wing is shown in Fig. 8. On the
upper surface a vortex-structure with tangential discontinuty is likely to develop. In
Fig. 9 diagrams axe given of aerodynamical loading Ap for a delta wing with sharp
leading edges and an attached shock wave. The biconvex airfoil is generated by arcs
of a circle with thickness ratio Z = 0.05 in the upper and - 0.02 in the lower parts.

The sweep angle is X = 600 and the freestream parameters are Moo = 4, a = 5'.
The algorithm of the third subdomain is used.

The pressure distribution p/pm, in plane Q, for the nose tip-side of the
rectangular wing is given in Fig 10. The nose of the wing in this case is represented

by a wedge and the wingtip surface is an elliptical semi-cone surface. The opening
angle of the wedge is /3 = 200. The pressure distribution on the lower surface is a
solid line and on the upper surface is a dashed line. The freestream parameters are

Mo = 2, a = 5* . The clustering of the computational points in the tip region allows

to approximate large gradients of functions.
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SUMMARY

The eigenvalues and eigenvectors are analytically derived for general
real gas dynamic equations in three-dimensional generalized curvilinear
coordinates. In our diagonalizing formulation, the total mass conservation
equation is taken into account, and arbitrary nonequilibrium effects, such
as chemical reactions or vibrational nonequilibrium, can be treated in the
same fashion. Making use of this diagonalization, we construct a fully
implicit and high resolution scheme for chemically reacting real gases.
Numerical results of two-dimensional shock-induced combustion problem show
the efficiency and high resolution of our scheme.

1. INTRODUCTION

Efficient and accurate simulation of chemically reacting flows in
hypersonic region is intensively required because of the recently proposed
aerospace development plans, such as Aeroassisted Orbital Transfer Vehicle
(AOTV), or recently proposed new space transportation vehicles. In order to
estimate heating rate to an AOTV correctly, it is necessary to calculate
vibrationally nonequilibrium and chemically reacting flows, accompanied
with extremely strong shock wave. The development of Supersonic Combustion
Ram Jet, a main propulsion system for a Space Plane, will also require a
great deal of computational effort with chemically reacting flows.

The difficulty in calculating hypersonic reacting flow is mainly due to
the following two reasons. One is the stiffness of system of equations.
Chemically reacting flows can contain very different characteristic time
scales, that of fluid or chemical reactions, even at the same time and same
point. Such a disparity of time scales is referred to as stiffness, which
causes numerical instability in time integration of the equations. Now the
only effective means to avoid a numerical instability from the stiffness is
an implicit treatment of chemical source terms[l]. In the past few years,
several researchers[l,2,31 have calculated various nonequilibrium flows,
using this approach, with great success. But the implicit treatment of
chemical source terms is equivalent to advancing each state quantity at its
own characteristic rate. So it seems to us that unsteady simulation of
chemically reacting flows is essentially difficult and remains to be a
future subject.

The second difficulty is the treatment of strong shock wave, which is a
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common problem with a perfect gas. Recently, several modern shock capturing
methods are devised for a perfect gas, based on exact or approximate
Riemann solver [4,5,6]. These first order upwinding schemes can be
converted to the higher-order schemes under the restriction of Harten's TVD
sufficiency conditions[7,8,9]. Various calculations for a perfect gas show
the excellent accuracy, high resolution and robustness of the higher order
TVD schemes[8,9]. Many approximate Riemann solvers make use of the
eigenvalues and eigenvectors of the gas-dynamic matrices. So, when
applying such higher-resolution schemes to real gases, those of real gas-
dynamic matrices, for themselves, are needed. Eberhardt and Brown [10] have
analytically obtained the eigenvalues and eigenvectors of the fully coupled
system in Cartesian coordinate, including species conservation equations in
addition to the gas dynamic equations. They have calculated reacting flows
using a first-order TVD scheme. Very recently, Yee and Shinn [11,121 have
extended their formulation to general curvilinear coordinates, and have
solved shock ignition problem by the use of symmetric TVD schemes. However
both of their basic equations do not include total mass conservation equa-
tion. Thus, the total mass is not conserved, especially when chemical
source terms are treated implicitly. Park[13] suggests that the equations
of the total mass and the all the species continuity shoe be solved
together for flows in which dominant species do not exist.

In this paper, we present a new diagonalizing formulation of general
real gas-dynamic matrices, which has the following favorable properties
(1) Total mass conservation equation is included.
(2) Chemical reaction and vibrational nonequilibrium can be treated in the

same fashion.
(3) Matrix multiplications are so simple that the increase in number of

additional nonequilibrium equations does not violently increase the
operational counts.

(4) This is a natural extension of Warming, Beam and Hyett's perfect gas-
dynamic matrices diagonalization(14], which is a special case of our
formulation.

Our diagonalization makes it possible for general nonequilibrium flows
to construct finite difference schemes based on characteristic relations,
or to simplify the inversion work of block-tridiagonal systems that arise
in an implicit factored scheme. Numerical results of two-dimensional shock-
induced combustion problem show the efficiency and high resolution of the
scheme based on our diagonalization.

2. GOVERNING EQUATIONS OF GENERAL REAL GAS

There are two main differences between the governing equations of a
perfect gas and that of general real gas. A general real gas needs the ad-
ditional equations which represent nonequilibrium effects, such as chemical
reaction or vibrational relaxation. Any of these equations is written in
the weak conservation form :

fi pf tuk . . .
at 6 xk

where fi is a physical property per unit mass, and st is its corresponding
source term. If this equation represents the effect of chemical reaction,
the property fi is the mass fraction Yi of species i, and si is the species
production term. On the other hand, if this equation represents vibrational
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nonequilibrium effects, the property fi and si are vibrational energy per
unit mass evibi and the vibrational relaxation term, respectively. The
second difference is that the internal energy contains additional terms for
the case of general real gas. For a perfect gas, the internal, ouly
translational and rotational, energy is proportional to the translational
temperature T. On the other hand, the general real gas contains additional
equilibrium and nonequilibrium vibrational energy and heat of formation.
The resulting internal energy of a general real gas is given as :

e = pZevib + PXYi [fCPidT+AHF i ] - P. • • • (2)

where AHF, is the heat of formation for species i and Cpi is a specific
heat at constant pressure. Without radiation or lasing, there is no need to
introduce the source term in this energy conservation equation, since the
flow itself does not exchange energy with anything else, even when chemical
reaction or vibrational relaxation takes place. However there are no simple
relations between internal energy and translational temperature, nor
between internal energy and pressure P. Therefore, for real gases, the
pressure P is a complex function of density, internal energy and fi

P =P (P. e, fl " fn )  ... (3)

Taking account of these differences between perfect and real gases, the
three-dimensional Euler equations for general real gas , with n additional
nonequilibrium equations, are given in the form

q + 6E + F bG
a t 6x 6y Y aZ

where

q= p E ' pU F =  v G= Pw S =  0

Pu Puu+P PuV puw 0

Pv Pvu pvv+P Pvw 0

pw Pwu PwV pww+P 0

E (E+P) u (E+P) v (E+P) w 0

Pfl Pflu Pf IV pfw s

PfI Pf 2 u Pf 2v  Pf 2w s2

Pfn Lfnu Pf nV P f nW

The above equations are transformed into generalized curvilinear
coordinate system in the form

aq 6 E a F 6G
-,+ - + + -- s • .(5)

where

q=q/J G=(Ctq+CxE+CyF+CzG) /J
E=(Jtq+JXE+JyF+Cz G ) /J SS/

i= ('*tq+i7xE+i7y F+ z G) /J.

As the above system of equations includes the total mass continuity
equation, we can conserve the total mass, which would violently suffer from
numerical errors if the global continuity equation was calculated as the
sum of all the species continuity equations[lOl.
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3. DIAGONALIZATION OF GENERAL REAL GAS MATRICES

Every modern shock capturing method makes use of the hyperbolic
properties of the Euler equations. This hyperbolicity comes from the real
eigenvalues and the corresponding eigenvectors of the flux Jacobian
matrices(gas-dynamic matrices). The flux Jacobian matrices P of the general
real gas are given in the form :

P = ktI + kxA + kyB + kzC .. . (6)

where
A= E  B8- C -

8 q B q aq

and k = , q or C for P = A, B or C, respectively.

The eigenvalues and eigenvectors of the gas-dynamic matrices P are
obtained by diagonalization of P ;

P m T A T -1  . (7)

where A is the diagonal matrix of eigenvalues of P. T and T-1 are matrices
representing its right eigenvectors and left eigenvectors, respectively.
The form of the diagonalization is somewhat arbitrary. Here we choose the
diagonalizing formulation so as to be identical to that of reference (14]
in the case of a perfect gas. In this diagonalizing procedure, we assume no
special relation among pressure, density, internal energy and fi. This
means that, in our formulation, an arbitrary equation of state for a gas
can be treated, and any additional equation representing nonequilibrium
effects can be included.
In the Appendix, we present the form of matrix T, A, T-1 . These matrices

may look complex. However, in practical computation, only a multiplication
of a vector and the matrix T or T-1 is needed. These results are written in
a simple farm[15], and the increase in number of additional nonequilibrium
equations does not violently increase the operational counts.

4. NUMERICAL SCHEME

Euler implicit scheme is generally given as

[Implicit Operator] &q = At (- AE - AF - AG + S)

n= n n + &q ... (8)

where AE a Ei, 1 2-Ei 11 2 ,etc. The form of a numerical flux and an implicit
operator characterizes its scheme. In this paper, Harten-Yee's implicit
TVD scheme, with a modified treatment of metrics[9], is used.

The implicit operator is approximately factorized to the multiplication
of point and alternative direction implicit operators as follows;

[Implicit Operator]=[l-hH] Tj [l+h jA+hDj] 0 [l+h 6,A+hD,] P [l+h kA+hI ] T I

Hereh=~t, T 1T •T T. (9)

Here, hffi at,Of ? ,PTIT. and H is a Jacobian matrix of chemical source
terms(l]. The implicit operators for convective terms are diagonalized so

651



that it becomes the same as that of the diagonalized Beam-Warming scheme
(16] except for the numerical viscosity,

Dg=V[diag (-max (o(A8/ 2))] , etc.

Here, o(z) is an absolute function modified to satisfy entropy condition.
The numerical flux, for example E, 1/2 , is given as

Ei 11 2 =(E i + Ei+1 + (71 ")i+1/2 • (10)
2

where the element of 0 denoted by On is1 1
/ 1 [ (A +I/2) (g! +g'+,) - to (A'+Ya) as~i+112]

1i+1/2 21+1/2 2

The adjustment quantities, for high accuracy, g and y are given as

minmod [a!41 a, a Ig mnmod 1a+1/2 , 1-1/2 ]

Y+1/2= O(A +1/2) (gi+I-g!) /an+1/ a.i/2* 0

1 , 2  1 1 0  a +/2=  0

a 1 /2 is defined on the basis of T- 1 2 (qi+l-qi), which is T- 1 /2 (qi+,-q 1 ) /

in Harten-Yee's original TVD scheme. Here, an attention should be

paid to the evaluation of the average-state at i+1/2. For a perfect gas,
Roe has wisely devised an average state which satisfies the "property U".
However, this condition cannot be uniquely satisfied for the general real
gas. In this paper, we use a simple average, or a Roe's average which
would recover "Property U" for a perfect gas. Construction of a more accu-
rate and efficient Riemann solver, for the general real gas, will require
further research. The above formulations have been presented in three-
dimensional form and two-dimensional form is easily obtained as a subset.

5. SAMPLE CALCULATIONS AND DISCUSSIONS

We calculate two-dimensional shock-induced combustion problem(Fig.1).
A high temperature supersonic mixture gas of N2, H2, O is ignited by the
oblique shock waves, which are caused by the wedges located at the center
and on the walls through the duct. The inlet conditions are P=latm,
T=1050K, and M=4. We employ Westbrook's Hz-02 chemical reaction model[17],
which takes accounts of 17 reactions and 9 species(table I). Here, we solve
Navier-Stokes equations, using 120 x 40 grid system of the half computa-
tional domain. Figures 2-4 show the contours of temperature, mass fraction
of H20 and OH, respectively.

A steady state is obtained after the first 2000 time steps, which takes
about 190 sec with FACOM VP-200. The same calculation using a perfect gas
takes about 110 sec. This indicates the efficiency of our scheme. However,
for the reacting flow, we cannot use a CFL number larger than the order of
one. This is probably due to the strong nonlinearity of chemical -ource
terms. We think that a more careful treatment of source terms is needed.

6. CONCLUSION

The eigenvalues and eigenvectors are analytically derived for general
real gas dynamic equations including total mass continuity equation in
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generalized curvilinear coordinates. We construct fully implicit upwind
schemes for the general real gas using our diagonalizing formulation.
Sample calculations show the efficiency and high resolution of our scheme
for chemically reacting compressible flows.
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Table 1 Westbrook's Chemical Reactiansrl7]

S(1) N +0, 0 +0OH, (2) H1, + 0 H + OH1,

(3) 1,0+ 0 OH + 011, (4) 1,0+1H H, +0OH,

(5) H,O, + Oi H,O + O, (6) H,O + M H +Oil+ M,

(7) H +0, + M HO,+ M, (8) HO, +0 , +OH1,

(9) H102 + H1 OH + 011, (10) 110, + N H1, + 02,

(11) 1102 + OH H2,0 + 02, (12) 11,0, + 0, HO, + HO,,

(13) 11,0, + M OH + OH + M, (14) H2,02 + H HO, + H21

(15) 0 + H + M OH + M, (16) 0, + M 0 + 0 + M,

(17)1 H, +M H H+ H+ M_______

Mach 4
1 atm
1 050K

H2=0.027
y =0.222

YOH1 =0.001

N=0.75 <________

Fig.i Shock-induced Combustion Problem Fig.3 Contours of H20 Mass Fraction
and Inflow Conditions (Maximum YH2o=0.213)

Fig.2 Temperature Contour. Fig 4 Contours of OH Hass Fraction
(Maximum Temperature=3402K) (Maximum Yaw 0.038)
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APPENDIX

1. Common Notations

E - e+pq2/2
b ae +P

k) ( ) X kx 2 +ky 2 +kZ2

0 a kxu+ky v+kzw

q 2 = u 2 +v 2 +w 2

C2 = ab+pg

1 = p 1 P I '_

pe p, p f1 , e 1 pfi p' fj~i' e

These notations are for three-dimension. When kz and w are set to be
zero, you get those of two-dimension.

2. Three-Dimensional Matrices

2.1 Eigenvalue Matrix

A a diag (U, U, U, U+C, U-C, U, U, ., U)

where

U = kt+kxu+kyv+kzw C = I k 2+ky2+kz 2 " c

2.2 Relation Between T-1 and T of the Form VT1

M, m2 M3 - m./4,7" M. m/4"2"

-M2 m1 m4 m3 /14" -m 3 /47

-m 3  -M, -i m/["T m2 /2 0

m.1 4-7 -m 3/4"Z m 2/4"- (1+m,)/2 (1-m,)/2

-m/4" m,/4-7 -m2/42- (1 -m,)/2 (1 +m,)/2

1
0

1

0
0

where

m, a G.XfX+jkyy+k.z, m, a kX-f-Zix
m, Kxi 1Z-jZ4', M, a O. i-0.1
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3. Two-Dimensional Matrices

3.1 Eigenvalue Matrix

A - diag (U, U, U+C. U-C, U, U, •, U)

where U = kt+kxu+kyv C= k 2+k 2 •c

3.2 Relation Between T-I and T of the Form TklTl

1 0 0 0

0 MI -m 2 /=' m2/42-

0 mz/4= = (l+m,)/2 (1-m,) /2

0 -m 2/-2 (1-m,)/2 (1+m,)/2

1
O

1

O

1

where m, = X',X+,'lY, M2 _= - ky lx

3.3 Right Eigenvector Matrix T

02c 0 c ...c0

u y# (u+ c) P (u-;Xc) , 0

U 2 (v+ c) - 0 0 0

,2+ b +(2'+ - dL d- d

-a P (iYu-zv) 2 p 2 p di d2 dn
2 a a a a

f 0 p fl
17c -c

0

f2 0 .0 ffZ

0

fn 0fi.
58c t"c
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STABILITY OF SEMI-DISCRETE APPROXIMATIONS FOR
HYPERBOLIC INITIAL-BOUNDARY-VALUE PROBLEMS:

STATIONARY MODES

ROBERT F. WARMING AND RICHARD M. BEAM

NASA Ames Research Center
Moffett Field, CA 94035, USA

SUMMARY

Spatially discrete difference approximations of hyperbolic initial-boundary-value problems
(IBVPs) require numerical boundary conditions in addition to the analytical boundary con-
ditions specified for the differential equations. Improper treatment of a numerical bound-
ary condition can cause instability of the discrete IBVP even though the approximation is
stable for the pure initial-value or Cauchy problem. In the discrete IBVP stability litera-
ture there exists a small class of discrete approximations which are called borderline cases.
For nondissipative approximations, borderline cases are unstable according to the theory
of the Gustafsson, Kreiss, and Sundstrom (GKS) but they may be Lax-Richtmyer stable
or unstable in the L 2 norm on a finite domain. We show that borderline approximations
can be characterized by the presence of a stationary mode for the finite domain problem.
A stationary mode has the property that it does not decay with time and a nontrivial
stationary mode leads to algebraic growth of the solution norm with mesh refinement. We
give an analytical condition which makes it easy to detect a stationary mode and we in-
vestigate several examples of numerical boundary conditions corresponding to borderline
cases.

1. INTRODUCTION

In this paper we consider the stability of spatially discrete approximations to hyperbolic
IBVPs. For simplicity we consider the stability of approximations to the IBVP for the model
hyperbolic equation

8u 8 uau.=c , 0<z<L, t>0 (1.1)

where c is a real constant. One must specify initial data at t = 0, and the IBVP is well-posed if
an analytical boundary condition is prescribed at x = L

u(L,t) =g(t) for c> 0. (1.2)

A semi-discrete approximation of (1.1) is obtained by dividing the spatial interval into J
subintervals of length Ax where JAx = L, x = :3 = jAw and approximating the spatial
derivative u,, by a difference quotient. As a prototype approximation we replace u., by a second-
order-accurate central-difference quotient to obtain a system of ordinary differential equations
(ODEs)

u- = - (u,+I - u-1), j=1,2,--,J -1 (1.3)

where u, = uj (t) denotes the approximation to u(z,t). The right boundary (z = L) is advanced
by using the analytical boundary condition (1.2). For the stability analysis we assume that the
boundary condition is homogeneous, i.e., 9(t) = 0, and for the semi-discrete problem we write
Uj = 0.

A complication in completing the approximation is the fact that more boundary conditions
are required for the semi-discrete approximation than are specified for the partial differential
equation. If we apply (1.3) at the left boundary (j 0), then the difference stencil protrudes one

660



point to the left of the boundary. It is clear that that a numerical boundary condition is required.
For example, at the left boundary (j = 0) we can change from a centered approximation to a
one-sided approximation of u.:

duo c
-- = EI- -U2 + (I + 2a)u, - (I + a)uoJ (1.4)

where a is a parameter. Any procedure, e.g., (1.4), used to provide a numerical boundary
condition is called a numerical boundary scheme (NBS). In the stability analysis of this paper it
is convenient to express the NBS as a space extrapolation formula. The NBS (1.4) is equivalent
to

q(E)u-I = 0, where q(E) = (E - 1) 2 (2aE - 1) (1.5)

and the shift operator E is defined by

Eu, = U,+l. (1.6)

The system of ODEs (1.3) together with the analytical boundary condition uj = 0 and the
NBS (1.4) can be written in vector-matrix form as

du(t)
dt = Au(t) (1.7)

where u is a J-component vector and A is a J x J matrix. The essential element in the stability
of the semi-discrete approximation (1.7) is the behavior of the solution at a fixed time as the
spatial mesh is refined. Consequently, one must consider an infinite sequence of ODE systems
of dimension J where J - oo as Ax -- 0.

For the semi-discrete approximation (1.3) with periodic boundary conditions the matrix A =

AP is a skew-symmetric circulant matrix. Consequently the eigenvalues of Ap are pure imaginary
and the semi-discrete approximation is said to be nondissipative. The analysis of stationary
modes for dissipative approximations will be given in a subsequent paper.

Stability of a semi-discrete approximation with homogeneous boundary data means that there
exists an estimate of the solution in terms of the initial data. For example, the semi-discrete
approximation represented by the sequence of ODE's (1.7) is Lax-Richtmyer stable if there exists
a constant K > 0 such that for any initial condition u(0)

11u(')JI _S KJiu(O)JJ (1.8)

for all J > 0, JAx = L and for all t, 0 < t < T with T fixed. In this paper the symbol .

denotes the discrete L 2 norm defined by
J-1 )1/2

[Iu(t)Il2 = ( -uAz) (1.9)

Two methods for carrying out a stability analysis are the energy method and the normal mode

analysis. The normal mode analysis is an eigenvalue analysis. If we look for a solution of (1.7)
of the form u(t) = e' t #, then we obtain A# = so. But this is just the eigenvalue-eigenvector
problem for the matrix A where # is the eigenvector and s is the eigenvalue. The practical
problem of implementing stability tests on the eigenvalues is that the normal mode analysis for
a discrete hyperbolic IBVP on a finite domain is, in general, analytically intractable.

The intractability can easily be demonstrated by the normal mode analysis of the ODE system
(1.7). The components 0, of the eigenvector # and the normalized eigenvalue i = (Az/c)s are
given by 1

01 - aliK3 - (-c 2 )J(-_1/)'I, 2 - - (1.10a,b)
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where a is an arbitrary nonzero constant and K is a root of the characteristic equation

q(s) - (-, 2 )"+'q(-/ I) = 0. (1.Oc)

The polynomial q(K) depends solely on the NBS, i.e., q(K) is the polynomial associated with the

NBS written as an extrapolation formula. For example, the polynomial q(r) for the NBS (1.5)
is

q9() = (c - 1)2(2ar - 1). (1.11)

Since JAx = L, the degree of (1.10c) increases as the spatial mesh increment Ax decreases. In

general, one cannot solve for the roots of (1.10c) which accounts for the analytic intractability
of the normal mode analysis on a finite-domain.

Although the Lax-Richtmyer condition (1.8) is a conventional stability definition, there is no
known algebraic test to check the stability condition for discrete hyperbolic IBVPs on a finite

domain. A more complicated stability definition is used in the theory developed by Gustafsson,
Kreiss, and Sundstrom (GKS) 11]. Strikwerda 14] has extended the GKS theory to semi-discrete
approximations. The advantage of the GKS theory accrues from the fact that a finite-domain
problem with two boundaries is divided into a Cauchy problem and two quarter-plane problems

each of which can be analyzed separately by a normal mode analysis. The analogues of (1.10)

for the right-quarter plane problem are

=apei ,  2V = o -- (l.12a,b)

where K is a root of

q() = 0. (1.12c)

This is the same polynomial q(#) that appears in (1.10c). The roots of (1.12c) are easily found
since q(K) is of low degree. Algebraic tests based on the roots of q(sc) and the corresponding

eigenvalues i provide necessary and sufficient conditions for GKS stability.
The connection between the normal mode analysis for the finite-domain problem and the

normal mode analysis for the quarter-plane problem is rather obscure. In a recent paper 161 we
derived asymptotic estimates of the eigenvalues for the finite-domain problem. These estimates

were used to relate the normal mode analysis of the finite-domain problem and the GKS quarter-
plane analysis. In order to derive the asymptotic estimates for the roots of (1.10c), we assumed
that particular roots can be identified for each J and we write K = x(J). Furthermore, there is

no loss of generality in assuming that I(J) I < 1. We showed that the roots of the characteristic
equation (1.10c) can be divided into three distinct classes according to the asymptotic behavior

of 1c(J)IS in the limit J - co. For I(J)I < 1 there are only two possibilites:

(I)- lim K1(J)j = 0, (/1) : Jim K(J)]
j = constant > 0. (1.13)

J-.00 J-00o

For roots in class (I), it is clear that (1.10c) reduces to the quarter-plane equation (1.12c) as

J -- co. Consequently, a root in class (I) becomes a root of the quarter-plane polynomial
(1.12c) in the limit J - oo. The eigenvalues corresponding to the K's of class (II) are benign in

the stability analysis in the sense that they satisfy the inequality W(i) _< const/J (see 161).

2. STATIONARY MODES

In addition to (I) and (II), there is a third class of roots

i(III): 10c(J)i = 1. (2.1)

If Pc is in class (III) and is independent of J, then K remains fixed on the unit circle for all

J. For this to happen it is obvious from (I.1Oc) that the polynomials q(K) and q(-l/8) must
have a common factor. This common factor leads to identical roots for both the quarter plane
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polynomial q(r) and the finite-domain characteristic equation (1.10c). These roots are fixed

(independent of J) on the unit circle and from (1.10b) one obtains W(i) = 0 with ! (.i) = fixed.
Consequently, there is a stationary mode, i.e., a mode with K and i independent of J.

If there is a stationary mode for the finite domain problem, the GKS perturbation test will
always indicate the presence of a GKS generalized eigenvalue and consequently the semi-discrete
approximation is GKS unstable. The existence of a GKS generalized eigenvalue is easily proved.
Since I s = 1 and both K and -/ are roots of q(oc) = 0, we need two perturbation tests, i.e.,

,; - (1 - C)e , ,< = -(I - E)e- (2.2)

where o. and tc; denote the perturbations of r, and - 1/K inside the unit circle. But from (1.10b)
it follows that Ri(x.)] = - j4()I 0 and consequently there is a generalized eigenvalue
W(i") > 0 corresponding to either K or -I1r.

The importance of a stationary mode is the following. Gustafsson et al. 12] have proved
that if the Cauchy stability requirement of the GKS theory is replaced by a more stringent
energy estimate, then GKS stability implies Lax-Richtmyer stability in the L2 norm. There is

a small number of known examples showing that Lax-Richtmyer stability in the L 2 norm does
not imply GKS stability. These examples all involve what are called borderline cases. We show
that borderline cases have a stationary mode for the finite-domain problem. The GKS quarter

plane analysis cannot detect whether or not a particular mode is stationary for the finite domain
problem. However, from our analysis, stationary modes are easy to detect since they occur if
and only if q(K) and q(-l//) have a common factor.

From the point of view of an eigenvalue analysis, a semi-discrete approximation with a sta-
tionary mode must be treated separately since any instability derives not from an eigenvalue
with a positive real part but from the algebraic growth (as J - oo) of the norm of the solution.

3. EXAMPLES OF STATIONARY MODES

In this section we examine several examples of stationary modes arising from various NBSs for
semi-discrete approximations. We analyze the first example in detail but give only a summary of

the stationary mode analysis for the subsequent examples. All of the examples are G KS unstable.
Examples 1 and 2 are Lax-Richtmyer unstable but examples 3 and 4 are Lax-Richtmyer stable.
In each of the examples we follow the convention of having the boundary condition of interest
on the left boundary, i.e., the GKS analysis is done for a right quarter-plane problem.

EXAWLE 1 Our first example of a semi-discrete approximation with a stationary mode is

NBS (1.4) or equivalently (1.5) for a = - 1/2. The polynomial (1.11) becomes

q(-) = -(K' -l)(i - 1), q(-1/1) = -(- 2 
- 1)(K4 I)

3
. (3.1)

The polynomials q(K) and q(-1/K) have the common factor (K
2 

- 1) and consequently there is
a stationary mode. The characteristic equation (1.10c) has the roots

= ±1 (3.2)

independent of J and, from (1.10b), i = 0. According to a GKS stability analysis, a = -1/2

is the borderline case between stability (a > -1/2) and instability (a < -1/2). For a = -1/2
there is a stationary mode and consequently this borderline case is GKS unstable.

The NBS (1.4) with a -1/2 is

duo c-d t 2 --x ( U 2 - ) ( 3 .3 ) .

As an aid to interpreting the solution of a semi-discrete approximation with (3.3) as the NBS,
it is useful to consider zeroth-order extrapolation

uo(t) = U, (t) (3,4)
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as an NBS. Differentiation of (3.4) with respect to time yields

duo dul

dt (3.5)

By replacing dul/dt in the above equation by the interior approximation (1.3) evaluated at
j = 1, one obtains the NBS (3.3). If we integrate (3.5) from 0 to t then

uo(t) - ul(t) = uo(O) - ui(0) = constant. (3.6)

Hence the NBS (3.3) is equivalent to zeroth-order space extrapolation if the initial data is reset
at the outflow boundary so that

u0(0) - ui(0) = 0. (3.7)

A semi-discrete approximation with zeroth-order extrapolation (3.4) as the NBS is both GKS
stable and Lax-Richtmyer stable. However, differentiation of the NBS (3.4) yields an approx-
imation which is both GKS unstable and Lax-Richmyer unstable. Next we show that the
Lax-Richtmyer instability is due to the presence of a stationary mode.

The stationary eigenvector corresponding to the stationary roots (3.2) is found by substitution
of either oc = I or -1 into (1.10a) to obtain

W. ,=al- (- +j) , j=0,1,,...,J-1 (3.8)

where a is an arbitrary nonzero constant. The L 2 norm of the eigenvector (3.8) is

J-i02.T 1/ Ia Iv/2IL, J even (9E lal J 2L(J + 1)/J, J odd
\j=O

where we have used JAz = L.
The matrix A corresponding to the ODE system (1.3) with (3.3) as the NBS and uj = 0 as

the analytical boundary condition is A = (c/Ax),4 where

-1 0 1
-1 0 1 0

A (3.10)

0 -1 0 1
-1 0

Since the first two rows are equal it is obvious that the matrix A has an eigenvalue i = 0. The
eigenvector (3.8) is the right eigenvector 4 of the matrix (3.10) corresponding to i = 0. The left
eigenvector C corresponding to i = 0 is easily found by inspection of the matrix (3.10) to be

= 1 0,...,01.  (3.11)

If we choose a = 1/2 in (3.8), then the inner product of f and 4 is

CI O=+ (3.12)

where the plus sign is used if J is even and the minus sign if J is odd.
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The matrix (3.10) has a complete set of eigenvectors and consequently the general solution of
the ODE system (1.7) can be written as

J-I

u(t) = 1 &e'"t #(I) (3.13)
t=O

where #(I) denotes the eigenvector corresponding to the eigenvalue 8t. We denote the stationary
eigenvector (3.8) by #(0) and rewrite (3.13) as

J-I

u(t) = #0#(0) + I 8teftt(I). (3.14)
t=1

The sum on the right hand side of (3.14) consists of the eigenvalues and eigenvectors for zeroth-
order space extrapolation (3.4) as the NBS.

For given initial data, the coefficient 60 associated with the stationary eigenvector #(0) is
determined by taking the inner product of the left eigenvector f given by (3.11) with u(0) given
by (3.14): CTu(O) = [-u0(0) + u,(0)] = ±#0 

(3.15)

where the plus sign corresponds to J even and the minus sign to J odd. In obtaining (3.15)
we have made use of the fact that the right and left eigenvectors of a matrix are orthogonal.
Formula (3.15) for the coefficient #0 is consistent with our earlier assertion that the NBS (3.3) is
equivalent to zeroth-order space extrapolation if the initial data is reset at the outfow boundary
so that u0(0) - u,(0) = 0.

One can show analytically that R(st) < 0 for all the modes except the stationary mode, and
consequently the asymptotic solution (t -* oo) is from (3.14)

u(t) ;t 80 $(0), t - 00. (3.16)

The L 2 norm of (3.16) for J even is

Ilu(t)112  18o110(O)112 - 1001 = 1uo(0) - uI(o)I42-, t -o (3.17)

where we have used (3.9) with a = 1/2 and (3.15).
The Lax-Richtmyer instability resulting from the NBS (3.3) arises from the presence of the

stationary mode. We illustrate this on the finite domain 0 < x < L by choosing the initial data

Uj(r) = (3.18)
for j>0

where JAx = L. The L2 norm of this initial data is

11U()112 =Ax 1 2 = -. (3.19)

For the initial data (3.18) with J even the L 2 norm of the asymptotic solution (3.17) is

Ilu(t)112 ft t 00c. (3.20)

From (3.20) and (3.19) it follows

IIU(t)Il, -- Iu(O)ll,, -. 00. (3.21)
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Consequently the L 2 norm of the solution is not uniformly bounded on 0 < t < T (with T large)
for the initial data (3.18) and the semi-discrete approximation is Lax-Richtmyer unstable.

If the initial data is smooth, then the semi-discrete approximation converges although the
global order of accuracy drops to first order. If we assume that the initial data is smooth, then

uo(0) - u1 (0)= f(0) - f(AX)= -&X a '( 0 ) + O(AX2 ). (3.22)ax

In this case (3.17) becomes

81(0) fL
Ilu(t)l1s z - O(Ao), t - o. (3.23)

EXAMPLE 2a In this section the model hyperbolic equation is

au 8uat -cT-, c > 0, 0 < < L, t>, (3.24)

i.e., the analytical BC is specified at the left boundary, z = 0. The spatial derivative u2 is
approximated by a centered approximation and the PDE (3.24) is replaced by the system of
ODEs

du, _d!= - (uj-1 - u+l), =1,2,- -, J- 1. (3.25)

The homogeneous analytical boundary condition is

uo = 0. (3.26)

The NBS is dui c

dt, Y-(u
- - u.). (3.27)

The semi-discrete approximation (3.25) with boundary conditions (3.26) and (3.27) is both
Lax-Richtmyer and GKS stable. In example 1 we showed that differentiation with respect to
time of a stable NBS, i.e., zeroth-order extrapolation, resulted in an unstable semi-discrete
approximation. In this section we show that differentiation of the analytical boundary condition
(3.26) with respect to time, i.e.,

duo
d-t =0 (3.28)

leads to an -unstable approximation. The source of the instability is the introduction of a
stationary mode. It should be noted that this example differs from the other examples in this
paper since the stationary mode is introduced by an improper modification of the analytical
boundary condition, i.e., replacement of (3.26) by (3.28), rather than an improper choice of the
NBS.

It is easy to show by evaluating (3.25) at j = 0 that (3.28) is equivalent to the extrapolation
formula

h(E)u-i = 0, where h(E) = 1 - E2 . (3.29)

Since h(oc) = 1 - r 2 it follows directly that

h(-1/t) = -h(ic)/t 2  (3.30)

as one can easily verify. Therefore, h(i) and h(-I/r) have a common factor, namely h(u) itself,
and consequently there is a stationary mode. The roots of h(oc) = 0 are It ±L. The stationary
mode has the eigenvalue i = 0 and the corresponding eigenvector is

O,=a, j-0,1,2,.-,J (3.31)
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i.e., a vector with constant elements.
Since all the modes except the stationary mode are damped for large time t, the asymptotic

solution is
u(t) rs 00(o) t 0-0o (3.32)

where 6o = uo(O) and the elements of #(0) are given by (3.31). For the initial data (3.18) the
asymptotic solution is

Ilu(t)12 I VL = v"YlIu(O)JI2 t --+ 00. (3.33)

Consequently the norm of the solution is not uniformly bounded for 0 < t < T (with T large)
for the initial data (3.18) and the semi-discrete approximation is Lax-Richtmyer unstable.

EXAMPLE 2b We return to the model equation (1.1) with the NBS on the left boundary,
z = 0. If we choose the overspcified Dirichlet condition

UO = 0 (3.34)

as the NBS, the resulting semi-discrete approximation is both Lax-Richtmyer and GKS stable.
However if we differentiate (3.34) with respect to time

du,
- = 0 (3.35)

the resulting approximation is both Lax-Richtmyer unstable and GKS unstable.
The NBS (3.35) is equivalent to the extrapolation formula

q(E)u-l =0, where q(E) = 1 - E'. (3.36)

The polynomial q(K) = 1 - ic 2 , and therefore,

q(-1/-) = -q(c)/K 2 . (3.37)

Consequently, there is a stationary mode. For this example and the following examples, 3 and
4, all of the roots of the characteristic equation are in class (III), i.e., !(J)l = I and all the
eigenvalues are pure imaginary. Consequently, the normal modes for the finite domain problem
can be found analytically. For J even the stationary mode has a repeated eigenvalue i = 0. For
sufficiently large time the asymptotic solution is

{
,(t - 0 (3.38)

0, j = even

For the initial data (3.18), the norm of the asymptotic solution is

110~)112 - -LJ ?LC Iu(0)112 , t - - .3.
V2 L~

The Lax-Richtmyer instability arises from the factor NfJ and not from the linear growth in t.

EXAMPLE 3 Consider the inconsistent NBS

SU-1 = -U1 (3.40)

which can be written as

q(E)u_ 1 0, where q(E) I + E2. (3.41)
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This NBS was used by Trefethen 151 for the leap frog scheme as an example of a fully discrete
approximation to (1.1) that is Lax-Richtmyer stable and GKS unstable. As outlined below the
same stability results are obtained when the NBS (3.40) is used for the semi-discrete approxi-
mation (1.3).

Since q(#c) = 1 + ,2 one has
q(-1/I,) = q(,)/,c2  (3.42)

and consequently, there is a stationary mode. From (1.lOc) one obtains

q(,)1 + (-, 2)J] = 0. (3.43)

The roots of the equation (3.43) are determined from

q(oc) = 1 + #C2 = 0, and 1 + (-C 2 ) - = 0. (3.44a,b)

For the stationary mode the roots of q(r.) = 0 are e = ±i and the corresponding eigenvalues are
= ±i. However from (1.10b) the roots ic = ±i both lead to trivial stationary eigenvectors for

the finite domain problem.
For this example the eigensolutions of the finite domain problem can be found analytically.

The remaining roots of the characteristic equation can be determined from (3.44b) by using the
roots of unity formula. The corresponding eigenvalues are pure imaginary. In particular, for J
odd the eigenvalues are

L = isin (-) t = 1,2,.--,J (J odd). (3.45)

Here we have the rather amazing result that for J odd, the eigenvalues are analytically identical
to those of the circulant matrix associated with the spatially periodic problem. The eigenvectors
are, of course, different.

One can show by the energy method that the semi-discrete approximation is Lax-Richtmyer
stable. In particular

IIu(t)1[2 < v'/Iiu(0)I 2. (3.46)

On the other hand the approximation is GKS unstable because there is a stationary mode.
We briefly outline the GKS perturbation analysis. For x = i, the eigenvalue is S = i where

obviously W(S) = 0 and hence we must check to see if there is a GKS generalized eigensolution.
Let r" denote a perturbation of Pc = i which is inside the unit circle, i.e.,

S= e*l, (I a= X +(, C>0. (3.47)

By inserting (3.47) into (1.10b), we find

W(F') = C' + O(C'). (3.48)

Since the perturbation of R(g) is positive there is a GKS generalized eigenvalue and semi-discrete
approximation is GKS unstable. The fact that an c perturbation of ic yields an C2 perturbation
in W(i) indicates a weaker type of CKS instability than for a conventional GKS generalized
eigenvalue where the perturbation in sc and W(g) are of the same order.

EXAMPLE 4 Our last example is due to Gustafsson3. The wave equation, utt = u.., written
as a first-order system is

=[o B w= B (3.49)
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The initial condition is w(z, 0) = f(x) and the boundary conditions are

u(0,t) = g1(t), U(,t) = g2 (t). (3.50)

A semi-discrete approximation is

-w- = B-- (Wj+- w,). (3.51)

The boundary conditions (3.50) are assumed to be homogeneous:

u0 = 0, uj 0. (3.52a,b)

The NBSs are
dvo ux - uo dvj uj - uj . (3.53ab)

Gustafsson 131 used this semi-discrete approximation as an example of a problem that is
Lax-Richtmyer stable for homogeneous boundary data but unstable for highly oscillatory non-
zero boundary data. We demonstrate that the approximation is GKS unstable because of the
presence of a a stationary mode.

One can show that the NBSs (3.53a,b) are equivalent to the extrapolation formulas

h(E)u-l = 0, p(E)uj+l = 0 (3.54a,b)

where
h(E) = 1 + E2 , p(E) = 1 + E - 2 . (3.55a,b)

In deriving (3.54) we have used (3.52). The polynomials h(r.) and p(tc) are

h(r) = I + P2, p(C) = 1 + 1/#C2  (3.56a,b)

and, therefore,
h(-I/ic) = h(ic)/#c2 , p(-I/X) = p(-)- 2 . (3.57a,b)

Futhermore,
h(-s-) = h(-c), p(xc) = h(1/oc). (3.58a,b)

As a consequence of (3.57) and (3.58) there is a stationary mode for the finite domain problem.
There is a close connection between this example and previous example. In fact, the example

of this section can be written as two uncoupled semi-discrete problems of the form given by
example 3. The NBS (3.41) is inconsistent but the analogous NBSs (3.54) only appear to be
inconsistent, i.e., they are actually consistent.

As in the example of the previous section the eigensolutions of the finite domain problem can
be determined analytically. We look for a solution of (3.51) of the form

wj = e't*j. (3.59)

The components *j of the eigenvector * for the finite domain problem are given by

whe = aQ+ + b(-1/c)'#+ + c(-)'#- + d(1/,c)'#_ (3.60)

where
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The constants a, b,c, d are determined by inserting (3.60) into the boundary conditions (3.52)
and (3.54). One obtains a homogeneous linear system and a nontrivial solution exists if and
only if oy i h(0) 0 

2J = 1. (3.62a,b)

The polynomial p(p) does not appear here because of identity (3.58b).
We first consider h(i) = 0 where h(K) is defined by (3.56a). The roots are K ±i and for

J even these roots also satisfy (3.62b). For J odd one can show that the roots K = ±i lead to
trivial functions. From (3.62b) r is a root of unity and hence

ic=e w t /I, £-1,2,.-.,2J. (3.63)

The associated eigenvalues are

S =isin (M ), t= 1,2, ..,2J (3.64)

where i = sAx. For J odd, the eigenvalues (3.64) are identical to the eigenvalues of the circulant
matrix associated with the IVP. Furthermore there are no eigenvalues i = ±i. But for J even
there are are two distinct eigenvalues i = ±i.

One can prove by the energy method that the semi-discrete approximation of this section is
Lax-Richtmyer stable. But the approximation is GKS unstable because there is a stationary
mode. The GKS perturbation analysis is identical to the analysis at the end of example 3, i.e.,
an e perturbation in Pc yields an e2 perturbation in W(i).

4. CONCLUSIONS

Stationary modes for semi-discrete approximations are easy to detect because q(r.) and q(- I/K)
have a common factor. For simple approximations the K roots in class (III) defined by (2.1)
can be determined analytically and consequently so can the normal modes for the finite domain
problem. This includes, of course, stationary modes for nondissipative approximations where
IKrI = I independent of J.

If there is a stationary mode for a nondissipative approximation on a finite domain problem,
then the GKS perturbation test will always indicate the presence of OKS generalized eigenvalue.
If in the GKS perturbation test the perturbation in c is the same order as the perturbation in
R(i), then the approximation is Lax-Richtmyer unstable in the L 2 norm. On the other hand if
the the perturbation of K results in a higher order perturbation in R(g), then there is a trivial
stationary mode and the approximation is Lax-Richtmyer stable.

If a semi-discrete approximation with a stationary mode is Lax-Richtmyer unstable, then the
solution exhibits algebraic growth as the mesh is refined. This is a weak type of instability
and the approximation can be thought of as only marginally unstable since the approximation
converges in the L 2 norm for smooth initial and boundary data on a finite domain.
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SOME SUPRACONVERGENT SCHEMES FOR HYPERBOLIC EQUATIONS
ON IRREGULAR GRIDS

Burton Wendroff and Andrew B. White, Jr.

Los Alamos National Laboratory
Los Alamos, New Mexico 87545, USA

SUMMARY

An analysis of the truncation error for finite difference schemes frequently shows an
apparent loss of accuracy when a nonuniform grid is used. Some schemes exhibit the
phenomenon of supraconvergence, that is, there is no loss of accuracy in the global error.
We show that this is the case for smooth solutions of the color equation for an upstream
conservative scheme, for two versions of the Lax-Wendroff scheme, and for a variant of the
von Neumann-Richtmyer scheme for gas dynamics, if the latter three are stable.

1. INTRODUCTION

Finite difference equations seem to work best on uniform grids, but even in one dimen-
sion one might be forced into using an irregular grid. A typical example of this situation
occurs when materials with very disparate densities occur side-by-side; for example, at an
air water interface. If Lagrangian coordinates are used, with mass taking the place of length,
then equal mass cells would require roughly 1000 times as many cells in the water as in the
air. One could change the grid size gradually but rapidly near the interface so that there is a
grid gradient rather than a severe jump. This helps but does not remove the error. Giles and
Thompkins [1] analyze the wave propagation properties of a grid gradient. Noh [4] shows
the bad things that can happen with an exponentially varying grid when an infinite strength
shock is sent through it. In any event, there is definitely a point to considering difference
equations on totally nonuniform grids.

It is very clear that the local truncation error of most difference schemes suffers if the
grid is nonuniform. These local errors for many difference schemes have been examined by
Turkel (6], and by Pike [5]. The point of our presentation here is that the global error is
sometimes better behaved than the local error would indicate, a property that has been
cal'.d supraconvergence. This is well-known for finite element methods, but is somewhat
of a sw, i-se for finite difference methods. This phenomenon was observed by Manteuffel
and White [3] for a cell-centered scheme for s" =f which is inconsistent on an arbitrary
grid but maintains global second order accuracy. This was extended by Kreiss er at [2] to
higher order equations and other difference methods, not all of which have this so-called
supraconvergence property. Numerov's method, for example, fails to maintain its fourth
order accuracy on some grids.

We show that supraconvergence obtains for smooth solutions of the color equation for
an upstream conservative scheme, for an edge-centered version of the Lax-Wendroff
scheme (with mild mesh restrictions), for a cell-centered Lax-Wendroff scheme, and for a
variant of the von Neumann-Richtmer scheme for gas dynamics, provided that the latter
three are stable.
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2. AN UPSTREAM CONSERVATIVE SCHEME

In [5] Pike gives an example of a conservative scheme which is inconsistent on a
nonuniform grid yet which compares favorably with a first-order method. For the differen-
tial equation

u1 + u" = 0

the difference equation is

u1n-u 1- u -_
LU - + =0,At h

where Uin is the grid function at the cell edge (X,tn), and hj- 112 =xi -xi- 1 ,

hi = 2 + hl. This conserves 7Eh i U1 .2

The truncation error is
Lu=hj-if2 - hi+l/2 +0(hA

Lu = 2hi  uxi+0(h,At)

and therefore, in general, the scheme is inconsistent. In fact, it is first-order accurate if
u(x,t) is smooth. To see this, note that

h i - hi+/2 =hj-l2ux'j-I - hi+ 12Ux'i + 0 (h).

2hi  , 2hi

Defining the corrected error
+1ei = ui - Ui + -!hi+l12uxj;.

we see that
Le = O(h,At)

since uz.i is a smooth function of t. This scheme is monotone and stable if At/h i < 1, in
which case both e and u - U are 0 (h).

3. LAX-WENOROFF

3.1. An Edge-Centered Version

Pike also considered an edge-centered version of the Lax-Wendroff scheme. With the
same notation as above the difference equation is

U -U + U+i - Ui_7 At 1U+-Un U," U- 0.
LU= + 2hi  2hi  hi+ I2

The truncation error is
1

Lu = -u (hi+it2 - hil/2) + 0 (h2,At2).

Note that for the low order part of the truncation error we can write
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ux, (hi+ia - hi-ja) + 0 (h At2)= - T___ + 0 (h
2hi

where
1L.j~rh 2Ti+lf2 = 2 ux~+f2 -2

Now consider the following difference equation:

Si+i - Si-i At 8i+1 - 8i Si - 8i- = Ti+1/2 - Ti-(1
2h i  2hi Ihi+it2 "h I-" 2hi (1

We are going to show that under mild mesh restrictions this difference equation has a solu-

tion 8 which is smooth in t and is 0 (h2 ). From this it follows that

L (u - U - 8) = (h2 ,At 2).

The rest hinges on the stability of the difference equation LU = r. If it is stable with the
same grid restriction in some norm then the global error in that norm will be
second order.

Note that a solution of the following is clearly a solution of eq. (1):

8
i+1 + 5i - Vi+112(si+l - 8i) = Ti+112,

At
where V•+ 1 2 = A . Marching to the left from some N, taking 5 N = 0, we see thatV l2 hi+1/2

N 1-1 1 - Vk+1121 TtIn1

,-+ '' =i 1 +V1/ j 1 + Vl-1/2

Thus, 8 will indeed be 0 (h 2) if there exists p such that

" 1- Vk+1/2 <ps- r0
k, 1 + Vk+l/2

for s - r sufficiently large.

Let

h ri = ln hi.

We require the

Main Mesh Condition: Assume there exists 0, 0 < 0 < 1, such that

0< es < - 1.h,,k

For example, if the cell lengths are alternately h and h 2, for 0 <h < 1, and if

I At
T h2  1

then since half the cells have length h 2,

S V < p2 p =

k=r 1+ Vk+li2

In general, it is sufficient (but not necessary) that the fraction of intervals which have a
bounded ratio with the smallest interval remain bounded from below as the mesh is refined
Of course, this only permits a correction which cancels the bad part of the truncation error.
The actual global error depends on the stability of the scheme.
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We still have to show that the divided time difference of the correction 8 is 0(h 2 ).

This is so, since

+1'2 - T.I t2 hi. 2 u,. +
1(t + At) - u=',+10)

At 2 +11L At

and we are assuming that u(x,t) is sufficiently smooth.

3.2. A Cell-Centered Version

We consider the particular solution u (x,t) = (x - t
2 . For a cell-centered Lax-

Wendroff the full error equation is
-- t ,e +3/  h --

e- e1  e 1*+I - ei* - ei+112  ei+1 /2. -ei1/2

At hi+1  2h+ h+1hi

= (hi+3 - hi-)
4

At {hi+3/4- 2hi+ + h-l2.}
4 hi+if2

where

* l  hi+3/2ei+112 + hi+la2ei+312
ei+L - hi+3r2 + hi+l/2

1 2
Let di+112 =e+ir2 - _hi2lt2 .Since

4 +
hj+3/2hi+jt2 + hi+jr2hi+3f2+ hhi+3,2 hi~i/

hi+3/2 + hi+i 2  =

and
hi +2 - hi 2 = h1 -h

hi+3/2 + hi+1/2

then

Ld=O

In general, a similar analysis shows that for sufficiently smooth solutions there is a
correction which removes the low-order truncation terms.

4. VON NEUMANN-RICHTMYER

We consider the classic von Neumann-Richtmyer method without viscosity. The gas-

dynamic equations in Lagrangian form are

vt -u, =0,

U, t px =0,

e, +pv, =0,

p =p (v,e).
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The velocities u are set at the cell corners, and the volumes and energies v and e are set at
the cell centers see Fig. 1.1. Thus, the difference equations are

vin+I/2 - vn-2 ur
= 

2 
- - 0, (2a)At, hi/2

Uin _ U11-1 2,,nl En;,1/2)_P(V,!.,I -1/2)
Pki~l2, +/2 ,-p iI2 En i1/U,"-1U2 + 1/2 ) V = 0, (2b)

At-

Arn"1 2p (vn+12 ,Ej+/2) + AJ"+
11 2p (Vn;j1 2 $Enn;)/1) V+12  n-22

,i2 +1/ l /2 n- 2 V+/

+ =0.
Atn Atn

where

hi+112 =xi - xi1, h = (hi+il2 + hi-i/2),

and

Atn+ll2 = tn+
1 

- tn, Atn = -t +

Now we need to look at the detailed truncation error to see if the appropriate corrections can
be made.

In eqs. (2a) and (2c) it is the uncentered time difference that contributes to the low
order truncation error. Specifically, the form is

f (tn+l12) -f (tn-l ) + 1 (Atn+1/2)2 - (Atn-1 2)? 2

= f +o0(AA, ,

where the functions on the right are evaluated at tn .The second term on the right can be
rewritten as

e l
U U k

I e

IV
ei elki= (t tk)

III

2 ui+ I Xi k3

Fig. 1.1. Staggered grid.
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n+1/2 2n+P1/ ( -D2)2f4-1/2

8 (At +fit((2 ).

At
n

Thus there is a second-order correction f to f which satisfies

P+1/2_fh-1/_ =, f+ 0 (A2 ),
AtA

where
P' +1/2 =f(t+1/2) . (,t+1/2)2f U(tn+1/2).f =f 2 )-8

It follows immediately that, replacing f by v, the truncation error for eq. (2a) is 0 (A2) for V,
that is,

--n+112 -n-1/2 Uz x
____1 __ +1 f~ U ldnvi+1 ,,2 -vi+12  - u = 0 (A2).

Atn  hi/2

Since the average p used in eq. (2c) is already second-order accurate it follows in the same
way that eq. (2c) is also second-order for F and V.

There remains the momentum equation (2b) to deal with. We first note that for any
smooth second-order perturbations a and 0

pv+ +aF+ +P+)-pV_ +., F_+A-)=p+, F+) -p v,_) +
k(CC _ O,.) + O-e(+-_)+ hO0 (A2),

where a+ = %/+1/2, etc. The low order part of the truncation error of the off centered ap/ax
in eq. (2b) is

I (hi+lr2)
2 - (ki-1/2)2

8PXX hi

In order to cancel it we can take the corrections to be

IN +Be Ji+l1
and

r-t2 )2 PC n-1/2

8Pv +Pe Ji+12

where we must assume thatp 2 +p,2 is bounded away from zero.

For the corrected exact solution given by

V e+ CX,
9s+,

and

a u,

the local truncation error is 0 (A2). Since these differ from the exact solution itself by
0 (A2), stability would imply second-order accuracy.
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THE HOMOGENEOUS HOMENTROPIC COMPRESSION OR EXPANSION-
A TEST CASE FOR ANALYZING SOD'S OPERATOR-SPLITTING

H. Westenberger. J. Ballmann
Lehr- und Forschungsgeblet Mechanik

RWTH Aachen
D-5100 Aachen. West Germany

SUMMARY

The paper shows that the choice of dependent variables in conservation laws with
source terms may strongly influence the quality of numerical solutions using
operator-splitting. A further result is that the splitting may violate the second
principle of thermodynamics. For quasi one-dimensional flows, closed form solu-
tions were derived for a family of variable cross-sectional functions. A numerical
test problem is formulated including this analytical solution. Combinations of the
operator-splitting with Godunov's Method and with the Random Choice Method
are discussed by means of this example. Reasonable results were obtained by both
methods but special attention must be paid to the entropy.

INTRODUCTION

The quasi one-dimensional flow of a non-viscous and non heat conducting gas is
described by a hyperbolic system of conservation laws with a source term. Among
the different methods of integrating a system of homogeneous conservation laws
Godunov's Method and the Random Choice Method are well established. These
methods can be used to integrate a non-homogeneous system applying Sod's split-
ting technique [4 ]. Because of it's conceptional simplicity this technique is in
common use. Moreover, new developments exist to integrate conservation laws
with source terms [1-3].

THE OPERATOR-SPLITTING

A hyperbolic system of conservation laws with a source term is given by

6t E(0rz Q(Ur)
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where is the flux, is the source term, U R k and r 0, t 0. The integration
of equation (I) over the domain G [ rm , rm 3a 14 t, I . ] in space and
time leads to

.rm,, rmk (tt d
j (r.t 1 ) dr - J i (r,t n ) dr dt

rm- rm. ~ tln

J'tn (U(rm_ 
,t)) dt - j' drdt ( 2

tn  G

Evaluating the integrals by the approximations

n.n ( r g- mErn "
( r. t)d n).

rm- tn

ff Q drdt rr = r- r ti

Qm. Ar At 14. m.I 32 ""t =* t n
G

one obtains the discrete formulation of ( 2
mn.1 ~ - ,). t2. >~=At

We introduce the abbreviation (M ) := ( Vi m.n ImIN'The solution operator
H : I )n4 ( u ) n is defined by ( 3 ) with 2 mJ Q .The concept of operator-

splitting is to approximate ( I ) by the two simpler equations

and

U, = Q( Vl. r) (5)

to be solved separately. The differential equation ( S ) is usually integrated by
explicit Euler integration. The corresponding solution operator S has the form

S(9)umn 2 lm.. + S/tQ(m.n'r) , s or s1 . (6)

In order to approximate the solution of ( I ) three different combinations of the
operators H and S will be considered:

i S' H I uln variant I
Sn-I SH (U u n  variant 2

! (S'H -Id )(II) variant 3
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Therein. variant 3 can be derived by choosing a special approximation of the inte-
gral of Q ( 1, r) over the domain G, setting Qm n = Q ( V, rA) with re= rm,
u*= ur.n . Id is the identity. Introduction of r*= Fm, 1i = am.n -( g m..- m-1. ,n)
into 2 ( u'. r*) leads to variant 1.

THE OPERATOR-SPLITTING FOR THE GASDYNAMIC EQUATIONS
FOR QUASI ONE-DIMENSIONAL FLOWS

THE INFLUENCE OF THE FORMULATION
The gasdynamic equations for quasi one-dimensional flows (cross section A ( r))
of gases with constant specific heats can be described in the form (1). But the
set of unknown functions is not unique, since different dependent variables can
be chosen. Here. two different formulations will be considered:

conservative variable ; flux E source term

(v v ) (v nv
v+vm

pe (v(pe+p) - (e-p

(pA \I vpA
) : m m ) (vm4Ap), (

ceA v(pe+p)A 0

with p density. v velocity, m = pv. e specific total energy, p pressure. In order to
compare the influence of the different formulations we evaluate the operators

H and S for a trivial solution ( puconst.. p-const.. v-O ). Version ( * ) gives

flux : . flux difference - . source term:

This means that H = Id and S = Id for trivial initial conditions, and all three variants
of operator- splitting reproduce the trivial solution. Version ( ** ) gives under
the same conditions

flux : (pA) . flux difference: (p4A). source term : (A)

where A A- A(rm, " ) - A(rm~t). Hence. it follows H Id and S t Id . The
solution operator H for example keeps p and e unchanged while the momentum,
the pressure and the velocity field are changed. To obtain the trivial solution for
the full time step the disturbances of the steps H and S must balance each other.
Normally. this is satisfied only by variant 3 and Ar = A A/ Ar.

ENTROPY AND INTEGRATION OF THE SOURCE TERM
Simple considerations for an ideal gas with the entropy s and
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I4

po XI In( I .

where km and x are the gas constant and the ratio of specific heats, show that
the operator S may diminish the entropy, e. g. S step for version ( ) yields

(pA S ( pA \ (A \ 0
~,A) Sj A) tp k A) + At rp~
SeA,! , peA/, ,9eA 0  0

Density and total energy are not changed but

Ar
mIn m O +,'atKPo , oo.

Whenever Ar and vO are of the same sign then I1 ml I tol and, because of

P,=Ix-}le- m  =Po'
P1  (x-l1) (e1 -- 1 M p2

it is easy to see that s, ( SO .

THE HOMOGENEOUS HOMENTROPIC COMPRESSION OR EXPANSION

THEOREM : In a tube with variable cross section. A ( r)) 0 for r > 0. A (0) w.
A c Cz. a non-trivial solution of the conservation laws with constant entropy and
thermodynamic variables only depending on time is to be found in the domain
(r. t) E R., L 0. T ] with the initial conditions v (r o .0) = vo and the boundary
condition v (0. t) = 0. Then, such a solution exists only for cross-sectional functions

A(r) = y . . Y 0. -;,- 0 and for -o t -1

and can be given in the form

P (t) = p (0) ( I r!0t)-  v (r
(t =l+±-t roor

Proof : The gasdynamic equations for isentropic flow reduce to

Sp + vA = 0 (7)

A( vA) + p v2 +p) A) c- p (8)

Assumed a solution 9 (t) exists, then from equation ( 7 ) it follows

A(r) -t A(r) 0(t) = - 9(t) .(v(r't) A(r) ) (9
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With the prepositions A( 0) (o. v ( 0, t) = 0 integration of ( 9 ) and Insertion
of equation ( 8 ) yield

r

d2 k_.L1 ()9(2- 1 6A(r)|r A(x) dx )=0 • (10)
d 2  A2 (r) r )

A solution p (t) can only be found if the term 2 1 _Ar) f Ax dx
AW(r) )r 0

is independent of r. This is equivalent to finding a solution f of the ODE

f(r) f"(r) - q:= h (11)

r

where fRr) f A(x) dx and q is a constant and the Initial conditionf(0) ff 0
0

is satisfied. (11 ) can be integrated to

f-h f' = 0 ,(12)

where 0 is a constant. The integration of ( 12 ) gives reasonable results only for

h 4 [0.1). i. e.

h = 0: A(r) = const.

h e (0.1) : A(r) = const.. ri-h

Up to now it was shown that only one family of cross-sectional functions allows
a solution. Now It must be shown that in fact a solution exists. Using the result
for A (r), equation ( 10 ) can be integrated twice yielding

]F~- ( P tlh-  - P (0) h - 1) = a t

The constant a is determined from the initial conditions as

h-i A (ro)

S A (x) dx

The final solution

Ph(t)= PO r-0 t 0h 0' 
t >-1 (13)

depends on the parameter h and is related to corresponding cross-sectional
functions Ah(r.-

h
Ah(r) =yr-h . hE [0.1) . ' 0 arbitrary. (14)

By setting v = [0 . W the proof is completed
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Remark I: In the solution family the special cases of plane ( = 0 ), cylindrical
v -1 ). and spherical ( v =2 ) homogeneous compression or expansion are

contained.

Remark 2 : By integration of equation ( 9 ) it can be shown that v (r.t) does not
really depend on ' :

r
v (r.t) t xdx v rHt i ) 0iV1+ 22 ro

Remark 3 : The particle paths, which can be given by the integration of the

differential equation & v (Rt) . are all straight lines through the point

(r - 0. t - ° ). It is obvious that for v 0 the particle paths converge
( compression case ) and for v.) 0 they diverge ( expansion case).

Remark 4 : The C± - characteristics can be found by integration of

dC v(C.t) ± a( t)

where a is the velocity of sound. Assume vo 0 0: then. with s " (0,+1) (x-I
the C_ 1 -characteristic through the point C rro . t = 0i)s given by

C()2 ro (-a-, V 1 0 t-,ro+Vo t r -0 ..

If 0 1, the characteristic line reaches the centre r = 0 at the time

ro Voa

-t

A NUMERICAL TEST CASE

A piston. compressing with constant velocity vo a spherical volume for time t c 0.
is suddenly stopped at t = O at the position r = ro . The initial values and boundary
conditions for this problem are

p(r.O) = pO . p(r.0) f po . A(r)= r

vV r.0)=rL ao

ro V 2 X-1 , r4 O.r ] .

v(r o t  0.t v(0.0 0. t > 0.

The stopping of the piston produces a rarefaction wave. The head of this wavei i3 given by the above mentioned C - -characteristic ( 15 ) at the interface connec-

ting the domains of rarefaction and homogeneous compression (Figure 1).
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Godunov's Method. applied to the formulation (*). gives good results in all of
the three variants of splitting ( Figure 2 ). Within the zone of homogeneous
compression the results agree very well with the analytical solution. For the
formulation ( ** ) only the splitting H+S-id gives comparable results, whereas
the other variants give worse results for this formulation as could be expected
from the above made considerations. Looking at the entropy. which is of special
interest in the analysis of this paper, we notice a diminishing of entropy during
the reflection of the rarefaction wave at the centre (Figure 2c ). Another non-
physical effect is the production of entropy by the centered rarefaction wave
starting from the stopped piston. There. the increase of entropy is of the same
order of magnitude as the jump of entropy across the shock, which has developed
at the tail of the rarefaction wave. The same effect is observed in plane flows.
Therefore. it is not caused by the splitting but by the averaging process involved
in Godunov's Method. From a physical point of view this is similar to a mixing
process which increases entropy. Hence. in zones of isentropic flow with strong
gradients entropy can numerically grow.

The test problem was also solved by the Random Choice Method using the first
variant of splitting. The computation was repeated several times with different
random numbers. The expected values are called the result of the method. The
level of pressure agrees very well to the results by Godunov's Method but it's
distribution is rough ( Figure 2 ). During the reflection of the rarefaction wave
at the centre numerical oscillations occur. The entropy is diminished beneath the
centre whereas the centered wave at the piston produces no entropy numerically
because of the absence of averaging processes.

CONCLUSIONS

Sod's method represents a splitting up of the integration of conservation laws
with a source term into the integration of a homogeneous conservation law and
the time Integration of the source term. Different forms of combination can be
chosen. Furthermore. different formulations of the conservation laws lead to
different splittings. Both influences the quality of the numerical results. As a
minimum requirement on the method, trivial solutions should be reproduced.

For the case of quasi one-dimensional gas flows with variable cross-sectional
areas two formulations were compared, one with density, momentum and total
energy as dependent variables and the other with the same variables multiplied
by the cross-sectional function. The first formulation satisfies the above
mentioned minimum requirement with all of the three variants of splitting.
whereas only one combination satisfies the condition for the second formulation.
Further. it was shown that the splitting influences the entropy numerically.

An analytical solution for the gasdynanic equations with area variation, where
the thermodynamic state depends only on time, exists for special cross-sectional
functions, It was found that for these solutions all particle paths are running

584I

II



through one point. Those solutions exist for plane, cylindrical or spherical quasi
one-dimensional flows.

Godunov's Method and the Random Choice Method with operator-splitting were
tested with an example. where in a subdomain such an analytical solution is given.
The Random Choice Method shows small numerical oscillations near the centre
whereas the results of Godunov's Method agree very well with the analytical
solution if an appropriate combination of formulation and splitting is used. It was
confirmed that entropy can be reduced numerically by operator-splitting whereas
in Godunov's Method an increase of entropy may arise from the averaging.
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GLOBAL EXISTENCE OF SOLUTIONS OF NONCHARACTERISTIC MIXED

PROBLEMS TO NONLINEAR SYMMETRIC DISSIPATIVE SYSTEMS OF THE

FIRST ORDER

W.M.Zajaczkowski,Warsaw.

Institute of Fundamental Technological Research,

Swietokrzyska 21,00-049 Warsaw,Poland

SUMMARY

The aim of this paper is to show the existence and
uniqueness of classical,global in time solutions for a mixed
problem for a quasilinear symmetric hyperbolic system of the
first order with dissipation.The proof is divided into three
parts.At first assuming that coefficients of the linearized

system are in H-spaces (1>'!i) an a priori independent on
2

time estimate in HLspaces too is obtained.Next the existence
for the linearized system is shown.Finally by a method of
successive approximations the existence of global in
time,classical solutions to nonlinear equations for
sufficiently small data is proved.

1. INTRODUCTION

In this paper we prove the existence and uniqueness of

global in time solutions for a mixed problem for a quasilinear

symmetric hyperbolic system with dissipation in )=%flx[O,T]:

Lu-E(t, x, u)u.+E A (t,x,u)u +B(t,x,u)u=F(t,x) in 6T

M(t'x',u)u14n=g(t'x') on &ir,(J)

uIt=0=Uo (x) in n,

where te(O,T],x=(x, ,... x )ecRn, x e, u= (u .... , u,)eGcRm,
E(t,x,u),A.(tx,u), i1 .... n,B(t,x,u) are real mxm matrices. The
state space G arises because physical quantities such as the

density or temperature should always be positive.Assume that

* ueG ceO.

For tw[O,T,xe,ueG the following properties are assumed:
1.Matrices E,A.i=I,... ,n,are symmetric,E and B are uniformly
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positively definite, so
Eu u u , Bu -Wo u, (2)

where ao ,/o are positive constants and dot denotes the scalar

product in (m .

2.Let A n=An,where j is the unit outward vector normal to the

boundary 00 and A=(A, ... ).The matrix A is symmetric,so it
has eigenvalues and a complete ortonormal system of

eigenvectors in (Rm:

-An (3)

Assume that in a neighbourhood of the boundary the eigenvalues

are disjoined from zero,so there exists a constant c. such that

min I I-c>0. (4)

Let X +.'=l,...,l,be the positive eigenvalues of -A and r +

corresponding them eigenvectors.Similarly by X.V ,ZPV =l+1 ... m

we denote the negative eigenvalues and corresponding them

eigenvectors.

3.Assume the following form of the matrix M

t +
M(t.x',u)= E a (t,x',u)r (t,x',u)+(tx ,u)

1. i+ (5)
+ E E (/ (t,x',u)r (t,x',u)r(tx',u),

where matrices fa P,{,1 I are such that

max T Ia,.56 max_ (6)
AWxG GfxG

where 60,6. are constants.

4.Assume that eigenvalues are bounded

max ma# X.(t,x',u) -5 c,
vefi,... . ) 00 xG (7)

max ma* I\ (tx',u)I -< c;,
L(Lt~e ..... ml&) xG

where c ,c' are constants.

The proof of theorem of the existence of solutions to

problem (1) is the following.At first we prove the existence

of solutions to linearized problem (i).Hence it is disjoined

into two problems:Cauchy and boundary (see [6]).Having found a

priori estimates to these problems (Lemmas 1,2,[7,8]) the

existence of weak solutions is shown [2],then we prove that
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the weak solution is strong [3) and finally we show that the

strong solution is sufficiently regular.(Theorem 1,see

[5]).Now obtaining a priori estimates for nonlinear system (1)

(see Lemmas l,2,also,[7,8]) we prove the existence of

solutions to nonlinear problem (1) by the method of successive

approximations [7,8J(Theorem 2).We have to mention that the

existence of local in time solutions of Cauchy problem to

nonlinear system (1)1 was proved [4J.Using that system (1)i is

dissipative we are able to prove the existence of global in

time solutions for sufficiently small data functions.The

solutions are classical to (1).

2. NOTATION

Let H=H(tx,u(x,t)).By D ,Dx we denote the total derivatives:

D H=H +H u ,DH=H +Hux,where by HHH (or H,t,]cH,and so on)

are denoted partial derivatives.

By I I we denote the Euclidean norm of a vector or of a ma-

trix.At first we introduce the following notations (l,keZ+, peR,

p>l)

Igo t )glt, ,sup Igl = IgI a .Ul( RUIP, 0
C (QxG) QG LP (Q)

NUlL 3uf1 2uj,.,here Q=0 or Q=67 or Q=r~cIR" and so on.
), Q) .

Now we define the space fL (0) with the norm

(ui );lul{tlD, uI dx)
1'lUlro t,o,o=( ilt XI Dtf xudx

where

D D D ... Dxp+1+ . n1IiIt.,x t x X 0 .S TI

and also the following space
t

1Il (0,T;It (Q)) with the norm
.0

OUlL )ul toO , .The same spaces can be introduced for

0
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functions defined on On.

Let VdRc '.C (V)(C' (VxR " )) is the set of restrictions to V
(VxR t ) of functions Cd(R")(Co(R' x I)).

Finally we define the scalar produkt of functions defined

on DcRk by u(x)v(x)dx=(uv)D.
D

3. EXISTENCE OF SOLUTIONS TO (1)

To prove the existence of solutions of problem (1) we

have to find suitable a priori estimates.To do this we

linearize problem (1) replacing u by v,which is treated as a

given functions,in coefficients of (1).Let us denote the new

problem by (1)' .Multiplying (1); by u,integrating the result

over n and using assumptions 1+4 one has

Lemma 1.

Let the assumptions 1+4 be satisfied.Let veG,LEC(L#MG)
I-2 -2 1

(E ( , . , ), (c' +0) , 5 -(L=(E A, .. A,B) ), v,:- )

IE I  tx + ldiv A lf ft. I o lE I GIv'l + 1A l xI~ x I tI < 10 o

'OxG

Then for functions u in (1)' such that ueH(t)n

L (O, t ; L2 (0))(L 2 (0t)nL2 ( 8 t) the following estimate holds

c 1
u 2+ -u + -0 S u2< c J, IMul + I .f iLul +cYU I (8)

80 20 c r

where c2,c, are constants and c2=2(co+c )6-
2 .

To obtain further estimates for solutions to (1)' we

have to consider it in a half space )=IR"={x;x>0}.Looking for

solutions in Ho spaces (s2:2) we have to add the following compa-

tibility conditions

DJY[M(t,x',v(x',t))u(x',t)-g(t,x')]=0 at x=O,t=0,(
1 +0%--2,

where v is a solution to problem (1)' where u and v are

replaced by v and w, respectively, and uIl,=vl, =w ,,=u,.Then

derivates D 'u,D v, Io,'-s-2,at x==O,t=O are calculated from (1)',t t
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so (9) depends on u and its derivatives only.

By differentiating (1)'we obtain the following system of

problems in flRn:

L a a L a a in 6'
t,x u=t,X L+Lt,x u-txu 0I

MD, , uD , Mu+a(Mtx ,-Dr ,Mu) on 0O, (10)

t,x u=t,X M+Mt,x u-t,x I

, X ult=o=Dt ,X,ult-O  in n.

where the right-hand side of (10)9 must be calculated from

equations (1)'.

Apply Lemma 1 to problem (10) and use the noncharacteristic

boundary conditions which imply that

uA =A-I EF-Eu- EA ux -Bu) (11)

can be calculated because det A190.Then by theorems of embed-

ding and some inductive considerations one gets

Lemma 2

Let the assumptions of Lemma I and the compatibility

conditions (9) be satisfied.Let L,MeCt(OtxG)to(ft),v CQo.ft (Qt)

1> 1 +l,a=sup IA1 t a =Sup , LI
t t xG

sSup J0, vi _,o 0 t ,a=sup I
t1 

t

b-sup . ~L -,LOt_ xG. Assume the restriction

2 .(2 2 )P.(a
2 ):51t,

ca, apa)p.as- (4 , (12)

where seZ+ and p,., p2. are some polynomials. Let LueH( (t)r)

r-' (n) Muejf (& t), ult=oe (0)-
0 0

Then there exists polynomials p,.=P,,.(a,,%,a,,b, ) ,

i=0,i,2,3,such that for Uer:( t)finH ( O ) in (1)'the

following estimate holds

IuI. ,o2 +CIIUU:2 ,0,, -<po,.tuI.,, 0

+p 1  Mul3j. &t+p2p.Lul +p I LuI2  (13)
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where seZ+,sl,l> 2 +1 and p,.,,i=1,2,3,depend at least linearly
2 L

on sup II Lt_,.tXG +sup l lL_,ftxG .
t t

where L=(L,M).

Having proved estimates (8),(13) we are able to prove the
existence of solutions to linear problem (1)'in the half space
>O.The existence in a bounded domain can be obtained immedia-

tely by a suitable partition of unity.Let veC o, (R,),V=P(x)

and 9=1 in a neighbourhood of x1=O.Then we introduce a function
u=u(x,t),t>O,determined by ul~t=o=UP in such a way that if
u odH(0),then aHff" 2z (fCt) and *ui. , 2 ,2 0 t _CIuoU.,.f.

Introducing w=u-u we see that w is a solution to the problem

Lw=F-Lum P in C)7
on On7, (14)

wIt=o=Uo (1-,) in 01.

Knowing that wit=0 near x=O we introduce new quantities w'
and w2 by splitting (see[(])

w=X(t)w, +w-, (15)
where XeC (-6,6),X=1 in a neighbourhood of t=O and 6 is suffi-

0
ciently small (support of X depends on support of p (see[]))
and maximal speed of propagation of considered system (1) (see
(11)).Then problem (14) can be disjoined into the Cauchy problem

Lw =P, x >o,O<t<T, (16)
W, It=o=U (1-40), X >O,t=O,

and mixed problem

Lw,=FXF.-;&tX-F,, x,>O,O<t<T,

Mw2 =g, x1 =O, O<t<T, (17)

wI t=0=0 x >O,t=O,

where as compatibility conditions for solutions in HO we

assume P. such that

t=O for ems-1. (18)

Assume that U is an extension of Uo(1-p) such that Uo I=.
:U (1-P) and put v ='-i .Then instead of (16) one has

1 =F 1  mF1,x 1 >0,0<t<T,

w I t= 0, x1>0,t=O. (19)

By the compatibility conditions (9)' such that D.g=O at t=O for
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cg:s-1 and (18),the functions and can be prolongated by zero

for t<0 in the sense of H" spaces.Therefore we replace (17) by

the following boundary problem

Lw2 F2, x1>0,
tIR',

(20)Mw,=g XI =0 ".

To prove the existence of solutions we need adjoint operators

and adjoint boundary conditions.Therefore we consider the follo-

wing identities

(Lu, =(u,L v) V f(R"-LO,T1) (21)
(u[v O ,T) e [O ,T ]' u 'v 0

for the Cauchy problem,and

(Lu,v) 1+ i+(AI c-Mu'v) I-I =(uL v) 1

* V 
(22)

, Mv) RxR ,

W n IVu,veCo (RIxtR ),for the boundary problem (20),where

L Ee-EA. +(-E-div A), (23)

M in L

M E E E 3 - (24)

and
n m *

E Aap o1v XVa ,g=l .... 1,=l+,..... ,m. (25)

From Lemmas 1 and 2 we get a priori estimates (8) and
(13) for solutions of problems (19),(20) and their adjoint.
Then by the well known methods (see[3]) we prove the existence
of strong solutions of these problems in L spaces (see[6]).

2
Then by the Friedrichs' mollifiers technics we solve the

regularity problem for solutions of (19) and (20). Knowing

that u=u+X(w1 +Uo)+w. and using a suitable partition of unity
we obtain the following result for the linearized problem (1)'

in a bounded domain.
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Theorem 1

Let the assumptions of Lemma 2 be satisfied and eOeC .

Then there exists a unique solution to problem (1)'such that

u ( (t)(~)CiHU(t),sl,l> +1 and estimate (13) is valid
2

To prove the exis(,ence of solutions to problem (1) we use

the following method of successive approximations
m-I m rn-- m n-n-I rn m--I inL( u )u =-E(t, x, u )ut+ E A.(t, x, u )uX.+B(t, x, u )u=

-F(t,x) in Ot.
rn-I M

M(t,x', u )u=g(t,x') on 0t, (26)
rn

u I'=.=U. (x) in 0,

0

where m=1,2,...,U=uo.Introduce the set Q(N)={ueGcR m :IuIto,,t

-5N, l+I1.Let mu.GQ(N),m=1, 2_ . -and the assumptions of Theorem
2

1 be satisfied for mulQ(N).Then by Theorem 1 there exist

a unique solution of (26) such that muer t (0 t )nH (I Mt )CHI (N)t) and
0

I - o , +lut.. < ,, (27)

if

(N)IFI ~ N 
(28)

+P!". I F1 _1,,o'n - .

where the last inequality holds for sufficiently small uo ,F,g,N

and a. , bt.

To show convergence of sequence {V} we consider the follo-
wing problem m  r-I

L(mu-) U=- L'("-' I) U,,,_
M( u) U=-M'(u ) u (29)

in 0
U1 =0=, 11*1, U=%o(W),

m rn rn-I m-I rn-I r M-I rn-2 m-I rn-2

where U=u- u ,L( u )-L( u )=L'(u-)( u - u ),M( u )-M( u )

=M' (u M-)(u I u 2),prime denotes derivative with respect to u,
r-I rnIrn-2

and u ""1 u ,m ua ].Then by Lemma 2 we have

m M-1
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where s<l.Assume that N is such that

h(N,N)N<l. (31)

Then the sequence {O} converges strongly in L,(o,t;r0 (O))n
If(Ct)N (&t), s<l,1>'+1.Hence by (27) and well known arguments

(equations (1) are satisfied in the classical way because

nf (&L)cC'(d)) for D>2+1 (see [1],Ch.3,Th.10.4)) one obtains
2

Theorem 2

Let the assumptions of Theorem 1 be satisfied and s=l.

Let data uo,F,g and coefficients of (1) be such that (28) and

(31) are satisfied.Then there exists a solution u to the

problem (1) such that ueLm(0,t;ro(f))cH (Ct)rH (C)), tMR+,

ult,t 5N and (1) are satisfied classically.
We proved the global existence because we have not any

restrictions on time.
1 2Finally we prove uniqueness.Assume that u ,u are two so-

lutions to problem (1).Then U=ul-u is a solution to the problem

L(u')U=-(L(u')-L(u2))uz=-L' (u)u2U in

M(uI )U=-(M(u1 )-M(u ))u2=M'(u)u2U on C,

UIt=o=0 in C),

where ue[ul,u 2 .Then by Lemma 1 one hasc /3

(10 
2,

c 0UU:n -i°lUIImL t- E lultdSc2lM' (u.)u 2Ul_',

Assuming that

2 ( 2,uU2 < 1E( +120. ll.2,

/3o

b o u liZ t ti (32)

c 21M'(;) u 2:,m - G ,I (uIU 2 4Hl.,m 2,

one has

Theorem 3
Let the assumptions of Lemma 1 be satisfied,v=u,t.,M,be

boundedi¥ differentiable with respect to u, (32) be satisfied.

Then for solutions of (1) in C (ht) we have uniqueness.
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STABILITY OF HTIAL BOUNDARY VALUE
PROBLEMS FOR HYPERBOLIC SYSTEMS

N. Zi61ko

AGH, Institute of Automatic Control

al. Kickiewicza 30, 30-058 I(rakdw, Poland

SUMMARY

The energy integral method was used to prove the asymptotic

stability for a set of first order linear equations with

constant coefficients. The main problem consists in finding a

norm which would enable to establish sufficient conditions for

boundary and interior stability. These conditions are also

necessary if considered system has some additional properties.

THE HYPERBOLIC SYSTEMS

There are various approaches to the theory of hyperbolic

differential equations in which the energy integral method is

used. At the beginning of 20-th century this method was applied

to prove the uniqueness and to establish the existence of the

solutions of hyperbolic partial differential equations.

Friedrichs in his work (1] quoted papers dealing with these

problems. Secondly, the energy integral method was used by

Gunzburger [21 in 1977 and Layton (41 in 1983 to establish the

stability of Galerkin method.

Consider the initial boundary value problem

S*A -D y xob "1o(x3

for yex,t) R7, O-x:51, Ogt_5T. A and D are nxn real and

constant matrices. Without loss of generality A may be taken

to be diagonal

A- 0 1 A-w diagCXp p ,.... ,) < 0

0 A A.. diagCX. .. ...... Xn ) > 0.
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Well-posed linear homogeneous boundary data can always be

written as
y , S y

y(IA) 0 (Olt) 
2

yf +T

where vector y y Cy y* I+ is the partition of y
corresponding to the partition of A. S and S are matrices

with dimensions Cn-r)xr and rxCn-r), respectively. The

initial conditions are C continuous and satisfy

Yo(o) s YOO)

-s y4+ C3)
YO, " 1 YO)

STABILITY OF HYPERBOLIC PROBLEMS

For a positive definite matrix G, the energy functional Is

defined as

E lltyII 02 f Jy G y dx C(4)0
0

where Ilyll__ denotes the second power of CLo )a 3' norm. In this
a (0,1)

work the asymptotic stability is considered. By definition,

problem C13 C23 is stable if Ilyll a 0 as t+" By use of

Leibnitz pattern the time rate of change of the energy

functional is given by

f fY'(DeG + GD) y dx - y T AG y + Jy CG4A - AG) a dx. C5)

0 0 0

If we assume additionally that matrix G is also diagonal,

then GA-AG and the last segment become equal to zero. Only

then is it possible to obtain useful results. Assumption, that

matrix G is diagonal, sets additional restrictions for

matrices D, S and S . It requires a certain "symmetry" of the

boundary valus problem. Taking into account that GAwAG, and
substituting boundary conditions C23 to equation C5) we obtain

dE dE i dEb 8:
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where
dE

, t
" ,YC DFG GD y dx (Ba)

0

dE -T OCG -A - S TG +A +S 3y - T CG +A + S 7 -A -Sy +y (6b)
O,0 0 ,Cu t (It)

G ard G are the partitions of G, similarly like A- and A

are the partitions of matrix A.

Definition 1.

The initial boundary value problem (1)2) is interior stable

Cresp. boundary stable) if there is a positive definite

diagonal matrix G, independent of initial conditions, such that

the inequality dEoldt < 0 Cresp. d b -dt < 0 ) holds for every

t =2 0 and yirO Cresp. Y Pei 0 and y + 1 0).

Theorem 1.

If problem C1)C2) is interior stable then all real parts of

eigenvalues of matrix D are negative.

Proof.

If problem C)(12) is interior stable then

oyTC GD + DT G) y dx< 0 for every t?>O , including the

arbitrary taken y n Yox" It follows that GD + DT G < 0. This

condition can be fulfilled by a positive definite matrix G

only if all real parts of eigenvalues of matrix D are

nkegative. u

Theorem 2.

If all eigenvalues of matrix D 4 DT  are negative, then

problem (1)C2) is interior stable.

Proof.

If D 4 DT < 0 then we can take G equal to the unit matrix

and obtain dE.Odt < 0 for every yuiO.*

If we assum additionally that matrix D is symitric, then

theorem 2 would gives not only the sufficient (with G equal

to the unit atrix), but also the necessary condition for

interior stability. This idea can be developed for a much

larger class of matrices D.
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Definition 2.

A matrix D is symmetrizable by a nonsingular matrix K if

K ,, D-rK.

Theorem 3.

Assume that matrix D is symmetrizable by a diagonal positive

definite matrix, e.g. K
2

D - D"K 2 . Then problem C1)C2) is

interior stable if and only if all eigenvalues of matrix D

are negative.

Proof.

For a symmetrizable matrix D we have KDK-'- K-DK. It

follows that K]DK -1 is a symmetric matrix and all eigenvalues

of matrix D are real. Substituting G - K
2  

and y - K-4y

we obtain

T T T -
y CGD 4 D G) y m 2 _a KDK-77.

This quadratic form is negative definite if and only if all

eigenvalues of matrix D are negative.m

If matrix D is symmetric or symmetrizable by a positive

definite matrix, it is possible to obtain useful stability

conditions. For this reason symmetrizability of equations of

classical physics were tested. Many years ago, Fridrichs

observed that almost all equations, linear and linearized, can

be transformed to a symmetrical form. For example it is easy to

verify that symmetrizers are positive definite for the

equations of electric RLC and RLGC networks, linear gas

pipeline and heat exchangers.

Lemm 1.

If S and S are matrices with dimensions mxr and rxm
0 1

respectivelly, then all nonzero eigenvalues of matrix S S are

identical with nonzero eigenvalues of matrix SSo, that is

detCS S - XJ) . ,-r detCSS 0 - XI).m

Theorem 4.

If problem C1)C2) is boundary stable then all modules of
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eigenvalues of matrices S S and SS are less than 1.

Proof.

If dE b dt < 0 for every nonzero solution of equation C1) then

we obtain inequalities for quadratic form

ST G . A+S ( -G-A-
0 0

ecc --- 3S < eA + .

Substituting GA4 . by S T C-G-A-)S in the first inequality we1 1

obtain

CSS 3TC-GASS - C-G-A-) < O.
t 0 1 0

This inequality condition can be fulfilled by a positive

definite matrix -G-A- only if all modules of eigenvalues of

matrix S S are less than 1. It follows from lemma 1 that all
1 0

eigenvalues of matrix S S are also less than 1..

Theorem 5.

If there exists g > 0 such that US II < g and IIS II < g-1

then problem C1)C2) is boundary stable. 1" II denotes the HLilbert

(spectral) matrix norm.

Proof.

We can take g - g_/g, where g_ and g. are positive

constants. From the assumptions of this theorem and the

definition of Hlbert norm it follows that

Y- T Y- <

+T T ++

y SS y2
+T + g -

for every y-P 0 and y +0. If we now take -GA- g 2 I

and GeA+ m g' I we finally obtain dEb',dt < 0.0

Theorem G.

Assume that the square matrix S 0 S i is symmetrizable

by a diagonal positive definite matrix. Then problem C1)C23) is

boundary stable if and only if all eigenvalues of matrix S S,

or equivalently SSo, are less than 1.
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Proof.

Condition (b) for the boundary stability can be written in

matrix notation

yTCSTIGAIS - IGAI3y < 0 (7)

where y - y T,)T and I I denotes the absolute value

of all elements of matrix, i.e. 1GA , [-G 0

For a symmetrizable matrix S we have KS3C a K- 1SK, that is

KS)k- 1  is a symmetric matrix and it follows that all

eigenvalues of matrix S are real. Substituting IGAIKe and

-0-Ky we obtain condition C7) for the boundary stability in the

form

-T -SC1 32 1

T

This Rayleigh's quotient is less than I for arbitrary itO, if

and only if all modules of eigenvalues of the matrix S are

less than 1. If X denotes eigenvalue of matrix S and

y - ) its block eigenvector then

It follows that
SoS lyz  x y z

S IS y I XyI

i.e. X is an eigenvalue of matrices So S and SI. i

The theorem 6 enable to test the boundary stability only for

the cases when there are positive definite diagonal matrices

G+ and G- such that

STG+^ -G-A-S (e)

This condition can be fulfilled only for the cases when each

element of matrix S T  and the element of matrix S situated

in the sam place are either equal zero or have the sam sign.

There are important cases of the initial boundary value

problem which violate this constraints. Nevertheless it is

possible to extend the theorem 0 over the cases where some

elements of matrix ST  have other sign then corresponding
0
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elements of matrix S.

Theorem 7.

Problem C13C23 is boundary stable if there exists a diagonal,

nonsingular matrix K such that KS a ST K, and all modules of

eigenvalues of matrix K- IKIS, or equivalently SIKIK"4 , are

less than 1.

Proof.

We can take IGAI - IKI - JKJ where J is a complex diagonal

matrix, consisting of only two elements: 1 or -I. The matrices

K -° 's and J are complex, but their product K-'S J is a real

diagonal matrix. After the transformation K's J? - y,

condition (7) for the boundary stability takes form

'rCK-o'sJSTJKJSJK-°S - I) < 0 (93

If KS - S7K holds, then a real matrix K°JSJK-° '  is

symmetric. Therefore inequality C9) is satisfied for every

nonzero real vector 7 if all modules of eigenvalues Cwhich

are real) of a complex matrix JSJ are less than 1. Now, if y

denotes a eigenvector of the matrix JSJ and X its

eigenvalue, then CJSJ-Xl)y=O. It follows that cJ 2 S-XI)Jy'O

and CS9a-XI)J- y-O, that is matrices JSJ, J2S-K-" IKIS and

S9-SIKI: -K 1 have the same eigenvalues.*

STABILITY OF TWO EQUATIONS SYSTEM

Consider the system which consists of only two equations

X-) D) y~ C 10)

where X- < 0 and X > 0 are speeds of return and

progressive wave, respectively. Without lost of generality the

energy functional can be define as

Eg f 1 a T
a fy r gJ y dx . C11.)

The time rate of change of the energy functional can be split

Into two components
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dE Jd d + jy dx C11)

CX? * ?.S)Yo) gX+- 4 S:)Y~ CuIb)

where d.. are elements of matrix D. Boundary conditions C2)

are set by scalars S and S.

Applying theorem 3 we obtain the conclusion that

symmetrizable system (10) is interior stable if, and only if

trD < 0 and detD > 0. Sy)metrizable matrix D fulfills either

condition 0 < d Ad 2 g or d - d a 0 Cthen gwi). Because

the system under consideration Is simple, formula (11a) can be

analyzed in a straightforward way.

Theorem S.

if d 1 1 < 0 , d <0 and detD > 0 then and only then exists a

diagonal matrix G such that problem C0)CP.- is interior

stable and parameter g fulfills either conditions

< g < a 7 t2 for d ~0
d1 di (12&)

d
d12or g-a~~ for d a70.u C12.b)or g > a= fod 7O- 2

11I 22

The conclusions obtained from theorem 8 are more valuable

then conclusions from theorem 3. We obtain all admissible

values for g and additionally the conditions for stability If

mtrix D is nonsymmtrizable (then d1 2 d a 0 ). However,

there are some other cases when matrix D fulfills necessary

conditions for the stability but does not exist a diagonal

matrix G such that dEedt < 0. All these cases are described

by inequalities trD < 0, detD >0 and d d - 0.

Theorem 0 can be applied to establish the boundary stability

either for the cases S S 0 or S m Sw 0. Then matrix S

Is syommtrizable by a positive definite diagonal matrix. A case

S S < 0 can be verified by theorem 7. For both these cases we
0 A

obtain the necessary and sufficient condition for the boundary

stabilitys IS 0 S I < 1. Then the positive and monotonically
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decreasing energy functional (11) Is defined either by

g I- S 01SI or g > 0 if So S. However, thecase

when only one of the elements either S or S 0  equals zero,

can not be established on this way.

Theorem 9.

If ISOS I < 1 then and only then there exists a diagonal

matrix G such that problem (1)() is boundary stable and

parameter g fulfills inequalities

-._ < g<-X (13)

Xe • X
0

Proof.

If dE bdt < 0 for arbitrary solution of the hyperbolic

equation (10) then

gx+sz < -X-
0

-X-Sz ( gx .
I

The both sides of these inequalities are nonnegative, and

therefore we can mltiply them to obtain

1<.

To prove the sufficient condition, we conclude from inequality

-X z< -X 1

0

that there exists g such that

<g < -X 1

0

We obtained all admissible values for g if problem C10)C2)

is boundary stable. Moreover, we proved the stability for a
•nonsyoitric" case when 0 S 0 but SI S o 0.

If problem C10)C2) is interior and boundary stable, it is

not always possible to find such g that both formulas (1ha)

and C11b) would be negative simultaneously. Some additional

conditions are then and only then fulfilled

7
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0 d2 1 5

These conditions are obtained from C12a.) and C 13) under the

assump~tion that d atP90. For the case when d at 0 we obtai n

from Inequalities Cl2b3 and C13)

-x 12 0

x It 22

REFERENCES

Ell Fridrichs K. 0 "Symtric Hyperbolic Linear Differential

Equations", Couu. Pure Apppl. Math., 17 C1964)0 pp. 345-392.

(21 Gunnzburger IMax.DS "On the stability of Galerkin mthods for

initial -boundary value problem for hyperbolic system",

Mathematics of Computation, 31 C 1977) pp. 661-675.

131 Kreiss H. -Os"Initial boundary value problem for hyperbolic

Systema, Cox=. Pure Appl. Math., P,_3 (1970) pp. 277-298.

(4) Layton W. 3: "Stable Galerkin methods f or hyperbolic

system", SIA4 3. Numer. Anal., CQ 1983) pp. 221-233.

707



List of Participants and Authors(*)
Alber, H. D., Dr., Mathematisches Institut A, Universitiit Stuttgart, Pfaf-
fenwaidring 57, 7000 Stuttgart 80, FRG
Andersen, G. R., Mathematics and Physics Branch Dept. of the Army, US
Army Research Development and Standardization Group (UK), 'Edison House',
223 Old Marylebone Rd., London NWI 5TH, Great Britain

" Andersson, H. I., Norwegian Institute of Technology, Trondheim, Norway
Ansorge, R., Prof. Dr., Institut fudr Angewandte Mathematik, Universitiit
Hamburg, Bundesstr. 55, 2000 Hamburg 13, FRG

" Arminjon, P., Prof. Dr., D~pt. de Math6matiques et Statistiques, Universit6
de Montr~a1, C.P. 6128 Succursale A, Montr~al, Quebec H3C 3J7, Canada
Arrenbrecht, W., Dr., Lehrstuhl ffur Mechanik, RWTH Aachen, Templer-
graben 64, 5100 Aachen, FRG
Bicker, M., Fachbereich Mathematik, Universitiit Kaiserslautern, Post-
fach 3049, 6750 Kaiserslautern, FRG

" Ballmann, J., Prof. Dr.-Ing, Lehr- und Forschungsgebiet Mechanik, RWTH
Aachen, Templergraben 64, 5100 Aachen, FRG
Barbry, H., Dr., C.E.A., Centre de Limeil, B.P. 27, 94190 Villeneuve St. Ge-
orges, Hrance
Barley, J. J., Prof. Dr., Dept. of Mathematics, University of Reading,
Whiteknights, P.O. Box 220, Reading RG6 2AH, Great Britain
Barth, T. J., Prof. Dr., CFD Branch, NASA Ames, M.S. 202a-1, Moffett
Field, CA 94035, USA

* Beam, R. M., Prof. Dr., NASA Ames Research Center, Moffett Field,
CA 94035, USA

" Becker, K., MBB - UT, TE 212, Hiinefeldstr. 1-5, 2800 Bremen 1, FRG
Benetschik, H., Dr., Institut fur Strahienantriebe und Turboarbeitsmaschi-
nen, RWTH Aachen, Templergraben 55, 5100 Aachen, FRG
Berger, H., Mathematisches Institut A, Universitt Stuttgart, Pfaffenwald-
ring 57, 7000 Stuttgart 80, FRG

" Billet, G., O.N.E.R.A., 29, Avenue de la Division Leclerc, 92320 Chatillon
Cedex, Hrance

" Binniger, B., Dr., Aerodynamisches Institut, RWTH Aachen, Templergra-
ben 55, 5100 Aachen, FRG
Bisbos, C. D., Dr., Institute of Steel Structures, University of Thessaloniki,
Kleiton 10, Thessaloniki, Greece

" Bourdel, F., Dr., Groupe d'Analyse Num~rique, O.N.E.R.A.-C.E.R.T.,
2, Ave Edouard Belin - B.P. 4025, 31055 Toulouse Cedex, FRance
Bourgeat, A., Prof. Dr., Equipe d'Analyse Num~rique, Universit6 de Saint-
Etienne, 23, Rue du Docteur Paul Michelon, 42023 Saint-Etienne Cedex 2, France
Braess, D., Prof. Dr., Institut fir Mathematik, Ruhr-Universitit Bochum,
Universitiitsstr. 150, Geb. NA, 4630 Bochum, FRG

* Brakhagen, F., Dr., Gesellschaft ffur Mathematik und Datenverarbeitung
mbH, Schio,1 Birlinghoven, Poatfach 1240, 5205 Sankt Augustin 1, FRG
Braun, M., Prof. Dr.-Ing., Fachbereich 7 - Maschinenbau Fachgebiet Me-
chanik, Universitfit Duisburg, Lotharstr. 1, 4100 Duisburg 1, FRG

708j



f

Brawer, R., Dr., Seminar fdr Angewandte Mathematik, ETH Zentrum,
8092 Ziirich, Switzerland

* Brio, M., Prof. Dr., Dept. of Mathematics, Building #89, University of
Arizona, Tucson, AZ 85721, USA

* Cahouet, J., Prof. Dr., Research Branch, Laboratoire National d'Hydrau-
lique, 6, Quai Watier, B.P. 49, 78401 Chatou Cedex, FRance
Carasso, C., Prof. Dr., Equipe d'Analyse Numerique, Universit6 de Saint-
Etienne, 23, Rue du Doctc xr Paul Michelon, 42023 Saint-Etienne Cedex, FRance
Carstens, V., Dr., Inst. ffur Aeroelastik, DFVLR - AVA, Bunsenstra&e 10,
3400 G6ttingen, FRG

* Causon, D. M., Dr., Dept. of Mathematics and Physics, John Dalton
Faculty of Science and Engineering, John Dalton Building, Chester Street,
Manchester M1 5GD, Great Britain
Chakravarthy, S., Prof. Dr., Rockwell Science Center, P.O. Box 1085,
Thousand Oaks, CA 91360, USA
Chaput, E., Dr., Aerospatiale, Route de Verneuji, B.P. No 2, 78133 Les
Mureaux Cedex, France
Chen, G., Dr., Courant Institute of Mathematical Science, New York Uni-
versity, 251 Mercer Street, New York, NY 10012, USA

* Childs, P. N., Prof. Dr., Oxford University Computing Laboratory, 8-11 Ke-
ble Road, Oxford 0X1 3QD, Great Britain

* Christiansen, S., Prof. Dr., Laboratory of Applied Mathematical Physics,
Technical University of Denmark, 2800 Lyngby, Denmark
Colomnbeau, J. F., Prof. Dr., U.E.R. de Math6znatiques et d'Informatique,
Universit6 de Bordeaux 1, 351, Cours de la Liberation, 33405 Talence Cedex,
Rance

* Coquel, F., Prof. Dr., Research Branch, Laboratoire National d'Hydraulique,
6, Quai Watier, B.P. 49, 78401 Chatou Cedex, France
Cordova, J. Q., Dr., NASA Ames Research Center, M.S. 202a-1, Moffett
Field, CA 94035, USA
Croisille, J. P., Dr., O.N.E.R.A., 29, Ave. Division Leclerc, B.P. 72,
92320 Chatillon Cedex, France

* Dadone, A., Prof. Dr., University of Barn, Via Re David 200, 70125 Barn,
Italy

* Dang Dinh Ang, Dept. of Mathematics, Dal Hoc Tong Hop, Ho Chi Minh
City, Vietnam

* Degond, P., Prof. Dr., Centre de Math~natiques Appliqudes, Ecole Polytech-
nique, 91128 Palaiseau Cedex, Rance

* Delorme, Ph., Dr., O.N.E.R.A., Division de 'Energ~tique, B.P. 72,92320 Cha-
tillon Cedex, FRance

* De Luca, P., Dr., Centre d'Etudes de Gramat, 46500 Graniat, RanceI* Deshpande, S. M., Prof. Dr., Dept. of Aerospace Engineering, Indian
Institute of Science, Bangalore 560012, India

* Dervieux, A., INRIA, Sophia-Antipolis 1 et 2, 2004, Route des Lucioles,I 06565 Valbonne Cedex, FRance
Diederich, J., Dr., Schlachthofstrage 38, 4690 Herne 2, FRG

709



Dbrfler, W., Institut ffur Angewandte Mathematik, SFB 256, Universitiit
Bonn, Wegelerstr. 6, 5300 Bonn 1, FRG
Dobmen, L., Dr., IES GmbH, Bastionstrale 11-19, 5170 Jiilich, FRG
Donato, A. A., Prof. Dr., Dipartimento di Matematica, Universith di
Messina, Contrada Papardo, Salita Sperone 31, 98010 Sant'Agata, Messina, Italy

" Dubois, F., Prof. Dr., Aerospatiale, SDT-STMI, B.P. 96, 78133 Les Mureaux
Cedex, FRance
Dziuk, G., Prof. Dr., Inst. ffur Angewandte Mathematik, Universitfit Bonn,
Wegelerstr. 6, 5300 Bonn, FRG
Egnesund, L., Dr., Dept. of Scientific Computing, University of Uppsala,
Foermansgatan 17, 72466 Vasteras, Sweden
Einfeldt, B., Dr., Inst. ffur Geometrie und Praktische Mathematik, RWTH
Aachen, Templergraben 55, 5100 Aachen, FRG

" Eliasson, P., Prof. Dr., FFA, The Aeronautical Research Institute of Sweden,
P.O. Box 11021, 161 11 Bromma, Sweden
Enander, R., Dr., Dept. of Scientific Computing, University of Uppsala,
Sturegatan 4B 2tr, 75223 Uppsala, Sweden

" Engelbrecht, J., Prof. Dr., Institute of Cybernetics, Estonian Academy of
Sciences, 200108 Tallinn, Estonia, USSR
Engels, H., Prof. Dr., Institut ffur Geometrie und Praktische Mathematik,
RWTH Aachen, Templergraben 55, 5100 Aachen, FRG

" Fabrizio, M., Prof. Dr., Istituto di Matemnatica, UniversitA6 di Bologna,
Piazza Porta San Donato, Bologna, Italy
Favini, B., Prof. Dr., Dipartimento di Meccanica e Aeronautica, Facolta di
Ingegneria, Via Eudossiana 18, 00195 Roma, Italy
Feistauer, M., Prof. Dr., Faculty of Mathematics and Physics, Charles
University Prague, Sokolovska 83, 18600 Prague 8, CSSR

" Fernandez, G., Prof. Dr., INRIA, Sophia-Antipolis, 06560 Valbonne Cedex,
FRance

" Fezoui, L., INRIA, Sophia-Antipolis 1let 2, 2004, Route des Lucioles, 06565 Val-
bonne Cedex, FRance
Finckenstein, Graf K. von, Prof. Dr., Fachbereich Mathematik, TH Darm-
stadt, Schlolgaxtenstr. 7, 6100 Darmstadt, FRG

" Fogwell, Th. W., Prof. Dr., Gesellschaft ffur Mathematik und Datenverar-
beitung mbH, Schlofl Birlinghoven,Postfach 1240, 5205 Sankt Augustin 1, FRG
Frebse, J., Prof. Dr., Inst. ffur Angewandte Mathematik, Universitiit Bonn,
Behringstr. 6, 5300 Bonn, FRG

" Freistiihler, H., Dr., Institut fuir Mathematik, RWTH Aachen, Templergra-
ben 55, 5100 Aachen, FRG
Fruihauf, H. H., Dr.-Ing., Institut ffur Raumfalrtsysteme, Universitfit Stutt-
gart, Pfaffenwaldring 31, 7000 Stuttgart 80, FRG
Fusco, D., Prof. Dr., Dipartimento di Maternatica, Universita, di Messina,

Contrada Papardo, Salita Sperone 31, 98010 Sant'Agata - Messina, Italy
Gibbons, J., Dr., Dept. of Mathematics, Imperial College of Science and
Technology, University of London, 180 Queen's Gate, London, SW7 2BZ, Great
Britain

710



Gilquin, H., Equipe d'Analyse Numerique, 23, Rue du Docteur Paul Michelon,
42023 Saint-Etienne Cedex, France

* Ginse, T., Prof. Dr., Dept. of Mathematics, University of Oslo, P.O. Box 1053,
0316 Oslo, Norway

* Glimm, J., Prof. Dr., Courant Institute of Mathematical Sciences, New York
University, 251 Mercer Street, New York, NY 10012, USA

* Goldberg, M., Prof. Dr., Dept. of Mathematics, Technion , Haifa 32000,
Israel
Gowda, V., Dr., INRIA, Domaine de Voluceau - Rocquencourt, B.P. 105,
78153 Le Chesnay, France

* Greenberg, J. M., Prof. Dr., Dept. of Mathematics, University of Maryland,
5542 Suffield Court, Catonsville, MD 21228, USA
Griinig, H., Prof. Dr., Stolwellenlabor, RWTH Aachen, Templergraben 55,
5100 Aachen, FRG

" Gustafsson, B., Prof. Dr., Dept. of Scientific Computing, Uppsala Univer-
sity, Sturegatan 4B 2tr, 752 23 Uppsala, Sweden

" Hackbusch, W., Prof. Dr., Institut ffir Informatik und Praktische Mathe-
matik, Christian-Albrechts-Universitit zu Kiel, Olshausenstr. 40, 2300 Kiel 1,
FRG

" Hinel, D., Dr., Aerodynamisches Institut, RWTH Aachen, Templergraben
55, 5100 Aachen, FRG

* Hagemann, S., Inst. ffir Informatik und Praktische Mathematik, Christian-
Albrechts-Universitit zu Kiel, Olshausenstr. 40, 2300 Kiel 1, FRG
Hagstrom, Th., Dr., Dept. of Applied Mathematics and Statistics, State
University of New York at Stony Brook, Stony Brook, NY 11794, USA
Halpern, L., Dr., Centre de Math~matiques Appliqu6es, Ecole Polytechni-
que, 91128 Palaiseau Cedex, France
Hanche-Olsen, H., Prof. Dr., Division of Mathematical Sciences, Norwe-
gian Institute of Technology, Oystein Moylas v. 23, 7031 Trondheim-NTH, Nor-
way

" Hanyga, A., Prof. Dr., Institute of Geophysics, Polish Academy of Sciences,
ul. Pasteura 3, 00973 Warsaw, Poland

* Harabetian, E., Prof. Dr., Dept. of Mathematics, University of Michigan,
3220 Angell Hall, Ann Arbor, MI 48109-1003, USA

" Henke, H., Dr., MBB GmbH Bremen, TE 234, Hiinefeldstra3e 1-5, 2800 Bre-
men, FRG
Hettich, R., Prof. Dr., Fachbereich IV - Mathematik, Universitit Trier,
Postfach 3825, 5500 Trier, FRG

* Holden, H., Prof. Dr., Institute of Mathematics, University of Trondheim,

7034 Trondheim-NTH, Norway
* Holden, L., Dr., Norsk Regnesentral, Postboks 114, Blindern, 0314 Oslo 3,

Norway

Holing, K., Statoil Trondheim, Postuttak, 7004 Trondheim, Norway
* Hornung, K., Prof. Dr., Fakultfit ffir Luft- und Raumfahrttechnik, Univer-

sitit der Bundeswehr Milnchen, Werner-Heisenberg-Weg 39, 8014 Neubiberg,
{ FRG

711

i.r



* Hsiao, L., Prof. Dr., Dept. of Mathematics, University of Washington,
Seattle, WA 98195, USA

* Hunter, J. K., Dr., Dept. of Mathematics, Colorado State U~niversity, Fort
Collins, CO 80523, USA

* Isaacson, E. L., Dept. of Mathematics, University of Wyoming, Laramie,
WY 82071, USA

* Ishiguro, T., Prof. Dr., Computational Sciences Division, National Aero-
space Laboratory, 7-44-1 Jindaiji-higashi-niachi, Chofu, Tokyo, 182, Japan
Jaifre, J., Prof. Dr., INRIA, Domaine de Voluceau - Rocquencourt, B.P. 105,
78153 Le Chesnay Cedex, FRance
James, F., Dr., Centre de Mathematiques Appliqu~es, Ecole Polytechnique,
91128 Palaiseau. Cedex, France
Jeffrey, A., Prof. Dr., Dept. of Engineering, University Newcastle upon Tyne,
Stephenson Building, Claremont Road, Newcastle upon Tyne, NEl 7RU, Great
Britain
Jeltsch, R., Prof. Dr., Institut fdr Geometrie und Praktische Mathematik,
RWTH Aachen, Templergraben 55, 5100 Aachen, FRO

* Jeschke, M., Aerdynaisches Institut, RWTH Aachen, Templergraben 55,
5100 Aachen, FRG
Johnson, C., Prof. Dr., Dept. of Mathematics, Chalmers University of
Technology, 41296 Goeteborg, Sweden
.longen, H., Prof. Dr., Lehrstuhl C fur Mathematik, RIWTH Aachen, Temp-
lergraben 55, 5100 Aachen, FRO
Jourdren, H., Dr., C.E.A., Centre de Limeil, B.P. 27, 94190 Villeneuve
St. Georges, France

* Klein, R., Institut fur Ailgemeine Mechanik, RWTH Aachen, Templergra-
ben 64, 5100 Aachen, FRG

* Klingenberg, C., Dr., Institut ffur Angewandte Mathematik, Universit~t
Heidelberg, Im. Neuenheimer Feld 294, 6900 Heidelberg, FRO

* Klopfer, G. H., Prof. Dr., NEAR Inc., Mountain View, CA 94043, USA
Kocaaydin, S., Lehr- und Forschungsgebiet Mechanik, RWTH Aachen, Temp-
lergraben 64, 5100 Aachen, FRO

* Koren, B., Dr., Center for Mathematics and Computer Science, P.O. Box
4079, 1009 AB Amsterdam, Netherlands

* Kosifiski, S., Dr., Inst. 'Inzynierii Budowlanej 1-32, Politechnika Lodzka, Al.
Politechniki 6, 93-590 L6di 40, Poland

* Kosiiiski, W., Dr., Institute of Fundamental Technological Research, Polish
Academy of Sciences, ul. wiqtokrzyska 21, 00-049 Warsaw, Poland

* Kozel, K., Prof. Dr., Dept. of Computational Techniques and Informatics,
TU Prague, Suchbfitarova 4, 166 07 Prague 6, (CSSR

* Kr~ner, D., Dr., Institut fdr Angewandte Mathematik, Universitit Heidel-
berg, Im, Neuenheimer Feld 294, 6900 Heidelberg, FRG
Kroll, N., Institut ffur Entwurfsaerodynamik, DFVLR e. V. Am Flughafen,
3300 Braunschweig, FRG

* Kubota, H., Prof. Dr., Faculty of Engineering, Dept. of Aeronautics, Uni-
versity of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113, Japan

712



IKipper, T., Prof. Dr., Institut ffur Angewandte Mathematik, Universitfit
Hannover, Welfengarten 1, 3000 Hannover 1, FRG
Icunik, M., Mathematisches Institut A, Universitiit Stuttgaxt, Pfaffenwaldring
57, 7000 Stuttgart 80, FRO

" Lar'kin, N. A., Prof. Dr., Inst. of Theoretical and Applied Mechanics,
630090 Novosibirsk - 90, USSR

* Larrouturou, B., Prof. Dr., INRIA, Sophia-Antipolis, 06560 Valbonne Ce-
dex, France
Lazareff, M., Prof. Dr., O.N.E.R.A. 1OAT3, 29, Ave de la Division Leclerc,
92320 Chatillon Cedex, France

" Le Floch, P., Dr., Centre de Math6rnatiques Appliqu~es, Ecole Polytechni-
que, 91128 Palaiseau Cedex, France

" Le Roux, A. Y., Prof. Dr., U.E.R. Mathamatiques, Universit4 de Borde-
aux 1, 355 Cours de la Liberation, 33405 Talence Cedex, FRance
Le Veque, R. J., Prof. Dr., Dept. of Mathematics GN-50, University of
Washington, Seattle, WA 98195, USA
Leclercq, M. P., Dr., Avions Marcel-Dassault-Berguet Aviation, 78, Quai
Marcel Dassault, 92214 Saint-Cloud Cedex, France
Leutloff, D., Dr. Ing., Institut ffur Mechanik, TH Darmstadt, Bert Brecht
StraBe 5, 6107 Reinheim 3, FRG
Lorentz, R., Dr., Gesellschaft ffur Mathemiatik und Datenverarbeitung mbH,
Schlol Birlinghoven, Postfach 1240, 5205 Sankt Augustin 1, FRO
Luh, Y., Gesellschaft far Mathematik und Datenverarbeitung mbH, Schlo3
Birlinghoven, Postfach 1240, 5205 Sankt Augustin 1, FRO

* Mandal, J. C., Prof. Dr., Dept. of Aerospace Engineering, Indian Institute
of Science, Bangalore 560012, India
Mao, D.-K., Prof. Dr., Dept. of Mathematics, University of California,
405 Hilgard Avenue, Los Angeles, CA 90024-1555, USA

* Marchesin, D., Prof. Dr., Instituto de Matemi~tica Pura e Aplicada, Ponti-
ficia Univ. Catholica, Estrada d. Castorina 110, Rio de Janeiro 22453, Brazil

* Marshall, G., Prof. Dr., EPFL, GASOV Group, 1015 Lausanne, Switzerland
Martensen, E., Prof. Dr., Mathemnatisches Institut 11, Universitiit Karls-
ruhe, Englerstr. 2, 7500 Karlsruhe 1, FRO
Maslov, V. P., Prof. Dr., Moscow Institute of Electronic Machinebuilding,
B. Vusovsky 3/12, 109 028 Moscow, USSR

* Mazet, P. A., Prof. Dr., O.N.E.R.A. - C.E.R.T., B.P. 4025, 31055 Toulouse
Cedex, Rance

* Mertens, J., Dr., MBB - UT, TE 212, Hiinefeldstr. 1-5, 2800 Bremen, FRO
M~nig, R., Dr., Institut ffur Strahlenantriebe und Turboarbeitsmaschinen,
RWTH Aachen, Templergraben 55, 5100 Aachen, FRO

* Montagni6, J.-L., Prof. Dr., Division DATI, O.N.E.R.A., 29, Avenue de la
Division Leclerc, 92320 Chatillon Cedex, Rance

* Moretti, G., Prof. Dr., G.M.A.F. Inc., P.O. Box.184, Freeport, NY 11520,
USA

* Morton, K.W., Prof. Dr., Oxford University Computing Laboratory, 8-11 Ke-
ble Road, Oxford OXI 3QD, Great Britain

713



Milller, B., Dr., DFVLR -AVA, SM -TS, Bunsenstr. 10, 3400 G~tingen,
FRG

" Munz, C. D., Dr., Institut ftir Reaktortechnik und Neutronenphysik, Kern-
forschungszentrum Karlsruhe, Postfach 3640, 7500 Karlsruhe, FRG

" Mustieles, F. J., Dr., Centre de Math6matiques Appliqu~es, Ecole Polytech-
nique, 01128 Palaiseau Cedex, Hrance
Nastase, A., Prof. Dr., Lehrgebiet Aerodynamik des Fluges, RWTH Aachen,
Templergraben 55, 5100 Aachen, FRO

" Niclot, B., Centre Technique, Citroen, DAT/OSI, Route de Gisy, 78140 Velizy-
Villacoublay Cedex, France

" Nguyen Van Nhac, Dr., Dept. of Mathematics, Faculty of Nuclear Enginee-
ring, TU Prague, Trojanova 13, 120 00 Prague 2, C.SSR

" Ogawa, S., Prof. Dr., Computational Sciences Division, National Aerospace
Laboratory, 7-44--i Jindaiji-higashi-machi, Chofu, Tokyo, 182, Japan

" Osher, S. J., Prof. Dr., Dept. of Mathematics, University of California,
Los Angeles, CA 90024, USA
Paert, E., Dr., Dept. of Scientific Computing, University of Uppsala, Sture-
gatan 4B 2tr, 75223 Uppsala, Sweden
Panagiotopoulos, P. D., Prof. Dr., RWTH Aachen, Templergraben 55,5100
Aachen, ERG

" Pandolfi, M., Prof. Dr., Dipartimento di Ingegneria Aeronautica e Spaziale,
Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
Pennisi, S., Dr., Dipartimento di Maternatica, Citta Universitaria, Viale A
Doria N. 6, Catania, Italy

" Peradzyuiski, Z., Dr., Institute of Fuindamental Technological Research,
Polish Academy of Sciences, ul. Swiqtokrzyska 21, 00-049 Warsaw, Poland

" Pfitzner, M., Dr., MBB GrnbH, Postfach 801169, 8000 Miinchen 80, FRG
" Phamn Ngoc Dinh, A., Dr., D~pt. de Math6matiques et d'Informatique,

Universit6 de Orleans, B.P. 67-59, 45067 Orleans - Cedex 2, France
" Plohr, B. J., Prof. Dr., Computer Sciences Dept., University of Wisconsin,

Madison, WI 53706, USA
P~ippe, C., Dr., SFB 123, Universitiit Heidelberg, Im. Nenenheimer Feld 294,
6900 Heidelberg, FRO
Pohl, B., Institut ffur Ceometrie und Praktische Mathernatik, RWTH Aachen,
Templergraben 55, 5100 Aacben, FRG
Priestley, A., Dr., Dept. of Mathematics, University of Reading, White-
knights, P.O. Box 220, Reading RG6 2AH, Great Britain
Racke, R., Dr., Inst. ffur Angewandte Mathematik, Universitiit Bonn, Wege-
lerstraBe 10, 5300 Bonn 1, FRG
Rannacher, R., Prof. Dr., Fachbereich Angewandte Mathematik und Infor-
matik, Universitiit des Saarlandes, 6600 Saarbriicken, FRO
Rascie, M., Prof. Dr., Laboratoire de Math~matiques, Universit6 de Nice
(U.A. CNRS No.168), Paxc Valrose, 06034 Nice, France
Raviart, P. A., Prof. Dr., Centre de Math~matiques Appliqu~es, Ecole
Polytechnique, 91128 Palaiseau Cedex, France
Reutter, F., Prof. Dr., Liitticherstra~e 238, 5100 Aachen, FRG

714

0



Risebro, N .H., Dr., Institute of Mathematics, Univ'rsity of Oslo, P.O.
Box 1053, Blindern, 0316 Oslo 3, Norway

* Rizzi, A., Prof. Dr., FFA, The Aeronautical Research Institute of Sweden,
P.O. Box 11021, 161 11 Bromma, Sweden
Romstedt, P., Dr., Gesellschaft far Reaktorsicherheit, Forschungsgelinde,
8046 Gaching, FRG

* Rostand, P., Prof. Dr., INRIA-Menusin, Domaine de Voluceau - Rocquen-
court, B.P. 105, 78153 Le Chesnay Cedex, France
Rozhdestvensky, B. L., Dr., Keldysh Institute of Applied Mathematics,
Academy of Sciences of USSR, Miusskaja Sq.4, 125047 Moscow, USSR
Rusanov, V. V., Prof. Dr., Keldysai Institute of Applied Mathematics,
Academy of Sciences of USSR, Miusskaya Sq. 4, 125047 Moscow A - 47, USSR

" Schick, P., Dr., Fakultut flir Luft- und Raumfahrttechnik, Universitut der
Bundeswehr Miinchen, Werner-Heisenberg-Weg 39, 8014 Neubiberg, FRG
Schlechtriem, S., Lehr- und Forschungsgebiet Mechanik, RWTH Aachen,
Templergraben 64, 5100 Aachen, FRG

* Schmidt, L., Dr., Institut fir Angewandte Mathematik, Universitut Karls-
ruhe, Englerstrafe 2, 7500 Karlsruhe, FRG
Schneider, M., Prof. Dr., Mathematisches Institut I, Universitt Karlsruhe,
Englerstrafe 2, 7500 Karlsruhe 1, FRG

* Sch5ffel, St.U., Dr., Mechanische Verfahrenstechnik und Str~mungsmechanik,
Fachbereich Maschinenwesen,Universit.t Kaiserslautern,Postfach 3049,6750 Kai-
serslautern, FRG
Schulte, M., Dr., Fachbereich Mathematik, WE03, Freie Universitat Berlin,
Arnimallee 2-6, 1000 Berlin 33, FRG
Schwarz, M., WWU Mainster, D 208, Stadtlohnweg 11, 4400 Miinster, FRG
Schwenzfeger, K.J., Prof. Dr., Institut I ffir Mathematik und Rechneranwen-
dungFakultt ffir LRT, Universitit der Bundeswehr, Georgenstr. 24, 8021 Sau-
erlach, FRG
Serre, D., Prof. Dr., Ecole Normale Superieure de Lyon, 46, Alle d'Italie,
69364 Lyon Cedex 07, France

" Sethian, J., Prof. Dr., Dept. of Mathematics, University of California,
Berkeley, CA 94720, USA

" Shapiro, R. A., Dr., Computational Fluid Dynamics Laboratory, Massachu-
setts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02146,
USA
Smit, J. H., Prof. Dr., Dept. of Mathematics, University of Stellenbosch,
7600 Stellenbosch, South-Africa

" Sommerfeld, M., Dr., Lehrstuhl ffir Str6mungsmechanik, Friedrich-Alex-
ander Universitit Erlangen-Niirnberg, Egerlandstr. 13, 8520 Erlangen, FRG
Sonar, Th., Inst. f. Entwurfsaerodynamik, DFVLR, Am Flughafen, 3300 Braun-
schweig, FRG
Song, J., Universitt Bonn, An der Ohligsmiihle 29, 5300 Bonn 1, FRG
Sowa, J., Dr., Dept. of Scientific Computing, University of Uppsala, Sture-
gatan 4B 2tr, 75223 Uppsala, Sweden

* Staat, M., Dr.-Ing., Lehr- und Forschungsgebiet Mechanik, RWTH Aachen,
Templergraben 64, 5100 Aachen, FRG

715



Steffen, B., Dr., Zentralinstitut ffir Mathematik, Kernforschungsanlage Jiilich,
Postfach 1913, 5170 Jiilich, FRG

* Steve, H., INRIA, Sophia-Antipolis 1 et 2,2004, Route des Lucioles, 06565 Val-
bonne Cedex, France

* Stoufflet, B., AMD-BA, DGT-DEA, B.P. 300, 78, Quai Marcel Dassault,
92214 Saint-Cloud, France

* Straikraba, I., Prof. Dr., Ceskoslovenska Akademie Ved Matematicky Ustav,
Zitni 25, Praha 1, 115 67, CSSR

* Sweby, P. K., Prof. Dr., Dept. of Mathematics, University of Reading,
Whiteknights, P.O. Box 220, Reading RG6 2AH, Great Britain
Szepessy, A., Prof. Dr., Dept. of Mathematics, Chalmers University of
Technology and University of Goeteborg, Sven Hultins Gata 6, 41727 Goeteborg,
Sweden
Szmolyan, P., Prof. Dr., Dept. of Mathematics and Statistics, University of
Maryland, Baltimore County Campus, Baltimore, MD 21228, USA

* Tadmor, E., Prof. Dr., School of Mathematical Sciences, Tel Aviv University,
Tel Aviv 69928, Israel

* Temple, B., Prof. Dr., Dept. of Mathematics, University of California, Davis,
CA 95616, USA

* Ting, T. C. T., Prof. Dr., Dept. of Civil Engineering Mechanics and
Metallurgy (M/C 246), University of Illinois at Chicago, Box 4348, Chicago,
IL 60680, USA

* Toro, E. F., Dr., College of Aeronautics, Cranfield Institute of Technology,
Cranfield, Beds MK43 QAL, Great Britain
Trangenstein, J. A., Prof. Dr., Lawrence Livermore National Laboratory,
University of California, Post Box 808, Livermore, CA 94550, USA
Turchak, L. I., Prof. Dr., Computational Fluid Dynamics Dept., USSR
Academy of Sciences Computing Centre, 40 Vavilova, 117333 Moscow, USSR
Tveito, A., Prof. Dr., Institute of Informatics, University of Oslo, Postboks
1080, Blindern, 0316 Oslo 3, Norway
Varnhorn, W., Dr., TH Darmstadt, Schlol3gatenstraBe 7, 6100 Darmstadt,
FRG

* Vavfincovi, M., Prof. Dr., Dept. of Computational Techniques and Infor-
matics, TU Prague, Suchbgtarova 4, 16607 Prague 6, CSSR
Vecchi, I., Dr., Institut ffir Angewandte Mathematik, Universitit Heidel-
berg, Im Neuenheimer Feld 294, 6900 Heidelberg, FRG
Vila, J.-P., Prof. Dr., Cemagref, Domaine Universitaire, B.P. 76, 38402 Saint
Martin d'Heres, France

* Vinokur, M., Prof. Dr., Sterling Software, Palo Alto, CA 94030, USA
* Voskresensky, G.P., Prof. Dr., Keldysh Institute of Applied Mathematics,

USSR Academy of Sciences, Miusskaya Sq. 4, 125047 Moscow, USSR
* Wada, Y., Prof. Dr., Computational Sciences Division, National Aerospace

Laboratory, 7-44-1 Jindaiji-higashi-machi, Chofu, Tokyo, 182, Japan
Wagner, D. H., Prof. Dr., Dept. of Mathematics, University of Houston,
University Park, 4800 Calhoun Road, Houston ,TX 77004, USA
Walter, A., Fachbereicb Mathematik, Universitit des Saarlandes, Im Stadt-
wald, 6600 Saarbriicken 1, FRG

716

$I



Walter, J., Prof. Dr., Institut ffur Mathematik, RWTH Aachen, Templergra-
ben 55, 5100 Aachen, FRG

" Warmning, R. F., Prof. Dr., CFD Branch MS 202a-1, NASA Ames Research
Center, Moffett Field, CA 94035, USA
Warnecke, G., Dr., Mathemnatisches Institut A, Universitfit Stuttgart, Pfaf-
fenwaidring 57, 7000 Stuttgart 80, FRG
Wegner, W., Institut ffur Aeroelastik, DFVLR - AVA, BunsenstraBe 10,
3400 Gittingen, FRG
Weiland, C., Dr.-Ing., Kommunikationssysteme und Antriebe KT 225, MBB
GmbH, Postfach 801169, 8000 Miinchen 80, FRG

" Wendroff, B., Prof. Dr., Theoretical Division MSB 28484, Los Alamos
National Laboratory, Los Alamnos, NM 87545, USA
Werner, K. D., Institut ffur Geometrie und Praktische Mathematik, RWTH
Aachen, Templergraben 55, 5100 Aachen, FRG
Werner, W., Dr., Gesellschaft ffur Reaktorsicherheit (GRS) mbH, Forschungs-
gehinde, Postfach, 8046 Garching, FRG
Wesolowski, Z., Prof. Dr., Institut ffur Physik, Max-Planck-Institut ffur
Metallforschung, Postfach 80 06 65, 7000 Stuttgart, FRG

" Westenberger, H., Dr., Lehr- und Forschungsgebiet Mechanik, RWTH
Aachen, Templergraben 64, 5100 Aachen, FRG

" White, A. B., Jr., Prof. Dr., Los Alamos National Laboratory, Los Alamos,
NM 87545, USA
Wiemner, P., Dr., Rheinmetall GmnbH, Postfach 6609, 4000 Dilsseldorf 30,
FRG
Wirz, H. J., Dr., II. Institut ffir Mechanik, TU Berlin, Stra~e des 1i7. 3uni,
1000 Berlin, FRG
Witsch, K., Prof. Dr., Angewandte Mathematik, Universitiut Diisseldorf,
Universitiitsstr. 1, 4000 Dilsseldorf, FRG
Woodward, P. R., Prof. Dr., Astronomy Dept., University of Minnesota,
116 Church St. S.E., Minneapolis, MN 55455, USA

*Yee, H. C., Prof. Dr., NASA Ames Research Center, Mail Stop 202a-1,
Moffett Field, CA 94035, USA

*Zajaczkowski, W.M., Prof. Dr., Institute of Fundamental Technological
Research, wiqtokrzyska 21, 00-048 Warsaw, Poland
Zeller, H., Prof. Dr., Aerodynamisches Institut, RWTH Aachen, Templer-
graben 55, 5100 Aachen, FRG
Zeller, R., Dr., Cray-Research GmbH, Perhamnerstr. 31, 8021 Sauerlach,
FRG
Zhang, T., Prof. Dr., Institute of Mathematics, Academia Sinica, Beijing,
China
Zhu, Y.-L., Prof. Dr., Stochastische Mathemnatische Modelle,SFB 123, Uni-
versitiit Heidelberg, Im. Neuenheimer Feld 294, 6900 Heidelberg, FRG
Zi61ko, M., Dr., Institute of Automatic Control, University of Mining and
Metallurgy, al. Mickiewicza 30, 30 - 059 Krak6w, Poland

717



r-

SUPPORT AND SPONSORSHIP ACKNOWLEDGEMENTS

Scientific Committee

Y. L. Zhu, Beijing, Z. Wesolowski, Warsaw, C. Weiland, MiInchen, B. van Leer,
Ann Arbor, Y. Shokin, Krasnoyarsk, P. A. Raviart, Palaiseau, M. Pandolfi, Torino,
S. Osher, Los Angeles, 0. Oleinik, Moscow, T. P. Liu, Maryland, C. Klingenberg,
Heidelberg, R. Jeltsch, Aachen, A. Jeffrey, Newcastle uponTyne, J. D. Hoffman,
West-Lafayette, B. Gustafsson, Uppsala, A.A. Donato, Messina, C. Dafermos,
Providence, C. Carasso, St. Etienne, J. Ballmann, Aachen.

Host Organization

Rheinisch Westfilische Technische Hochschule Aachen

Supporting Organizations - Assistance Gratefully Acknowledged

Control Data GmbH, Diisseldorf
Cray Research GmbH, Miinchen
Deutsche Forschungsgemeinschaft
Diehl Gmbh & Co., R16thenbach
Digital Equipment GmbH, Kiiln
FAHO Gesellschaft von Fteunden der Aachener Hochschule, Diisseldorf
IBM Deutschland GmbH, Stuttgart
Mat hem atisch Nat urwissenschaftljche Fakultit der RWTH
Mayersche Buchhandlung, Aachen
Ministerium ffur Wissenschaft und Forsebung des Landes Nordrhein-Westfalen
Office of Naval Research Branch, Office, London, England
Rheinmetall OmnbH, Dusseldorf
Stadt Aachen
US Air Force EOARD
US Army European Research Office, London
Wegmann GmbH & Co., Kassel

718



Addresses of the editors of the series
_Nte on Numerical Fluid Mechanics":

Prof. Dr. Ernst Heinrich Hirschel (general editor)

Herzog-Hm9inrich-Weg 6

D-801 1 Zorneding

Prof. Dr. Kozo Fujil
High-Speed Aerodynamics Div.
The ISAS
Yoshinodai 3-1-1, Sagamnihara
Kanagawa 229
Japan

Prof. Dr. Keith William Morton
Oxford University Computing Laboratory
Numerical Analysis Group
8-11 Keble Road
Oxford OX I 30D
Great Britain

Prof. Dr. EarlM. Murman
Department of Aeronautics and Astronautics
Massachusetts Institute of Technology (M. I.T.)

Cambridge, Ma 02139
U. S.A.

Prof. Dr. Maurizio Pandolfi
Dipartimento di Ingegneria Aeronautica e Spaziale

Politecnico di Torino
Corso Duca Degli Abruzzi, 24
1-101 29 Torino
Italy

Prof. Dr. Arthur Rizzi
FFA Stockholm

Box 1102

S-16111 Bromma 11
Sweden

Dr. Bernard Roux
Institut de Metanique des Fluides
Laboratoire Associd au C. R.N. S. LA 03

t 1, Rue Honnorat
F -13003 Marseille
France



NOTES ON
NUMERICAL FLUID MECHANICS

The aim of* this series is to publish quickly and in a detailed form
new material from the field of Numerical Fluid Mechanics includ-
ing the use of advanced computer systems. Published are reports
on speciatiked conferences, workshops, research programs and
monographs.

rn __-o

mu(


